//===- VirtualFileSystem.cpp - Virtual File System Layer ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the VirtualFileSystem interface. // //===----------------------------------------------------------------------===// #include "llvm/Support/VirtualFileSystem.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Chrono.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::vfs; using llvm::sys::fs::file_t; using llvm::sys::fs::file_status; using llvm::sys::fs::file_type; using llvm::sys::fs::kInvalidFile; using llvm::sys::fs::perms; using llvm::sys::fs::UniqueID; Status::Status(const file_status &Status) : UID(Status.getUniqueID()), MTime(Status.getLastModificationTime()), User(Status.getUser()), Group(Status.getGroup()), Size(Status.getSize()), Type(Status.type()), Perms(Status.permissions()) {} Status::Status(const Twine &Name, UniqueID UID, sys::TimePoint<> MTime, uint32_t User, uint32_t Group, uint64_t Size, file_type Type, perms Perms) : Name(Name.str()), UID(UID), MTime(MTime), User(User), Group(Group), Size(Size), Type(Type), Perms(Perms) {} Status Status::copyWithNewName(const Status &In, const Twine &NewName) { return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), In.getUser(), In.getGroup(), In.getSize(), In.getType(), In.getPermissions()); } Status Status::copyWithNewName(const file_status &In, const Twine &NewName) { return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), In.getUser(), In.getGroup(), In.getSize(), In.type(), In.permissions()); } bool Status::equivalent(const Status &Other) const { assert(isStatusKnown() && Other.isStatusKnown()); return getUniqueID() == Other.getUniqueID(); } bool Status::isDirectory() const { return Type == file_type::directory_file; } bool Status::isRegularFile() const { return Type == file_type::regular_file; } bool Status::isOther() const { return exists() && !isRegularFile() && !isDirectory() && !isSymlink(); } bool Status::isSymlink() const { return Type == file_type::symlink_file; } bool Status::isStatusKnown() const { return Type != file_type::status_error; } bool Status::exists() const { return isStatusKnown() && Type != file_type::file_not_found; } File::~File() = default; FileSystem::~FileSystem() = default; ErrorOr> FileSystem::getBufferForFile(const llvm::Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { auto F = openFileForRead(Name); if (!F) return F.getError(); return (*F)->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code FileSystem::makeAbsolute(SmallVectorImpl &Path) const { if (llvm::sys::path::is_absolute(Path)) return {}; auto WorkingDir = getCurrentWorkingDirectory(); if (!WorkingDir) return WorkingDir.getError(); llvm::sys::fs::make_absolute(WorkingDir.get(), Path); return {}; } std::error_code FileSystem::getRealPath(const Twine &Path, SmallVectorImpl &Output) const { return errc::operation_not_permitted; } std::error_code FileSystem::isLocal(const Twine &Path, bool &Result) { return errc::operation_not_permitted; } bool FileSystem::exists(const Twine &Path) { auto Status = status(Path); return Status && Status->exists(); } #ifndef NDEBUG static bool isTraversalComponent(StringRef Component) { return Component.equals("..") || Component.equals("."); } static bool pathHasTraversal(StringRef Path) { using namespace llvm::sys; for (StringRef Comp : llvm::make_range(path::begin(Path), path::end(Path))) if (isTraversalComponent(Comp)) return true; return false; } #endif //===-----------------------------------------------------------------------===/ // RealFileSystem implementation //===-----------------------------------------------------------------------===/ namespace { /// Wrapper around a raw file descriptor. class RealFile : public File { friend class RealFileSystem; file_t FD; Status S; std::string RealName; RealFile(file_t RawFD, StringRef NewName, StringRef NewRealPathName) : FD(RawFD), S(NewName, {}, {}, {}, {}, {}, llvm::sys::fs::file_type::status_error, {}), RealName(NewRealPathName.str()) { assert(FD != kInvalidFile && "Invalid or inactive file descriptor"); } public: ~RealFile() override; ErrorOr status() override; ErrorOr getName() override; ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override; std::error_code close() override; }; } // namespace RealFile::~RealFile() { close(); } ErrorOr RealFile::status() { assert(FD != kInvalidFile && "cannot stat closed file"); if (!S.isStatusKnown()) { file_status RealStatus; if (std::error_code EC = sys::fs::status(FD, RealStatus)) return EC; S = Status::copyWithNewName(RealStatus, S.getName()); } return S; } ErrorOr RealFile::getName() { return RealName.empty() ? S.getName().str() : RealName; } ErrorOr> RealFile::getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { assert(FD != kInvalidFile && "cannot get buffer for closed file"); return MemoryBuffer::getOpenFile(FD, Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code RealFile::close() { std::error_code EC = sys::fs::closeFile(FD); FD = kInvalidFile; return EC; } namespace { /// A file system according to your operating system. /// This may be linked to the process's working directory, or maintain its own. /// /// Currently, its own working directory is emulated by storing the path and /// sending absolute paths to llvm::sys::fs:: functions. /// A more principled approach would be to push this down a level, modelling /// the working dir as an llvm::sys::fs::WorkingDir or similar. /// This would enable the use of openat()-style functions on some platforms. class RealFileSystem : public FileSystem { public: explicit RealFileSystem(bool LinkCWDToProcess) { if (!LinkCWDToProcess) { SmallString<128> PWD, RealPWD; if (llvm::sys::fs::current_path(PWD)) return; // Awful, but nothing to do here. if (llvm::sys::fs::real_path(PWD, RealPWD)) WD = {PWD, PWD}; else WD = {PWD, RealPWD}; } } ErrorOr status(const Twine &Path) override; ErrorOr> openFileForRead(const Twine &Path) override; directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override; llvm::ErrorOr getCurrentWorkingDirectory() const override; std::error_code setCurrentWorkingDirectory(const Twine &Path) override; std::error_code isLocal(const Twine &Path, bool &Result) override; std::error_code getRealPath(const Twine &Path, SmallVectorImpl &Output) const override; private: // If this FS has its own working dir, use it to make Path absolute. // The returned twine is safe to use as long as both Storage and Path live. Twine adjustPath(const Twine &Path, SmallVectorImpl &Storage) const { if (!WD) return Path; Path.toVector(Storage); sys::fs::make_absolute(WD->Resolved, Storage); return Storage; } struct WorkingDirectory { // The current working directory, without symlinks resolved. (echo $PWD). SmallString<128> Specified; // The current working directory, with links resolved. (readlink .). SmallString<128> Resolved; }; Optional WD; }; } // namespace ErrorOr RealFileSystem::status(const Twine &Path) { SmallString<256> Storage; sys::fs::file_status RealStatus; if (std::error_code EC = sys::fs::status(adjustPath(Path, Storage), RealStatus)) return EC; return Status::copyWithNewName(RealStatus, Path); } ErrorOr> RealFileSystem::openFileForRead(const Twine &Name) { SmallString<256> RealName, Storage; Expected FDOrErr = sys::fs::openNativeFileForRead( adjustPath(Name, Storage), sys::fs::OF_None, &RealName); if (!FDOrErr) return errorToErrorCode(FDOrErr.takeError()); return std::unique_ptr( new RealFile(*FDOrErr, Name.str(), RealName.str())); } llvm::ErrorOr RealFileSystem::getCurrentWorkingDirectory() const { if (WD) return std::string(WD->Specified.str()); SmallString<128> Dir; if (std::error_code EC = llvm::sys::fs::current_path(Dir)) return EC; return std::string(Dir.str()); } std::error_code RealFileSystem::setCurrentWorkingDirectory(const Twine &Path) { if (!WD) return llvm::sys::fs::set_current_path(Path); SmallString<128> Absolute, Resolved, Storage; adjustPath(Path, Storage).toVector(Absolute); bool IsDir; if (auto Err = llvm::sys::fs::is_directory(Absolute, IsDir)) return Err; if (!IsDir) return std::make_error_code(std::errc::not_a_directory); if (auto Err = llvm::sys::fs::real_path(Absolute, Resolved)) return Err; WD = {Absolute, Resolved}; return std::error_code(); } std::error_code RealFileSystem::isLocal(const Twine &Path, bool &Result) { SmallString<256> Storage; return llvm::sys::fs::is_local(adjustPath(Path, Storage), Result); } std::error_code RealFileSystem::getRealPath(const Twine &Path, SmallVectorImpl &Output) const { SmallString<256> Storage; return llvm::sys::fs::real_path(adjustPath(Path, Storage), Output); } IntrusiveRefCntPtr vfs::getRealFileSystem() { static IntrusiveRefCntPtr FS(new RealFileSystem(true)); return FS; } std::unique_ptr vfs::createPhysicalFileSystem() { return std::make_unique(false); } namespace { class RealFSDirIter : public llvm::vfs::detail::DirIterImpl { llvm::sys::fs::directory_iterator Iter; public: RealFSDirIter(const Twine &Path, std::error_code &EC) : Iter(Path, EC) { if (Iter != llvm::sys::fs::directory_iterator()) CurrentEntry = directory_entry(Iter->path(), Iter->type()); } std::error_code increment() override { std::error_code EC; Iter.increment(EC); CurrentEntry = (Iter == llvm::sys::fs::directory_iterator()) ? directory_entry() : directory_entry(Iter->path(), Iter->type()); return EC; } }; } // namespace directory_iterator RealFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { SmallString<128> Storage; return directory_iterator( std::make_shared(adjustPath(Dir, Storage), EC)); } //===-----------------------------------------------------------------------===/ // OverlayFileSystem implementation //===-----------------------------------------------------------------------===/ OverlayFileSystem::OverlayFileSystem(IntrusiveRefCntPtr BaseFS) { FSList.push_back(std::move(BaseFS)); } void OverlayFileSystem::pushOverlay(IntrusiveRefCntPtr FS) { FSList.push_back(FS); // Synchronize added file systems by duplicating the working directory from // the first one in the list. FS->setCurrentWorkingDirectory(getCurrentWorkingDirectory().get()); } ErrorOr OverlayFileSystem::status(const Twine &Path) { // FIXME: handle symlinks that cross file systems for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { ErrorOr Status = (*I)->status(Path); if (Status || Status.getError() != llvm::errc::no_such_file_or_directory) return Status; } return make_error_code(llvm::errc::no_such_file_or_directory); } ErrorOr> OverlayFileSystem::openFileForRead(const llvm::Twine &Path) { // FIXME: handle symlinks that cross file systems for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { auto Result = (*I)->openFileForRead(Path); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } llvm::ErrorOr OverlayFileSystem::getCurrentWorkingDirectory() const { // All file systems are synchronized, just take the first working directory. return FSList.front()->getCurrentWorkingDirectory(); } std::error_code OverlayFileSystem::setCurrentWorkingDirectory(const Twine &Path) { for (auto &FS : FSList) if (std::error_code EC = FS->setCurrentWorkingDirectory(Path)) return EC; return {}; } std::error_code OverlayFileSystem::isLocal(const Twine &Path, bool &Result) { for (auto &FS : FSList) if (FS->exists(Path)) return FS->isLocal(Path, Result); return errc::no_such_file_or_directory; } std::error_code OverlayFileSystem::getRealPath(const Twine &Path, SmallVectorImpl &Output) const { for (auto &FS : FSList) if (FS->exists(Path)) return FS->getRealPath(Path, Output); return errc::no_such_file_or_directory; } llvm::vfs::detail::DirIterImpl::~DirIterImpl() = default; namespace { class OverlayFSDirIterImpl : public llvm::vfs::detail::DirIterImpl { OverlayFileSystem &Overlays; std::string Path; OverlayFileSystem::iterator CurrentFS; directory_iterator CurrentDirIter; llvm::StringSet<> SeenNames; std::error_code incrementFS() { assert(CurrentFS != Overlays.overlays_end() && "incrementing past end"); ++CurrentFS; for (auto E = Overlays.overlays_end(); CurrentFS != E; ++CurrentFS) { std::error_code EC; CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC); if (EC && EC != errc::no_such_file_or_directory) return EC; if (CurrentDirIter != directory_iterator()) break; // found } return {}; } std::error_code incrementDirIter(bool IsFirstTime) { assert((IsFirstTime || CurrentDirIter != directory_iterator()) && "incrementing past end"); std::error_code EC; if (!IsFirstTime) CurrentDirIter.increment(EC); if (!EC && CurrentDirIter == directory_iterator()) EC = incrementFS(); return EC; } std::error_code incrementImpl(bool IsFirstTime) { while (true) { std::error_code EC = incrementDirIter(IsFirstTime); if (EC || CurrentDirIter == directory_iterator()) { CurrentEntry = directory_entry(); return EC; } CurrentEntry = *CurrentDirIter; StringRef Name = llvm::sys::path::filename(CurrentEntry.path()); if (SeenNames.insert(Name).second) return EC; // name not seen before } llvm_unreachable("returned above"); } public: OverlayFSDirIterImpl(const Twine &Path, OverlayFileSystem &FS, std::error_code &EC) : Overlays(FS), Path(Path.str()), CurrentFS(Overlays.overlays_begin()) { CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC); EC = incrementImpl(true); } std::error_code increment() override { return incrementImpl(false); } }; } // namespace directory_iterator OverlayFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { return directory_iterator( std::make_shared(Dir, *this, EC)); } void ProxyFileSystem::anchor() {} namespace llvm { namespace vfs { namespace detail { enum InMemoryNodeKind { IME_File, IME_Directory, IME_HardLink }; /// The in memory file system is a tree of Nodes. Every node can either be a /// file , hardlink or a directory. class InMemoryNode { InMemoryNodeKind Kind; std::string FileName; public: InMemoryNode(llvm::StringRef FileName, InMemoryNodeKind Kind) : Kind(Kind), FileName(std::string(llvm::sys::path::filename(FileName))) { } virtual ~InMemoryNode() = default; /// Get the filename of this node (the name without the directory part). StringRef getFileName() const { return FileName; } InMemoryNodeKind getKind() const { return Kind; } virtual std::string toString(unsigned Indent) const = 0; }; class InMemoryFile : public InMemoryNode { Status Stat; std::unique_ptr Buffer; public: InMemoryFile(Status Stat, std::unique_ptr Buffer) : InMemoryNode(Stat.getName(), IME_File), Stat(std::move(Stat)), Buffer(std::move(Buffer)) {} /// Return the \p Status for this node. \p RequestedName should be the name /// through which the caller referred to this node. It will override /// \p Status::Name in the return value, to mimic the behavior of \p RealFile. Status getStatus(const Twine &RequestedName) const { return Status::copyWithNewName(Stat, RequestedName); } llvm::MemoryBuffer *getBuffer() const { return Buffer.get(); } std::string toString(unsigned Indent) const override { return (std::string(Indent, ' ') + Stat.getName() + "\n").str(); } static bool classof(const InMemoryNode *N) { return N->getKind() == IME_File; } }; namespace { class InMemoryHardLink : public InMemoryNode { const InMemoryFile &ResolvedFile; public: InMemoryHardLink(StringRef Path, const InMemoryFile &ResolvedFile) : InMemoryNode(Path, IME_HardLink), ResolvedFile(ResolvedFile) {} const InMemoryFile &getResolvedFile() const { return ResolvedFile; } std::string toString(unsigned Indent) const override { return std::string(Indent, ' ') + "HardLink to -> " + ResolvedFile.toString(0); } static bool classof(const InMemoryNode *N) { return N->getKind() == IME_HardLink; } }; /// Adapt a InMemoryFile for VFS' File interface. The goal is to make /// \p InMemoryFileAdaptor mimic as much as possible the behavior of /// \p RealFile. class InMemoryFileAdaptor : public File { const InMemoryFile &Node; /// The name to use when returning a Status for this file. std::string RequestedName; public: explicit InMemoryFileAdaptor(const InMemoryFile &Node, std::string RequestedName) : Node(Node), RequestedName(std::move(RequestedName)) {} llvm::ErrorOr status() override { return Node.getStatus(RequestedName); } llvm::ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override { llvm::MemoryBuffer *Buf = Node.getBuffer(); return llvm::MemoryBuffer::getMemBuffer( Buf->getBuffer(), Buf->getBufferIdentifier(), RequiresNullTerminator); } std::error_code close() override { return {}; } }; } // namespace class InMemoryDirectory : public InMemoryNode { Status Stat; llvm::StringMap> Entries; public: InMemoryDirectory(Status Stat) : InMemoryNode(Stat.getName(), IME_Directory), Stat(std::move(Stat)) {} /// Return the \p Status for this node. \p RequestedName should be the name /// through which the caller referred to this node. It will override /// \p Status::Name in the return value, to mimic the behavior of \p RealFile. Status getStatus(const Twine &RequestedName) const { return Status::copyWithNewName(Stat, RequestedName); } InMemoryNode *getChild(StringRef Name) { auto I = Entries.find(Name); if (I != Entries.end()) return I->second.get(); return nullptr; } InMemoryNode *addChild(StringRef Name, std::unique_ptr Child) { return Entries.insert(make_pair(Name, std::move(Child))) .first->second.get(); } using const_iterator = decltype(Entries)::const_iterator; const_iterator begin() const { return Entries.begin(); } const_iterator end() const { return Entries.end(); } std::string toString(unsigned Indent) const override { std::string Result = (std::string(Indent, ' ') + Stat.getName() + "\n").str(); for (const auto &Entry : Entries) Result += Entry.second->toString(Indent + 2); return Result; } static bool classof(const InMemoryNode *N) { return N->getKind() == IME_Directory; } }; namespace { Status getNodeStatus(const InMemoryNode *Node, const Twine &RequestedName) { if (auto Dir = dyn_cast(Node)) return Dir->getStatus(RequestedName); if (auto File = dyn_cast(Node)) return File->getStatus(RequestedName); if (auto Link = dyn_cast(Node)) return Link->getResolvedFile().getStatus(RequestedName); llvm_unreachable("Unknown node type"); } } // namespace } // namespace detail InMemoryFileSystem::InMemoryFileSystem(bool UseNormalizedPaths) : Root(new detail::InMemoryDirectory( Status("", getNextVirtualUniqueID(), llvm::sys::TimePoint<>(), 0, 0, 0, llvm::sys::fs::file_type::directory_file, llvm::sys::fs::perms::all_all))), UseNormalizedPaths(UseNormalizedPaths) {} InMemoryFileSystem::~InMemoryFileSystem() = default; std::string InMemoryFileSystem::toString() const { return Root->toString(/*Indent=*/0); } bool InMemoryFileSystem::addFile(const Twine &P, time_t ModificationTime, std::unique_ptr Buffer, Optional User, Optional Group, Optional Type, Optional Perms, const detail::InMemoryFile *HardLinkTarget) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = makeAbsolute(Path); assert(!EC); (void)EC; if (useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (Path.empty()) return false; detail::InMemoryDirectory *Dir = Root.get(); auto I = llvm::sys::path::begin(Path), E = sys::path::end(Path); const auto ResolvedUser = User.getValueOr(0); const auto ResolvedGroup = Group.getValueOr(0); const auto ResolvedType = Type.getValueOr(sys::fs::file_type::regular_file); const auto ResolvedPerms = Perms.getValueOr(sys::fs::all_all); assert(!(HardLinkTarget && Buffer) && "HardLink cannot have a buffer"); // Any intermediate directories we create should be accessible by // the owner, even if Perms says otherwise for the final path. const auto NewDirectoryPerms = ResolvedPerms | sys::fs::owner_all; while (true) { StringRef Name = *I; detail::InMemoryNode *Node = Dir->getChild(Name); ++I; if (!Node) { if (I == E) { // End of the path. std::unique_ptr Child; if (HardLinkTarget) Child.reset(new detail::InMemoryHardLink(P.str(), *HardLinkTarget)); else { // Create a new file or directory. Status Stat(P.str(), getNextVirtualUniqueID(), llvm::sys::toTimePoint(ModificationTime), ResolvedUser, ResolvedGroup, Buffer->getBufferSize(), ResolvedType, ResolvedPerms); if (ResolvedType == sys::fs::file_type::directory_file) { Child.reset(new detail::InMemoryDirectory(std::move(Stat))); } else { Child.reset( new detail::InMemoryFile(std::move(Stat), std::move(Buffer))); } } Dir->addChild(Name, std::move(Child)); return true; } // Create a new directory. Use the path up to here. Status Stat( StringRef(Path.str().begin(), Name.end() - Path.str().begin()), getNextVirtualUniqueID(), llvm::sys::toTimePoint(ModificationTime), ResolvedUser, ResolvedGroup, 0, sys::fs::file_type::directory_file, NewDirectoryPerms); Dir = cast(Dir->addChild( Name, std::make_unique(std::move(Stat)))); continue; } if (auto *NewDir = dyn_cast(Node)) { Dir = NewDir; } else { assert((isa(Node) || isa(Node)) && "Must be either file, hardlink or directory!"); // Trying to insert a directory in place of a file. if (I != E) return false; // Return false only if the new file is different from the existing one. if (auto Link = dyn_cast(Node)) { return Link->getResolvedFile().getBuffer()->getBuffer() == Buffer->getBuffer(); } return cast(Node)->getBuffer()->getBuffer() == Buffer->getBuffer(); } } } bool InMemoryFileSystem::addFile(const Twine &P, time_t ModificationTime, std::unique_ptr Buffer, Optional User, Optional Group, Optional Type, Optional Perms) { return addFile(P, ModificationTime, std::move(Buffer), User, Group, Type, Perms, /*HardLinkTarget=*/nullptr); } bool InMemoryFileSystem::addFileNoOwn(const Twine &P, time_t ModificationTime, const llvm::MemoryBufferRef &Buffer, Optional User, Optional Group, Optional Type, Optional Perms) { return addFile(P, ModificationTime, llvm::MemoryBuffer::getMemBuffer(Buffer), std::move(User), std::move(Group), std::move(Type), std::move(Perms)); } static ErrorOr lookupInMemoryNode(const InMemoryFileSystem &FS, detail::InMemoryDirectory *Dir, const Twine &P) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = FS.makeAbsolute(Path); assert(!EC); (void)EC; if (FS.useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (Path.empty()) return Dir; auto I = llvm::sys::path::begin(Path), E = llvm::sys::path::end(Path); while (true) { detail::InMemoryNode *Node = Dir->getChild(*I); ++I; if (!Node) return errc::no_such_file_or_directory; // Return the file if it's at the end of the path. if (auto File = dyn_cast(Node)) { if (I == E) return File; return errc::no_such_file_or_directory; } // If Node is HardLink then return the resolved file. if (auto File = dyn_cast(Node)) { if (I == E) return &File->getResolvedFile(); return errc::no_such_file_or_directory; } // Traverse directories. Dir = cast(Node); if (I == E) return Dir; } } bool InMemoryFileSystem::addHardLink(const Twine &FromPath, const Twine &ToPath) { auto FromNode = lookupInMemoryNode(*this, Root.get(), FromPath); auto ToNode = lookupInMemoryNode(*this, Root.get(), ToPath); // FromPath must not have been added before. ToPath must have been added // before. Resolved ToPath must be a File. if (!ToNode || FromNode || !isa(*ToNode)) return false; return this->addFile(FromPath, 0, nullptr, None, None, None, None, cast(*ToNode)); } llvm::ErrorOr InMemoryFileSystem::status(const Twine &Path) { auto Node = lookupInMemoryNode(*this, Root.get(), Path); if (Node) return detail::getNodeStatus(*Node, Path); return Node.getError(); } llvm::ErrorOr> InMemoryFileSystem::openFileForRead(const Twine &Path) { auto Node = lookupInMemoryNode(*this, Root.get(), Path); if (!Node) return Node.getError(); // When we have a file provide a heap-allocated wrapper for the memory buffer // to match the ownership semantics for File. if (auto *F = dyn_cast(*Node)) return std::unique_ptr( new detail::InMemoryFileAdaptor(*F, Path.str())); // FIXME: errc::not_a_file? return make_error_code(llvm::errc::invalid_argument); } namespace { /// Adaptor from InMemoryDir::iterator to directory_iterator. class InMemoryDirIterator : public llvm::vfs::detail::DirIterImpl { detail::InMemoryDirectory::const_iterator I; detail::InMemoryDirectory::const_iterator E; std::string RequestedDirName; void setCurrentEntry() { if (I != E) { SmallString<256> Path(RequestedDirName); llvm::sys::path::append(Path, I->second->getFileName()); sys::fs::file_type Type = sys::fs::file_type::type_unknown; switch (I->second->getKind()) { case detail::IME_File: case detail::IME_HardLink: Type = sys::fs::file_type::regular_file; break; case detail::IME_Directory: Type = sys::fs::file_type::directory_file; break; } CurrentEntry = directory_entry(std::string(Path.str()), Type); } else { // When we're at the end, make CurrentEntry invalid and DirIterImpl will // do the rest. CurrentEntry = directory_entry(); } } public: InMemoryDirIterator() = default; explicit InMemoryDirIterator(const detail::InMemoryDirectory &Dir, std::string RequestedDirName) : I(Dir.begin()), E(Dir.end()), RequestedDirName(std::move(RequestedDirName)) { setCurrentEntry(); } std::error_code increment() override { ++I; setCurrentEntry(); return {}; } }; } // namespace directory_iterator InMemoryFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { auto Node = lookupInMemoryNode(*this, Root.get(), Dir); if (!Node) { EC = Node.getError(); return directory_iterator(std::make_shared()); } if (auto *DirNode = dyn_cast(*Node)) return directory_iterator( std::make_shared(*DirNode, Dir.str())); EC = make_error_code(llvm::errc::not_a_directory); return directory_iterator(std::make_shared()); } std::error_code InMemoryFileSystem::setCurrentWorkingDirectory(const Twine &P) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = makeAbsolute(Path); assert(!EC); (void)EC; if (useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (!Path.empty()) WorkingDirectory = std::string(Path.str()); return {}; } std::error_code InMemoryFileSystem::getRealPath(const Twine &Path, SmallVectorImpl &Output) const { auto CWD = getCurrentWorkingDirectory(); if (!CWD || CWD->empty()) return errc::operation_not_permitted; Path.toVector(Output); if (auto EC = makeAbsolute(Output)) return EC; llvm::sys::path::remove_dots(Output, /*remove_dot_dot=*/true); return {}; } std::error_code InMemoryFileSystem::isLocal(const Twine &Path, bool &Result) { Result = false; return {}; } } // namespace vfs } // namespace llvm //===-----------------------------------------------------------------------===/ // RedirectingFileSystem implementation //===-----------------------------------------------------------------------===/ namespace { /// Removes leading "./" as well as path components like ".." and ".". static llvm::SmallString<256> canonicalize(llvm::StringRef Path) { // First detect the path style in use by checking the first separator. llvm::sys::path::Style style = llvm::sys::path::Style::native; const size_t n = Path.find_first_of("/\\"); if (n != static_cast(-1)) style = (Path[n] == '/') ? llvm::sys::path::Style::posix : llvm::sys::path::Style::windows; // Now remove the dots. Explicitly specifying the path style prevents the // direction of the slashes from changing. llvm::SmallString<256> result = llvm::sys::path::remove_leading_dotslash(Path, style); llvm::sys::path::remove_dots(result, /*remove_dot_dot=*/true, style); return result; } } // anonymous namespace RedirectingFileSystem::RedirectingFileSystem(IntrusiveRefCntPtr FS) : ExternalFS(std::move(FS)) { if (ExternalFS) if (auto ExternalWorkingDirectory = ExternalFS->getCurrentWorkingDirectory()) { WorkingDirectory = *ExternalWorkingDirectory; } } // FIXME: reuse implementation common with OverlayFSDirIterImpl as these // iterators are conceptually similar. class llvm::vfs::VFSFromYamlDirIterImpl : public llvm::vfs::detail::DirIterImpl { std::string Dir; RedirectingFileSystem::RedirectingDirectoryEntry::iterator Current, End; // To handle 'fallthrough' mode we need to iterate at first through // RedirectingDirectoryEntry and then through ExternalFS. These operations are // done sequentially, we just need to keep a track of what kind of iteration // we are currently performing. /// Flag telling if we should iterate through ExternalFS or stop at the last /// RedirectingDirectoryEntry::iterator. bool IterateExternalFS; /// Flag telling if we have switched to iterating through ExternalFS. bool IsExternalFSCurrent = false; FileSystem &ExternalFS; directory_iterator ExternalDirIter; llvm::StringSet<> SeenNames; /// To combine multiple iterations, different methods are responsible for /// different iteration steps. /// @{ /// Responsible for dispatching between RedirectingDirectoryEntry iteration /// and ExternalFS iteration. std::error_code incrementImpl(bool IsFirstTime); /// Responsible for RedirectingDirectoryEntry iteration. std::error_code incrementContent(bool IsFirstTime); /// Responsible for ExternalFS iteration. std::error_code incrementExternal(); /// @} public: VFSFromYamlDirIterImpl( const Twine &Path, RedirectingFileSystem::RedirectingDirectoryEntry::iterator Begin, RedirectingFileSystem::RedirectingDirectoryEntry::iterator End, bool IterateExternalFS, FileSystem &ExternalFS, std::error_code &EC); std::error_code increment() override; }; llvm::ErrorOr RedirectingFileSystem::getCurrentWorkingDirectory() const { return WorkingDirectory; } std::error_code RedirectingFileSystem::setCurrentWorkingDirectory(const Twine &Path) { // Don't change the working directory if the path doesn't exist. if (!exists(Path)) return errc::no_such_file_or_directory; SmallString<128> AbsolutePath; Path.toVector(AbsolutePath); if (std::error_code EC = makeAbsolute(AbsolutePath)) return EC; WorkingDirectory = std::string(AbsolutePath.str()); return {}; } std::error_code RedirectingFileSystem::isLocal(const Twine &Path_, bool &Result) { SmallString<256> Path; Path_.toVector(Path); if (std::error_code EC = makeCanonical(Path)) return {}; return ExternalFS->isLocal(Path, Result); } std::error_code RedirectingFileSystem::makeAbsolute(SmallVectorImpl &Path) const { if (llvm::sys::path::is_absolute(Path, llvm::sys::path::Style::posix) || llvm::sys::path::is_absolute(Path, llvm::sys::path::Style::windows)) return {}; auto WorkingDir = getCurrentWorkingDirectory(); if (!WorkingDir) return WorkingDir.getError(); // We can't use sys::fs::make_absolute because that assumes the path style // is native and there is no way to override that. Since we know WorkingDir // is absolute, we can use it to determine which style we actually have and // append Path ourselves. sys::path::Style style = sys::path::Style::windows; if (sys::path::is_absolute(WorkingDir.get(), sys::path::Style::posix)) { style = sys::path::Style::posix; } std::string Result = WorkingDir.get(); StringRef Dir(Result); if (!Dir.endswith(sys::path::get_separator(style))) { Result += sys::path::get_separator(style); } Result.append(Path.data(), Path.size()); Path.assign(Result.begin(), Result.end()); return {}; } directory_iterator RedirectingFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { SmallString<256> Path; Dir.toVector(Path); EC = makeCanonical(Path); if (EC) return {}; ErrorOr E = lookupPath(Path); if (!E) { EC = E.getError(); if (shouldUseExternalFS() && EC == errc::no_such_file_or_directory) return ExternalFS->dir_begin(Path, EC); return {}; } ErrorOr S = status(Path, *E); if (!S) { EC = S.getError(); return {}; } if (!S->isDirectory()) { EC = std::error_code(static_cast(errc::not_a_directory), std::system_category()); return {}; } auto *D = cast(*E); return directory_iterator(std::make_shared( Path, D->contents_begin(), D->contents_end(), /*IterateExternalFS=*/shouldUseExternalFS(), *ExternalFS, EC)); } void RedirectingFileSystem::setExternalContentsPrefixDir(StringRef PrefixDir) { ExternalContentsPrefixDir = PrefixDir.str(); } StringRef RedirectingFileSystem::getExternalContentsPrefixDir() const { return ExternalContentsPrefixDir; } void RedirectingFileSystem::setFallthrough(bool Fallthrough) { IsFallthrough = Fallthrough; } std::vector RedirectingFileSystem::getRoots() const { std::vector R; for (const auto &Root : Roots) R.push_back(Root->getName()); return R; } void RedirectingFileSystem::dump(raw_ostream &OS) const { for (const auto &Root : Roots) dumpEntry(OS, Root.get()); } void RedirectingFileSystem::dumpEntry(raw_ostream &OS, RedirectingFileSystem::Entry *E, int NumSpaces) const { StringRef Name = E->getName(); for (int i = 0, e = NumSpaces; i < e; ++i) OS << " "; OS << "'" << Name.str().c_str() << "'" << "\n"; if (E->getKind() == RedirectingFileSystem::EK_Directory) { auto *DE = dyn_cast(E); assert(DE && "Should be a directory"); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) dumpEntry(OS, SubEntry.get(), NumSpaces + 2); } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RedirectingFileSystem::dump() const { dump(dbgs()); } #endif /// A helper class to hold the common YAML parsing state. class llvm::vfs::RedirectingFileSystemParser { yaml::Stream &Stream; void error(yaml::Node *N, const Twine &Msg) { Stream.printError(N, Msg); } // false on error bool parseScalarString(yaml::Node *N, StringRef &Result, SmallVectorImpl &Storage) { const auto *S = dyn_cast(N); if (!S) { error(N, "expected string"); return false; } Result = S->getValue(Storage); return true; } // false on error bool parseScalarBool(yaml::Node *N, bool &Result) { SmallString<5> Storage; StringRef Value; if (!parseScalarString(N, Value, Storage)) return false; if (Value.equals_lower("true") || Value.equals_lower("on") || Value.equals_lower("yes") || Value == "1") { Result = true; return true; } else if (Value.equals_lower("false") || Value.equals_lower("off") || Value.equals_lower("no") || Value == "0") { Result = false; return true; } error(N, "expected boolean value"); return false; } struct KeyStatus { bool Required; bool Seen = false; KeyStatus(bool Required = false) : Required(Required) {} }; using KeyStatusPair = std::pair; // false on error bool checkDuplicateOrUnknownKey(yaml::Node *KeyNode, StringRef Key, DenseMap &Keys) { if (!Keys.count(Key)) { error(KeyNode, "unknown key"); return false; } KeyStatus &S = Keys[Key]; if (S.Seen) { error(KeyNode, Twine("duplicate key '") + Key + "'"); return false; } S.Seen = true; return true; } // false on error bool checkMissingKeys(yaml::Node *Obj, DenseMap &Keys) { for (const auto &I : Keys) { if (I.second.Required && !I.second.Seen) { error(Obj, Twine("missing key '") + I.first + "'"); return false; } } return true; } public: static RedirectingFileSystem::Entry * lookupOrCreateEntry(RedirectingFileSystem *FS, StringRef Name, RedirectingFileSystem::Entry *ParentEntry = nullptr) { if (!ParentEntry) { // Look for a existent root for (const auto &Root : FS->Roots) { if (Name.equals(Root->getName())) { ParentEntry = Root.get(); return ParentEntry; } } } else { // Advance to the next component auto *DE = dyn_cast( ParentEntry); for (std::unique_ptr &Content : llvm::make_range(DE->contents_begin(), DE->contents_end())) { auto *DirContent = dyn_cast( Content.get()); if (DirContent && Name.equals(Content->getName())) return DirContent; } } // ... or create a new one std::unique_ptr E = std::make_unique( Name, Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); if (!ParentEntry) { // Add a new root to the overlay FS->Roots.push_back(std::move(E)); ParentEntry = FS->Roots.back().get(); return ParentEntry; } auto *DE = cast(ParentEntry); DE->addContent(std::move(E)); return DE->getLastContent(); } private: void uniqueOverlayTree(RedirectingFileSystem *FS, RedirectingFileSystem::Entry *SrcE, RedirectingFileSystem::Entry *NewParentE = nullptr) { StringRef Name = SrcE->getName(); switch (SrcE->getKind()) { case RedirectingFileSystem::EK_Directory: { auto *DE = cast(SrcE); // Empty directories could be present in the YAML as a way to // describe a file for a current directory after some of its subdir // is parsed. This only leads to redundant walks, ignore it. if (!Name.empty()) NewParentE = lookupOrCreateEntry(FS, Name, NewParentE); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) uniqueOverlayTree(FS, SubEntry.get(), NewParentE); break; } case RedirectingFileSystem::EK_File: { assert(NewParentE && "Parent entry must exist"); auto *FE = cast(SrcE); auto *DE = cast(NewParentE); DE->addContent( std::make_unique( Name, FE->getExternalContentsPath(), FE->getUseName())); break; } } } std::unique_ptr parseEntry(yaml::Node *N, RedirectingFileSystem *FS, bool IsRootEntry) { auto *M = dyn_cast(N); if (!M) { error(N, "expected mapping node for file or directory entry"); return nullptr; } KeyStatusPair Fields[] = { KeyStatusPair("name", true), KeyStatusPair("type", true), KeyStatusPair("contents", false), KeyStatusPair("external-contents", false), KeyStatusPair("use-external-name", false), }; DenseMap Keys(std::begin(Fields), std::end(Fields)); bool HasContents = false; // external or otherwise std::vector> EntryArrayContents; SmallString<256> ExternalContentsPath; SmallString<256> Name; yaml::Node *NameValueNode = nullptr; auto UseExternalName = RedirectingFileSystem::RedirectingFileEntry::NK_NotSet; RedirectingFileSystem::EntryKind Kind; for (auto &I : *M) { StringRef Key; // Reuse the buffer for key and value, since we don't look at key after // parsing value. SmallString<256> Buffer; if (!parseScalarString(I.getKey(), Key, Buffer)) return nullptr; if (!checkDuplicateOrUnknownKey(I.getKey(), Key, Keys)) return nullptr; StringRef Value; if (Key == "name") { if (!parseScalarString(I.getValue(), Value, Buffer)) return nullptr; NameValueNode = I.getValue(); // Guarantee that old YAML files containing paths with ".." and "." // are properly canonicalized before read into the VFS. Name = canonicalize(Value).str(); } else if (Key == "type") { if (!parseScalarString(I.getValue(), Value, Buffer)) return nullptr; if (Value == "file") Kind = RedirectingFileSystem::EK_File; else if (Value == "directory") Kind = RedirectingFileSystem::EK_Directory; else { error(I.getValue(), "unknown value for 'type'"); return nullptr; } } else if (Key == "contents") { if (HasContents) { error(I.getKey(), "entry already has 'contents' or 'external-contents'"); return nullptr; } HasContents = true; auto *Contents = dyn_cast(I.getValue()); if (!Contents) { // FIXME: this is only for directories, what about files? error(I.getValue(), "expected array"); return nullptr; } for (auto &I : *Contents) { if (std::unique_ptr E = parseEntry(&I, FS, /*IsRootEntry*/ false)) EntryArrayContents.push_back(std::move(E)); else return nullptr; } } else if (Key == "external-contents") { if (HasContents) { error(I.getKey(), "entry already has 'contents' or 'external-contents'"); return nullptr; } HasContents = true; if (!parseScalarString(I.getValue(), Value, Buffer)) return nullptr; SmallString<256> FullPath; if (FS->IsRelativeOverlay) { FullPath = FS->getExternalContentsPrefixDir(); assert(!FullPath.empty() && "External contents prefix directory must exist"); llvm::sys::path::append(FullPath, Value); } else { FullPath = Value; } // Guarantee that old YAML files containing paths with ".." and "." // are properly canonicalized before read into the VFS. FullPath = canonicalize(FullPath); ExternalContentsPath = FullPath.str(); } else if (Key == "use-external-name") { bool Val; if (!parseScalarBool(I.getValue(), Val)) return nullptr; UseExternalName = Val ? RedirectingFileSystem::RedirectingFileEntry::NK_External : RedirectingFileSystem::RedirectingFileEntry::NK_Virtual; } else { llvm_unreachable("key missing from Keys"); } } if (Stream.failed()) return nullptr; // check for missing keys if (!HasContents) { error(N, "missing key 'contents' or 'external-contents'"); return nullptr; } if (!checkMissingKeys(N, Keys)) return nullptr; // check invalid configuration if (Kind == RedirectingFileSystem::EK_Directory && UseExternalName != RedirectingFileSystem::RedirectingFileEntry::NK_NotSet) { error(N, "'use-external-name' is not supported for directories"); return nullptr; } sys::path::Style path_style = sys::path::Style::native; if (IsRootEntry) { // VFS root entries may be in either Posix or Windows style. Figure out // which style we have, and use it consistently. if (sys::path::is_absolute(Name, sys::path::Style::posix)) { path_style = sys::path::Style::posix; } else if (sys::path::is_absolute(Name, sys::path::Style::windows)) { path_style = sys::path::Style::windows; } else { assert(NameValueNode && "Name presence should be checked earlier"); error(NameValueNode, "entry with relative path at the root level is not discoverable"); return nullptr; } } // Remove trailing slash(es), being careful not to remove the root path StringRef Trimmed(Name); size_t RootPathLen = sys::path::root_path(Trimmed, path_style).size(); while (Trimmed.size() > RootPathLen && sys::path::is_separator(Trimmed.back(), path_style)) Trimmed = Trimmed.slice(0, Trimmed.size() - 1); // Get the last component StringRef LastComponent = sys::path::filename(Trimmed, path_style); std::unique_ptr Result; switch (Kind) { case RedirectingFileSystem::EK_File: Result = std::make_unique( LastComponent, std::move(ExternalContentsPath), UseExternalName); break; case RedirectingFileSystem::EK_Directory: Result = std::make_unique( LastComponent, std::move(EntryArrayContents), Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); break; } StringRef Parent = sys::path::parent_path(Trimmed, path_style); if (Parent.empty()) return Result; // if 'name' contains multiple components, create implicit directory entries for (sys::path::reverse_iterator I = sys::path::rbegin(Parent, path_style), E = sys::path::rend(Parent); I != E; ++I) { std::vector> Entries; Entries.push_back(std::move(Result)); Result = std::make_unique( *I, std::move(Entries), Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); } return Result; } public: RedirectingFileSystemParser(yaml::Stream &S) : Stream(S) {} // false on error bool parse(yaml::Node *Root, RedirectingFileSystem *FS) { auto *Top = dyn_cast(Root); if (!Top) { error(Root, "expected mapping node"); return false; } KeyStatusPair Fields[] = { KeyStatusPair("version", true), KeyStatusPair("case-sensitive", false), KeyStatusPair("use-external-names", false), KeyStatusPair("overlay-relative", false), KeyStatusPair("fallthrough", false), KeyStatusPair("roots", true), }; DenseMap Keys(std::begin(Fields), std::end(Fields)); std::vector> RootEntries; // Parse configuration and 'roots' for (auto &I : *Top) { SmallString<10> KeyBuffer; StringRef Key; if (!parseScalarString(I.getKey(), Key, KeyBuffer)) return false; if (!checkDuplicateOrUnknownKey(I.getKey(), Key, Keys)) return false; if (Key == "roots") { auto *Roots = dyn_cast(I.getValue()); if (!Roots) { error(I.getValue(), "expected array"); return false; } for (auto &I : *Roots) { if (std::unique_ptr E = parseEntry(&I, FS, /*IsRootEntry*/ true)) RootEntries.push_back(std::move(E)); else return false; } } else if (Key == "version") { StringRef VersionString; SmallString<4> Storage; if (!parseScalarString(I.getValue(), VersionString, Storage)) return false; int Version; if (VersionString.getAsInteger(10, Version)) { error(I.getValue(), "expected integer"); return false; } if (Version < 0) { error(I.getValue(), "invalid version number"); return false; } if (Version != 0) { error(I.getValue(), "version mismatch, expected 0"); return false; } } else if (Key == "case-sensitive") { if (!parseScalarBool(I.getValue(), FS->CaseSensitive)) return false; } else if (Key == "overlay-relative") { if (!parseScalarBool(I.getValue(), FS->IsRelativeOverlay)) return false; } else if (Key == "use-external-names") { if (!parseScalarBool(I.getValue(), FS->UseExternalNames)) return false; } else if (Key == "fallthrough") { if (!parseScalarBool(I.getValue(), FS->IsFallthrough)) return false; } else { llvm_unreachable("key missing from Keys"); } } if (Stream.failed()) return false; if (!checkMissingKeys(Top, Keys)) return false; // Now that we sucessefully parsed the YAML file, canonicalize the internal // representation to a proper directory tree so that we can search faster // inside the VFS. for (auto &E : RootEntries) uniqueOverlayTree(FS, E.get()); return true; } }; std::unique_ptr RedirectingFileSystem::create(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { SourceMgr SM; yaml::Stream Stream(Buffer->getMemBufferRef(), SM); SM.setDiagHandler(DiagHandler, DiagContext); yaml::document_iterator DI = Stream.begin(); yaml::Node *Root = DI->getRoot(); if (DI == Stream.end() || !Root) { SM.PrintMessage(SMLoc(), SourceMgr::DK_Error, "expected root node"); return nullptr; } RedirectingFileSystemParser P(Stream); std::unique_ptr FS( new RedirectingFileSystem(ExternalFS)); if (!YAMLFilePath.empty()) { // Use the YAML path from -ivfsoverlay to compute the dir to be prefixed // to each 'external-contents' path. // // Example: // -ivfsoverlay dummy.cache/vfs/vfs.yaml // yields: // FS->ExternalContentsPrefixDir => //dummy.cache/vfs // SmallString<256> OverlayAbsDir = sys::path::parent_path(YAMLFilePath); std::error_code EC = llvm::sys::fs::make_absolute(OverlayAbsDir); assert(!EC && "Overlay dir final path must be absolute"); (void)EC; FS->setExternalContentsPrefixDir(OverlayAbsDir); } if (!P.parse(Root, FS.get())) return nullptr; return FS; } std::unique_ptr RedirectingFileSystem::create( ArrayRef> RemappedFiles, bool UseExternalNames, FileSystem &ExternalFS) { std::unique_ptr FS( new RedirectingFileSystem(&ExternalFS)); FS->UseExternalNames = UseExternalNames; StringMap Entries; for (auto &Mapping : llvm::reverse(RemappedFiles)) { SmallString<128> From = StringRef(Mapping.first); SmallString<128> To = StringRef(Mapping.second); { auto EC = ExternalFS.makeAbsolute(From); (void)EC; assert(!EC && "Could not make absolute path"); } // Check if we've already mapped this file. The first one we see (in the // reverse iteration) wins. RedirectingFileSystem::Entry *&ToEntry = Entries[From]; if (ToEntry) continue; // Add parent directories. RedirectingFileSystem::Entry *Parent = nullptr; StringRef FromDirectory = llvm::sys::path::parent_path(From); for (auto I = llvm::sys::path::begin(FromDirectory), E = llvm::sys::path::end(FromDirectory); I != E; ++I) { Parent = RedirectingFileSystemParser::lookupOrCreateEntry(FS.get(), *I, Parent); } assert(Parent && "File without a directory?"); { auto EC = ExternalFS.makeAbsolute(To); (void)EC; assert(!EC && "Could not make absolute path"); } // Add the file. auto NewFile = std::make_unique( llvm::sys::path::filename(From), To, UseExternalNames ? RedirectingFileSystem::RedirectingFileEntry::NK_External : RedirectingFileSystem::RedirectingFileEntry::NK_Virtual); ToEntry = NewFile.get(); cast(Parent)->addContent( std::move(NewFile)); } return FS; } std::error_code RedirectingFileSystem::makeCanonical(SmallVectorImpl &Path) const { if (std::error_code EC = makeAbsolute(Path)) return EC; llvm::SmallString<256> CanonicalPath = canonicalize(StringRef(Path.data(), Path.size())); if (CanonicalPath.empty()) return make_error_code(llvm::errc::invalid_argument); Path.assign(CanonicalPath.begin(), CanonicalPath.end()); return {}; } ErrorOr RedirectingFileSystem::lookupPath(StringRef Path) const { sys::path::const_iterator Start = sys::path::begin(Path); sys::path::const_iterator End = sys::path::end(Path); for (const auto &Root : Roots) { ErrorOr Result = lookupPath(Start, End, Root.get()); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } ErrorOr RedirectingFileSystem::lookupPath(sys::path::const_iterator Start, sys::path::const_iterator End, RedirectingFileSystem::Entry *From) const { assert(!isTraversalComponent(*Start) && !isTraversalComponent(From->getName()) && "Paths should not contain traversal components"); StringRef FromName = From->getName(); // Forward the search to the next component in case this is an empty one. if (!FromName.empty()) { if (!pathComponentMatches(*Start, FromName)) return make_error_code(llvm::errc::no_such_file_or_directory); ++Start; if (Start == End) { // Match! return From; } } auto *DE = dyn_cast(From); if (!DE) return make_error_code(llvm::errc::not_a_directory); for (const std::unique_ptr &DirEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) { ErrorOr Result = lookupPath(Start, End, DirEntry.get()); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } static Status getRedirectedFileStatus(const Twine &Path, bool UseExternalNames, Status ExternalStatus) { Status S = ExternalStatus; if (!UseExternalNames) S = Status::copyWithNewName(S, Path); S.IsVFSMapped = true; return S; } ErrorOr RedirectingFileSystem::status(const Twine &Path, RedirectingFileSystem::Entry *E) { assert(E != nullptr); if (auto *F = dyn_cast(E)) { ErrorOr S = ExternalFS->status(F->getExternalContentsPath()); assert(!S || S->getName() == F->getExternalContentsPath()); if (S) return getRedirectedFileStatus(Path, F->useExternalName(UseExternalNames), *S); return S; } else { // directory auto *DE = cast(E); return Status::copyWithNewName(DE->getStatus(), Path); } } ErrorOr RedirectingFileSystem::status(const Twine &Path_) { SmallString<256> Path; Path_.toVector(Path); if (std::error_code EC = makeCanonical(Path)) return EC; ErrorOr Result = lookupPath(Path); if (!Result) { if (shouldUseExternalFS() && Result.getError() == llvm::errc::no_such_file_or_directory) { return ExternalFS->status(Path); } return Result.getError(); } return status(Path, *Result); } namespace { /// Provide a file wrapper with an overriden status. class FileWithFixedStatus : public File { std::unique_ptr InnerFile; Status S; public: FileWithFixedStatus(std::unique_ptr InnerFile, Status S) : InnerFile(std::move(InnerFile)), S(std::move(S)) {} ErrorOr status() override { return S; } ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override { return InnerFile->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code close() override { return InnerFile->close(); } }; } // namespace ErrorOr> RedirectingFileSystem::openFileForRead(const Twine &Path_) { SmallString<256> Path; Path_.toVector(Path); if (std::error_code EC = makeCanonical(Path)) return EC; ErrorOr E = lookupPath(Path); if (!E) { if (shouldUseExternalFS() && E.getError() == llvm::errc::no_such_file_or_directory) { return ExternalFS->openFileForRead(Path); } return E.getError(); } auto *F = dyn_cast(*E); if (!F) // FIXME: errc::not_a_file? return make_error_code(llvm::errc::invalid_argument); auto Result = ExternalFS->openFileForRead(F->getExternalContentsPath()); if (!Result) return Result; auto ExternalStatus = (*Result)->status(); if (!ExternalStatus) return ExternalStatus.getError(); // FIXME: Update the status with the name and VFSMapped. Status S = getRedirectedFileStatus(Path, F->useExternalName(UseExternalNames), *ExternalStatus); return std::unique_ptr( std::make_unique(std::move(*Result), S)); } std::error_code RedirectingFileSystem::getRealPath(const Twine &Path_, SmallVectorImpl &Output) const { SmallString<256> Path; Path_.toVector(Path); if (std::error_code EC = makeCanonical(Path)) return EC; ErrorOr Result = lookupPath(Path); if (!Result) { if (shouldUseExternalFS() && Result.getError() == llvm::errc::no_such_file_or_directory) { return ExternalFS->getRealPath(Path, Output); } return Result.getError(); } if (auto *F = dyn_cast(*Result)) { return ExternalFS->getRealPath(F->getExternalContentsPath(), Output); } // Even if there is a directory entry, fall back to ExternalFS if allowed, // because directories don't have a single external contents path. return shouldUseExternalFS() ? ExternalFS->getRealPath(Path, Output) : llvm::errc::invalid_argument; } std::unique_ptr vfs::getVFSFromYAML(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { return RedirectingFileSystem::create(std::move(Buffer), DiagHandler, YAMLFilePath, DiagContext, std::move(ExternalFS)); } static void getVFSEntries(RedirectingFileSystem::Entry *SrcE, SmallVectorImpl &Path, SmallVectorImpl &Entries) { auto Kind = SrcE->getKind(); if (Kind == RedirectingFileSystem::EK_Directory) { auto *DE = dyn_cast(SrcE); assert(DE && "Must be a directory"); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) { Path.push_back(SubEntry->getName()); getVFSEntries(SubEntry.get(), Path, Entries); Path.pop_back(); } return; } assert(Kind == RedirectingFileSystem::EK_File && "Must be a EK_File"); auto *FE = dyn_cast(SrcE); assert(FE && "Must be a file"); SmallString<128> VPath; for (auto &Comp : Path) llvm::sys::path::append(VPath, Comp); Entries.push_back(YAMLVFSEntry(VPath.c_str(), FE->getExternalContentsPath())); } void vfs::collectVFSFromYAML(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, SmallVectorImpl &CollectedEntries, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { std::unique_ptr VFS = RedirectingFileSystem::create( std::move(Buffer), DiagHandler, YAMLFilePath, DiagContext, std::move(ExternalFS)); ErrorOr RootE = VFS->lookupPath("/"); if (!RootE) return; SmallVector Components; Components.push_back("/"); getVFSEntries(*RootE, Components, CollectedEntries); } UniqueID vfs::getNextVirtualUniqueID() { static std::atomic UID; unsigned ID = ++UID; // The following assumes that uint64_t max will never collide with a real // dev_t value from the OS. return UniqueID(std::numeric_limits::max(), ID); } void YAMLVFSWriter::addEntry(StringRef VirtualPath, StringRef RealPath, bool IsDirectory) { assert(sys::path::is_absolute(VirtualPath) && "virtual path not absolute"); assert(sys::path::is_absolute(RealPath) && "real path not absolute"); assert(!pathHasTraversal(VirtualPath) && "path traversal is not supported"); Mappings.emplace_back(VirtualPath, RealPath, IsDirectory); } void YAMLVFSWriter::addFileMapping(StringRef VirtualPath, StringRef RealPath) { addEntry(VirtualPath, RealPath, /*IsDirectory=*/false); } void YAMLVFSWriter::addDirectoryMapping(StringRef VirtualPath, StringRef RealPath) { addEntry(VirtualPath, RealPath, /*IsDirectory=*/true); } namespace { class JSONWriter { llvm::raw_ostream &OS; SmallVector DirStack; unsigned getDirIndent() { return 4 * DirStack.size(); } unsigned getFileIndent() { return 4 * (DirStack.size() + 1); } bool containedIn(StringRef Parent, StringRef Path); StringRef containedPart(StringRef Parent, StringRef Path); void startDirectory(StringRef Path); void endDirectory(); void writeEntry(StringRef VPath, StringRef RPath); public: JSONWriter(llvm::raw_ostream &OS) : OS(OS) {} void write(ArrayRef Entries, Optional UseExternalNames, Optional IsCaseSensitive, Optional IsOverlayRelative, StringRef OverlayDir); }; } // namespace bool JSONWriter::containedIn(StringRef Parent, StringRef Path) { using namespace llvm::sys; // Compare each path component. auto IParent = path::begin(Parent), EParent = path::end(Parent); for (auto IChild = path::begin(Path), EChild = path::end(Path); IParent != EParent && IChild != EChild; ++IParent, ++IChild) { if (*IParent != *IChild) return false; } // Have we exhausted the parent path? return IParent == EParent; } StringRef JSONWriter::containedPart(StringRef Parent, StringRef Path) { assert(!Parent.empty()); assert(containedIn(Parent, Path)); return Path.slice(Parent.size() + 1, StringRef::npos); } void JSONWriter::startDirectory(StringRef Path) { StringRef Name = DirStack.empty() ? Path : containedPart(DirStack.back(), Path); DirStack.push_back(Path); unsigned Indent = getDirIndent(); OS.indent(Indent) << "{\n"; OS.indent(Indent + 2) << "'type': 'directory',\n"; OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(Name) << "\",\n"; OS.indent(Indent + 2) << "'contents': [\n"; } void JSONWriter::endDirectory() { unsigned Indent = getDirIndent(); OS.indent(Indent + 2) << "]\n"; OS.indent(Indent) << "}"; DirStack.pop_back(); } void JSONWriter::writeEntry(StringRef VPath, StringRef RPath) { unsigned Indent = getFileIndent(); OS.indent(Indent) << "{\n"; OS.indent(Indent + 2) << "'type': 'file',\n"; OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(VPath) << "\",\n"; OS.indent(Indent + 2) << "'external-contents': \"" << llvm::yaml::escape(RPath) << "\"\n"; OS.indent(Indent) << "}"; } void JSONWriter::write(ArrayRef Entries, Optional UseExternalNames, Optional IsCaseSensitive, Optional IsOverlayRelative, StringRef OverlayDir) { using namespace llvm::sys; OS << "{\n" " 'version': 0,\n"; if (IsCaseSensitive.hasValue()) OS << " 'case-sensitive': '" << (IsCaseSensitive.getValue() ? "true" : "false") << "',\n"; if (UseExternalNames.hasValue()) OS << " 'use-external-names': '" << (UseExternalNames.getValue() ? "true" : "false") << "',\n"; bool UseOverlayRelative = false; if (IsOverlayRelative.hasValue()) { UseOverlayRelative = IsOverlayRelative.getValue(); OS << " 'overlay-relative': '" << (UseOverlayRelative ? "true" : "false") << "',\n"; } OS << " 'roots': [\n"; if (!Entries.empty()) { const YAMLVFSEntry &Entry = Entries.front(); startDirectory( Entry.IsDirectory ? Entry.VPath : path::parent_path(Entry.VPath) ); StringRef RPath = Entry.RPath; if (UseOverlayRelative) { unsigned OverlayDirLen = OverlayDir.size(); assert(RPath.substr(0, OverlayDirLen) == OverlayDir && "Overlay dir must be contained in RPath"); RPath = RPath.slice(OverlayDirLen, RPath.size()); } bool IsCurrentDirEmpty = true; if (!Entry.IsDirectory) { writeEntry(path::filename(Entry.VPath), RPath); IsCurrentDirEmpty = false; } for (const auto &Entry : Entries.slice(1)) { StringRef Dir = Entry.IsDirectory ? Entry.VPath : path::parent_path(Entry.VPath); if (Dir == DirStack.back()) { if (!IsCurrentDirEmpty) { OS << ",\n"; } } else { bool IsDirPoppedFromStack = false; while (!DirStack.empty() && !containedIn(DirStack.back(), Dir)) { OS << "\n"; endDirectory(); IsDirPoppedFromStack = true; } if (IsDirPoppedFromStack || !IsCurrentDirEmpty) { OS << ",\n"; } startDirectory(Dir); IsCurrentDirEmpty = true; } StringRef RPath = Entry.RPath; if (UseOverlayRelative) { unsigned OverlayDirLen = OverlayDir.size(); assert(RPath.substr(0, OverlayDirLen) == OverlayDir && "Overlay dir must be contained in RPath"); RPath = RPath.slice(OverlayDirLen, RPath.size()); } if (!Entry.IsDirectory) { writeEntry(path::filename(Entry.VPath), RPath); IsCurrentDirEmpty = false; } } while (!DirStack.empty()) { OS << "\n"; endDirectory(); } OS << "\n"; } OS << " ]\n" << "}\n"; } void YAMLVFSWriter::write(llvm::raw_ostream &OS) { llvm::sort(Mappings, [](const YAMLVFSEntry &LHS, const YAMLVFSEntry &RHS) { return LHS.VPath < RHS.VPath; }); JSONWriter(OS).write(Mappings, UseExternalNames, IsCaseSensitive, IsOverlayRelative, OverlayDir); } VFSFromYamlDirIterImpl::VFSFromYamlDirIterImpl( const Twine &_Path, RedirectingFileSystem::RedirectingDirectoryEntry::iterator Begin, RedirectingFileSystem::RedirectingDirectoryEntry::iterator End, bool IterateExternalFS, FileSystem &ExternalFS, std::error_code &EC) : Dir(_Path.str()), Current(Begin), End(End), IterateExternalFS(IterateExternalFS), ExternalFS(ExternalFS) { EC = incrementImpl(/*IsFirstTime=*/true); } std::error_code VFSFromYamlDirIterImpl::increment() { return incrementImpl(/*IsFirstTime=*/false); } std::error_code VFSFromYamlDirIterImpl::incrementExternal() { assert(!(IsExternalFSCurrent && ExternalDirIter == directory_iterator()) && "incrementing past end"); std::error_code EC; if (IsExternalFSCurrent) { ExternalDirIter.increment(EC); } else if (IterateExternalFS) { ExternalDirIter = ExternalFS.dir_begin(Dir, EC); IsExternalFSCurrent = true; if (EC && EC != errc::no_such_file_or_directory) return EC; EC = {}; } if (EC || ExternalDirIter == directory_iterator()) { CurrentEntry = directory_entry(); } else { CurrentEntry = *ExternalDirIter; } return EC; } std::error_code VFSFromYamlDirIterImpl::incrementContent(bool IsFirstTime) { assert((IsFirstTime || Current != End) && "cannot iterate past end"); if (!IsFirstTime) ++Current; while (Current != End) { SmallString<128> PathStr(Dir); llvm::sys::path::append(PathStr, (*Current)->getName()); sys::fs::file_type Type = sys::fs::file_type::type_unknown; switch ((*Current)->getKind()) { case RedirectingFileSystem::EK_Directory: Type = sys::fs::file_type::directory_file; break; case RedirectingFileSystem::EK_File: Type = sys::fs::file_type::regular_file; break; } CurrentEntry = directory_entry(std::string(PathStr.str()), Type); return {}; } return incrementExternal(); } std::error_code VFSFromYamlDirIterImpl::incrementImpl(bool IsFirstTime) { while (true) { std::error_code EC = IsExternalFSCurrent ? incrementExternal() : incrementContent(IsFirstTime); if (EC || CurrentEntry.path().empty()) return EC; StringRef Name = llvm::sys::path::filename(CurrentEntry.path()); if (SeenNames.insert(Name).second) return EC; // name not seen before } llvm_unreachable("returned above"); } vfs::recursive_directory_iterator::recursive_directory_iterator( FileSystem &FS_, const Twine &Path, std::error_code &EC) : FS(&FS_) { directory_iterator I = FS->dir_begin(Path, EC); if (I != directory_iterator()) { State = std::make_shared(); State->Stack.push(I); } } vfs::recursive_directory_iterator & recursive_directory_iterator::increment(std::error_code &EC) { assert(FS && State && !State->Stack.empty() && "incrementing past end"); assert(!State->Stack.top()->path().empty() && "non-canonical end iterator"); vfs::directory_iterator End; if (State->HasNoPushRequest) State->HasNoPushRequest = false; else { if (State->Stack.top()->type() == sys::fs::file_type::directory_file) { vfs::directory_iterator I = FS->dir_begin(State->Stack.top()->path(), EC); if (I != End) { State->Stack.push(I); return *this; } } } while (!State->Stack.empty() && State->Stack.top().increment(EC) == End) State->Stack.pop(); if (State->Stack.empty()) State.reset(); // end iterator return *this; }