//===--- raw_ostream.cpp - Implement the raw_ostream classes --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements support for bulk buffered stream output. // //===----------------------------------------------------------------------===// #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Config/config.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/NativeFormatting.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include #include #include #include #include #include // may provide O_BINARY. #if defined(HAVE_FCNTL_H) # include #endif #if defined(HAVE_UNISTD_H) # include #endif #if defined(__CYGWIN__) #include #endif #if defined(_MSC_VER) #include #ifndef STDIN_FILENO # define STDIN_FILENO 0 #endif #ifndef STDOUT_FILENO # define STDOUT_FILENO 1 #endif #ifndef STDERR_FILENO # define STDERR_FILENO 2 #endif #endif #ifdef _WIN32 #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Windows/WindowsSupport.h" #endif using namespace llvm; constexpr raw_ostream::Colors raw_ostream::BLACK; constexpr raw_ostream::Colors raw_ostream::RED; constexpr raw_ostream::Colors raw_ostream::GREEN; constexpr raw_ostream::Colors raw_ostream::YELLOW; constexpr raw_ostream::Colors raw_ostream::BLUE; constexpr raw_ostream::Colors raw_ostream::MAGENTA; constexpr raw_ostream::Colors raw_ostream::CYAN; constexpr raw_ostream::Colors raw_ostream::WHITE; constexpr raw_ostream::Colors raw_ostream::SAVEDCOLOR; constexpr raw_ostream::Colors raw_ostream::RESET; raw_ostream::~raw_ostream() { // raw_ostream's subclasses should take care to flush the buffer // in their destructors. assert(OutBufCur == OutBufStart && "raw_ostream destructor called with non-empty buffer!"); if (BufferMode == BufferKind::InternalBuffer) delete [] OutBufStart; } size_t raw_ostream::preferred_buffer_size() const { // BUFSIZ is intended to be a reasonable default. return BUFSIZ; } void raw_ostream::SetBuffered() { // Ask the subclass to determine an appropriate buffer size. if (size_t Size = preferred_buffer_size()) SetBufferSize(Size); else // It may return 0, meaning this stream should be unbuffered. SetUnbuffered(); } void raw_ostream::SetBufferAndMode(char *BufferStart, size_t Size, BufferKind Mode) { assert(((Mode == BufferKind::Unbuffered && !BufferStart && Size == 0) || (Mode != BufferKind::Unbuffered && BufferStart && Size != 0)) && "stream must be unbuffered or have at least one byte"); // Make sure the current buffer is free of content (we can't flush here; the // child buffer management logic will be in write_impl). assert(GetNumBytesInBuffer() == 0 && "Current buffer is non-empty!"); if (BufferMode == BufferKind::InternalBuffer) delete [] OutBufStart; OutBufStart = BufferStart; OutBufEnd = OutBufStart+Size; OutBufCur = OutBufStart; BufferMode = Mode; assert(OutBufStart <= OutBufEnd && "Invalid size!"); } raw_ostream &raw_ostream::operator<<(unsigned long N) { write_integer(*this, static_cast(N), 0, IntegerStyle::Integer); return *this; } raw_ostream &raw_ostream::operator<<(long N) { write_integer(*this, static_cast(N), 0, IntegerStyle::Integer); return *this; } raw_ostream &raw_ostream::operator<<(unsigned long long N) { write_integer(*this, static_cast(N), 0, IntegerStyle::Integer); return *this; } raw_ostream &raw_ostream::operator<<(long long N) { write_integer(*this, static_cast(N), 0, IntegerStyle::Integer); return *this; } raw_ostream &raw_ostream::write_hex(unsigned long long N) { llvm::write_hex(*this, N, HexPrintStyle::Lower); return *this; } raw_ostream &raw_ostream::operator<<(Colors C) { if (C == Colors::RESET) resetColor(); else changeColor(C); return *this; } raw_ostream &raw_ostream::write_uuid(const uuid_t UUID) { for (int Idx = 0; Idx < 16; ++Idx) { *this << format("%02" PRIX32, UUID[Idx]); if (Idx == 3 || Idx == 5 || Idx == 7 || Idx == 9) *this << "-"; } return *this; } raw_ostream &raw_ostream::write_escaped(StringRef Str, bool UseHexEscapes) { for (unsigned char c : Str) { switch (c) { case '\\': *this << '\\' << '\\'; break; case '\t': *this << '\\' << 't'; break; case '\n': *this << '\\' << 'n'; break; case '"': *this << '\\' << '"'; break; default: if (isPrint(c)) { *this << c; break; } // Write out the escaped representation. if (UseHexEscapes) { *this << '\\' << 'x'; *this << hexdigit((c >> 4 & 0xF)); *this << hexdigit((c >> 0) & 0xF); } else { // Always use a full 3-character octal escape. *this << '\\'; *this << char('0' + ((c >> 6) & 7)); *this << char('0' + ((c >> 3) & 7)); *this << char('0' + ((c >> 0) & 7)); } } } return *this; } raw_ostream &raw_ostream::operator<<(const void *P) { llvm::write_hex(*this, (uintptr_t)P, HexPrintStyle::PrefixLower); return *this; } raw_ostream &raw_ostream::operator<<(double N) { llvm::write_double(*this, N, FloatStyle::Exponent); return *this; } void raw_ostream::flush_nonempty() { assert(OutBufCur > OutBufStart && "Invalid call to flush_nonempty."); size_t Length = OutBufCur - OutBufStart; OutBufCur = OutBufStart; flush_tied_then_write(OutBufStart, Length); } raw_ostream &raw_ostream::write(unsigned char C) { // Group exceptional cases into a single branch. if (LLVM_UNLIKELY(OutBufCur >= OutBufEnd)) { if (LLVM_UNLIKELY(!OutBufStart)) { if (BufferMode == BufferKind::Unbuffered) { flush_tied_then_write(reinterpret_cast(&C), 1); return *this; } // Set up a buffer and start over. SetBuffered(); return write(C); } flush_nonempty(); } *OutBufCur++ = C; return *this; } raw_ostream &raw_ostream::write(const char *Ptr, size_t Size) { // Group exceptional cases into a single branch. if (LLVM_UNLIKELY(size_t(OutBufEnd - OutBufCur) < Size)) { if (LLVM_UNLIKELY(!OutBufStart)) { if (BufferMode == BufferKind::Unbuffered) { flush_tied_then_write(Ptr, Size); return *this; } // Set up a buffer and start over. SetBuffered(); return write(Ptr, Size); } size_t NumBytes = OutBufEnd - OutBufCur; // If the buffer is empty at this point we have a string that is larger // than the buffer. Directly write the chunk that is a multiple of the // preferred buffer size and put the remainder in the buffer. if (LLVM_UNLIKELY(OutBufCur == OutBufStart)) { assert(NumBytes != 0 && "undefined behavior"); size_t BytesToWrite = Size - (Size % NumBytes); flush_tied_then_write(Ptr, BytesToWrite); size_t BytesRemaining = Size - BytesToWrite; if (BytesRemaining > size_t(OutBufEnd - OutBufCur)) { // Too much left over to copy into our buffer. return write(Ptr + BytesToWrite, BytesRemaining); } copy_to_buffer(Ptr + BytesToWrite, BytesRemaining); return *this; } // We don't have enough space in the buffer to fit the string in. Insert as // much as possible, flush and start over with the remainder. copy_to_buffer(Ptr, NumBytes); flush_nonempty(); return write(Ptr + NumBytes, Size - NumBytes); } copy_to_buffer(Ptr, Size); return *this; } void raw_ostream::copy_to_buffer(const char *Ptr, size_t Size) { assert(Size <= size_t(OutBufEnd - OutBufCur) && "Buffer overrun!"); // Handle short strings specially, memcpy isn't very good at very short // strings. switch (Size) { case 4: OutBufCur[3] = Ptr[3]; LLVM_FALLTHROUGH; case 3: OutBufCur[2] = Ptr[2]; LLVM_FALLTHROUGH; case 2: OutBufCur[1] = Ptr[1]; LLVM_FALLTHROUGH; case 1: OutBufCur[0] = Ptr[0]; LLVM_FALLTHROUGH; case 0: break; default: memcpy(OutBufCur, Ptr, Size); break; } OutBufCur += Size; } void raw_ostream::flush_tied_then_write(const char *Ptr, size_t Size) { if (TiedStream) TiedStream->flush(); write_impl(Ptr, Size); } // Formatted output. raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) { // If we have more than a few bytes left in our output buffer, try // formatting directly onto its end. size_t NextBufferSize = 127; size_t BufferBytesLeft = OutBufEnd - OutBufCur; if (BufferBytesLeft > 3) { size_t BytesUsed = Fmt.print(OutBufCur, BufferBytesLeft); // Common case is that we have plenty of space. if (BytesUsed <= BufferBytesLeft) { OutBufCur += BytesUsed; return *this; } // Otherwise, we overflowed and the return value tells us the size to try // again with. NextBufferSize = BytesUsed; } // If we got here, we didn't have enough space in the output buffer for the // string. Try printing into a SmallVector that is resized to have enough // space. Iterate until we win. SmallVector V; while (true) { V.resize(NextBufferSize); // Try formatting into the SmallVector. size_t BytesUsed = Fmt.print(V.data(), NextBufferSize); // If BytesUsed fit into the vector, we win. if (BytesUsed <= NextBufferSize) return write(V.data(), BytesUsed); // Otherwise, try again with a new size. assert(BytesUsed > NextBufferSize && "Didn't grow buffer!?"); NextBufferSize = BytesUsed; } } raw_ostream &raw_ostream::operator<<(const formatv_object_base &Obj) { Obj.format(*this); return *this; } raw_ostream &raw_ostream::operator<<(const FormattedString &FS) { unsigned LeftIndent = 0; unsigned RightIndent = 0; const ssize_t Difference = FS.Width - FS.Str.size(); if (Difference > 0) { switch (FS.Justify) { case FormattedString::JustifyNone: break; case FormattedString::JustifyLeft: RightIndent = Difference; break; case FormattedString::JustifyRight: LeftIndent = Difference; break; case FormattedString::JustifyCenter: LeftIndent = Difference / 2; RightIndent = Difference - LeftIndent; break; } } indent(LeftIndent); (*this) << FS.Str; indent(RightIndent); return *this; } raw_ostream &raw_ostream::operator<<(const FormattedNumber &FN) { if (FN.Hex) { HexPrintStyle Style; if (FN.Upper && FN.HexPrefix) Style = HexPrintStyle::PrefixUpper; else if (FN.Upper && !FN.HexPrefix) Style = HexPrintStyle::Upper; else if (!FN.Upper && FN.HexPrefix) Style = HexPrintStyle::PrefixLower; else Style = HexPrintStyle::Lower; llvm::write_hex(*this, FN.HexValue, Style, FN.Width); } else { llvm::SmallString<16> Buffer; llvm::raw_svector_ostream Stream(Buffer); llvm::write_integer(Stream, FN.DecValue, 0, IntegerStyle::Integer); if (Buffer.size() < FN.Width) indent(FN.Width - Buffer.size()); (*this) << Buffer; } return *this; } raw_ostream &raw_ostream::operator<<(const FormattedBytes &FB) { if (FB.Bytes.empty()) return *this; size_t LineIndex = 0; auto Bytes = FB.Bytes; const size_t Size = Bytes.size(); HexPrintStyle HPS = FB.Upper ? HexPrintStyle::Upper : HexPrintStyle::Lower; uint64_t OffsetWidth = 0; if (FB.FirstByteOffset.hasValue()) { // Figure out how many nibbles are needed to print the largest offset // represented by this data set, so that we can align the offset field // to the right width. size_t Lines = Size / FB.NumPerLine; uint64_t MaxOffset = *FB.FirstByteOffset + Lines * FB.NumPerLine; unsigned Power = 0; if (MaxOffset > 0) Power = llvm::Log2_64_Ceil(MaxOffset); OffsetWidth = std::max(4, llvm::alignTo(Power, 4) / 4); } // The width of a block of data including all spaces for group separators. unsigned NumByteGroups = alignTo(FB.NumPerLine, FB.ByteGroupSize) / FB.ByteGroupSize; unsigned BlockCharWidth = FB.NumPerLine * 2 + NumByteGroups - 1; while (!Bytes.empty()) { indent(FB.IndentLevel); if (FB.FirstByteOffset.hasValue()) { uint64_t Offset = FB.FirstByteOffset.getValue(); llvm::write_hex(*this, Offset + LineIndex, HPS, OffsetWidth); *this << ": "; } auto Line = Bytes.take_front(FB.NumPerLine); size_t CharsPrinted = 0; // Print the hex bytes for this line in groups for (size_t I = 0; I < Line.size(); ++I, CharsPrinted += 2) { if (I && (I % FB.ByteGroupSize) == 0) { ++CharsPrinted; *this << " "; } llvm::write_hex(*this, Line[I], HPS, 2); } if (FB.ASCII) { // Print any spaces needed for any bytes that we didn't print on this // line so that the ASCII bytes are correctly aligned. assert(BlockCharWidth >= CharsPrinted); indent(BlockCharWidth - CharsPrinted + 2); *this << "|"; // Print the ASCII char values for each byte on this line for (uint8_t Byte : Line) { if (isPrint(Byte)) *this << static_cast(Byte); else *this << '.'; } *this << '|'; } Bytes = Bytes.drop_front(Line.size()); LineIndex += Line.size(); if (LineIndex < Size) *this << '\n'; } return *this; } template static raw_ostream &write_padding(raw_ostream &OS, unsigned NumChars) { static const char Chars[] = {C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C}; // Usually the indentation is small, handle it with a fastpath. if (NumChars < array_lengthof(Chars)) return OS.write(Chars, NumChars); while (NumChars) { unsigned NumToWrite = std::min(NumChars, (unsigned)array_lengthof(Chars)-1); OS.write(Chars, NumToWrite); NumChars -= NumToWrite; } return OS; } /// indent - Insert 'NumSpaces' spaces. raw_ostream &raw_ostream::indent(unsigned NumSpaces) { return write_padding<' '>(*this, NumSpaces); } /// write_zeros - Insert 'NumZeros' nulls. raw_ostream &raw_ostream::write_zeros(unsigned NumZeros) { return write_padding<'\0'>(*this, NumZeros); } bool raw_ostream::prepare_colors() { // Colors were explicitly disabled. if (!ColorEnabled) return false; // Colors require changing the terminal but this stream is not going to a // terminal. if (sys::Process::ColorNeedsFlush() && !is_displayed()) return false; if (sys::Process::ColorNeedsFlush()) flush(); return true; } raw_ostream &raw_ostream::changeColor(enum Colors colors, bool bold, bool bg) { if (!prepare_colors()) return *this; const char *colorcode = (colors == SAVEDCOLOR) ? sys::Process::OutputBold(bg) : sys::Process::OutputColor(static_cast(colors), bold, bg); if (colorcode) write(colorcode, strlen(colorcode)); return *this; } raw_ostream &raw_ostream::resetColor() { if (!prepare_colors()) return *this; if (const char *colorcode = sys::Process::ResetColor()) write(colorcode, strlen(colorcode)); return *this; } raw_ostream &raw_ostream::reverseColor() { if (!prepare_colors()) return *this; if (const char *colorcode = sys::Process::OutputReverse()) write(colorcode, strlen(colorcode)); return *this; } void raw_ostream::anchor() {} //===----------------------------------------------------------------------===// // Formatted Output //===----------------------------------------------------------------------===// // Out of line virtual method. void format_object_base::home() { } //===----------------------------------------------------------------------===// // raw_fd_ostream //===----------------------------------------------------------------------===// static int getFD(StringRef Filename, std::error_code &EC, sys::fs::CreationDisposition Disp, sys::fs::FileAccess Access, sys::fs::OpenFlags Flags) { assert((Access & sys::fs::FA_Write) && "Cannot make a raw_ostream from a read-only descriptor!"); // Handle "-" as stdout. Note that when we do this, we consider ourself // the owner of stdout and may set the "binary" flag globally based on Flags. if (Filename == "-") { EC = std::error_code(); // If user requested binary then put stdout into binary mode if // possible. if (!(Flags & sys::fs::OF_Text)) sys::ChangeStdoutToBinary(); return STDOUT_FILENO; } int FD; if (Access & sys::fs::FA_Read) EC = sys::fs::openFileForReadWrite(Filename, FD, Disp, Flags); else EC = sys::fs::openFileForWrite(Filename, FD, Disp, Flags); if (EC) return -1; return FD; } raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC) : raw_fd_ostream(Filename, EC, sys::fs::CD_CreateAlways, sys::fs::FA_Write, sys::fs::OF_None) {} raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC, sys::fs::CreationDisposition Disp) : raw_fd_ostream(Filename, EC, Disp, sys::fs::FA_Write, sys::fs::OF_None) {} raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC, sys::fs::FileAccess Access) : raw_fd_ostream(Filename, EC, sys::fs::CD_CreateAlways, Access, sys::fs::OF_None) {} raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC, sys::fs::OpenFlags Flags) : raw_fd_ostream(Filename, EC, sys::fs::CD_CreateAlways, sys::fs::FA_Write, Flags) {} raw_fd_ostream::raw_fd_ostream(StringRef Filename, std::error_code &EC, sys::fs::CreationDisposition Disp, sys::fs::FileAccess Access, sys::fs::OpenFlags Flags) : raw_fd_ostream(getFD(Filename, EC, Disp, Access, Flags), true) {} /// FD is the file descriptor that this writes to. If ShouldClose is true, this /// closes the file when the stream is destroyed. raw_fd_ostream::raw_fd_ostream(int fd, bool shouldClose, bool unbuffered, OStreamKind K) : raw_pwrite_stream(unbuffered, K), FD(fd), ShouldClose(shouldClose) { if (FD < 0 ) { ShouldClose = false; return; } enable_colors(true); // Do not attempt to close stdout or stderr. We used to try to maintain the // property that tools that support writing file to stdout should not also // write informational output to stdout, but in practice we were never able to // maintain this invariant. Many features have been added to LLVM and clang // (-fdump-record-layouts, optimization remarks, etc) that print to stdout, so // users must simply be aware that mixed output and remarks is a possibility. if (FD <= STDERR_FILENO) ShouldClose = false; #ifdef _WIN32 // Check if this is a console device. This is not equivalent to isatty. IsWindowsConsole = ::GetFileType((HANDLE)::_get_osfhandle(fd)) == FILE_TYPE_CHAR; #endif // Get the starting position. off_t loc = ::lseek(FD, 0, SEEK_CUR); #ifdef _WIN32 // MSVCRT's _lseek(SEEK_CUR) doesn't return -1 for pipes. sys::fs::file_status Status; std::error_code EC = status(FD, Status); SupportsSeeking = !EC && Status.type() == sys::fs::file_type::regular_file; #else SupportsSeeking = loc != (off_t)-1; #endif if (!SupportsSeeking) pos = 0; else pos = static_cast(loc); } raw_fd_ostream::~raw_fd_ostream() { if (FD >= 0) { flush(); if (ShouldClose) { if (auto EC = sys::Process::SafelyCloseFileDescriptor(FD)) error_detected(EC); } } #ifdef __MINGW32__ // On mingw, global dtors should not call exit(). // report_fatal_error() invokes exit(). We know report_fatal_error() // might not write messages to stderr when any errors were detected // on FD == 2. if (FD == 2) return; #endif // If there are any pending errors, report them now. Clients wishing // to avoid report_fatal_error calls should check for errors with // has_error() and clear the error flag with clear_error() before // destructing raw_ostream objects which may have errors. if (has_error()) report_fatal_error("IO failure on output stream: " + error().message(), /*gen_crash_diag=*/false); } #if defined(_WIN32) // The most reliable way to print unicode in a Windows console is with // WriteConsoleW. To use that, first transcode from UTF-8 to UTF-16. This // assumes that LLVM programs always print valid UTF-8 to the console. The data // might not be UTF-8 for two major reasons: // 1. The program is printing binary (-filetype=obj -o -), in which case it // would have been gibberish anyway. // 2. The program is printing text in a semi-ascii compatible codepage like // shift-jis or cp1252. // // Most LLVM programs don't produce non-ascii text unless they are quoting // user source input. A well-behaved LLVM program should either validate that // the input is UTF-8 or transcode from the local codepage to UTF-8 before // quoting it. If they don't, this may mess up the encoding, but this is still // probably the best compromise we can make. static bool write_console_impl(int FD, StringRef Data) { SmallVector WideText; // Fall back to ::write if it wasn't valid UTF-8. if (auto EC = sys::windows::UTF8ToUTF16(Data, WideText)) return false; // On Windows 7 and earlier, WriteConsoleW has a low maximum amount of data // that can be written to the console at a time. size_t MaxWriteSize = WideText.size(); if (!RunningWindows8OrGreater()) MaxWriteSize = 32767; size_t WCharsWritten = 0; do { size_t WCharsToWrite = std::min(MaxWriteSize, WideText.size() - WCharsWritten); DWORD ActuallyWritten; bool Success = ::WriteConsoleW((HANDLE)::_get_osfhandle(FD), &WideText[WCharsWritten], WCharsToWrite, &ActuallyWritten, /*Reserved=*/nullptr); // The most likely reason for WriteConsoleW to fail is that FD no longer // points to a console. Fall back to ::write. If this isn't the first loop // iteration, something is truly wrong. if (!Success) return false; WCharsWritten += ActuallyWritten; } while (WCharsWritten != WideText.size()); return true; } #endif void raw_fd_ostream::write_impl(const char *Ptr, size_t Size) { assert(FD >= 0 && "File already closed."); pos += Size; #if defined(_WIN32) // If this is a Windows console device, try re-encoding from UTF-8 to UTF-16 // and using WriteConsoleW. If that fails, fall back to plain write(). if (IsWindowsConsole) if (write_console_impl(FD, StringRef(Ptr, Size))) return; #endif // The maximum write size is limited to INT32_MAX. A write // greater than SSIZE_MAX is implementation-defined in POSIX, // and Windows _write requires 32 bit input. size_t MaxWriteSize = INT32_MAX; #if defined(__linux__) // It is observed that Linux returns EINVAL for a very large write (>2G). // Make it a reasonably small value. MaxWriteSize = 1024 * 1024 * 1024; #endif do { size_t ChunkSize = std::min(Size, MaxWriteSize); ssize_t ret = ::write(FD, Ptr, ChunkSize); if (ret < 0) { // If it's a recoverable error, swallow it and retry the write. // // Ideally we wouldn't ever see EAGAIN or EWOULDBLOCK here, since // raw_ostream isn't designed to do non-blocking I/O. However, some // programs, such as old versions of bjam, have mistakenly used // O_NONBLOCK. For compatibility, emulate blocking semantics by // spinning until the write succeeds. If you don't want spinning, // don't use O_NONBLOCK file descriptors with raw_ostream. if (errno == EINTR || errno == EAGAIN #ifdef EWOULDBLOCK || errno == EWOULDBLOCK #endif ) continue; // Otherwise it's a non-recoverable error. Note it and quit. error_detected(std::error_code(errno, std::generic_category())); break; } // The write may have written some or all of the data. Update the // size and buffer pointer to reflect the remainder that needs // to be written. If there are no bytes left, we're done. Ptr += ret; Size -= ret; } while (Size > 0); } void raw_fd_ostream::close() { assert(ShouldClose); ShouldClose = false; flush(); if (auto EC = sys::Process::SafelyCloseFileDescriptor(FD)) error_detected(EC); FD = -1; } uint64_t raw_fd_ostream::seek(uint64_t off) { assert(SupportsSeeking && "Stream does not support seeking!"); flush(); #ifdef _WIN32 pos = ::_lseeki64(FD, off, SEEK_SET); #elif defined(HAVE_LSEEK64) pos = ::lseek64(FD, off, SEEK_SET); #else pos = ::lseek(FD, off, SEEK_SET); #endif if (pos == (uint64_t)-1) error_detected(std::error_code(errno, std::generic_category())); return pos; } void raw_fd_ostream::pwrite_impl(const char *Ptr, size_t Size, uint64_t Offset) { uint64_t Pos = tell(); seek(Offset); write(Ptr, Size); seek(Pos); } size_t raw_fd_ostream::preferred_buffer_size() const { #if defined(_WIN32) // Disable buffering for console devices. Console output is re-encoded from // UTF-8 to UTF-16 on Windows, and buffering it would require us to split the // buffer on a valid UTF-8 codepoint boundary. Terminal buffering is disabled // below on most other OSs, so do the same thing on Windows and avoid that // complexity. if (IsWindowsConsole) return 0; return raw_ostream::preferred_buffer_size(); #elif !defined(__minix) // Minix has no st_blksize. assert(FD >= 0 && "File not yet open!"); struct stat statbuf; if (fstat(FD, &statbuf) != 0) return 0; // If this is a terminal, don't use buffering. Line buffering // would be a more traditional thing to do, but it's not worth // the complexity. if (S_ISCHR(statbuf.st_mode) && is_displayed()) return 0; // Return the preferred block size. return statbuf.st_blksize; #else return raw_ostream::preferred_buffer_size(); #endif } bool raw_fd_ostream::is_displayed() const { return sys::Process::FileDescriptorIsDisplayed(FD); } bool raw_fd_ostream::has_colors() const { if (!HasColors) HasColors = sys::Process::FileDescriptorHasColors(FD); return *HasColors; } Expected raw_fd_ostream::lock() { std::error_code EC = sys::fs::lockFile(FD); if (!EC) return sys::fs::FileLocker(FD); return errorCodeToError(EC); } Expected raw_fd_ostream::tryLockFor(std::chrono::milliseconds Timeout) { std::error_code EC = sys::fs::tryLockFile(FD, Timeout); if (!EC) return sys::fs::FileLocker(FD); return errorCodeToError(EC); } void raw_fd_ostream::anchor() {} //===----------------------------------------------------------------------===// // outs(), errs(), nulls() //===----------------------------------------------------------------------===// raw_fd_ostream &llvm::outs() { // Set buffer settings to model stdout behavior. std::error_code EC; static raw_fd_ostream S("-", EC, sys::fs::OF_None); assert(!EC); return S; } raw_fd_ostream &llvm::errs() { // Set standard error to be unbuffered and tied to outs() by default. static raw_fd_ostream S(STDERR_FILENO, false, true); return S; } /// nulls() - This returns a reference to a raw_ostream which discards output. raw_ostream &llvm::nulls() { static raw_null_ostream S; return S; } //===----------------------------------------------------------------------===// // File Streams //===----------------------------------------------------------------------===// raw_fd_stream::raw_fd_stream(StringRef Filename, std::error_code &EC) : raw_fd_ostream(getFD(Filename, EC, sys::fs::CD_CreateAlways, sys::fs::FA_Write | sys::fs::FA_Read, sys::fs::OF_None), true, false, OStreamKind::OK_FDStream) { if (EC) return; // Do not support non-seekable files. if (!supportsSeeking()) EC = std::make_error_code(std::errc::invalid_argument); } ssize_t raw_fd_stream::read(char *Ptr, size_t Size) { assert(get_fd() >= 0 && "File already closed."); ssize_t Ret = ::read(get_fd(), (void *)Ptr, Size); if (Ret >= 0) inc_pos(Ret); else error_detected(std::error_code(errno, std::generic_category())); return Ret; } bool raw_fd_stream::classof(const raw_ostream *OS) { return OS->get_kind() == OStreamKind::OK_FDStream; } //===----------------------------------------------------------------------===// // raw_string_ostream //===----------------------------------------------------------------------===// raw_string_ostream::~raw_string_ostream() { flush(); } void raw_string_ostream::write_impl(const char *Ptr, size_t Size) { OS.append(Ptr, Size); } //===----------------------------------------------------------------------===// // raw_svector_ostream //===----------------------------------------------------------------------===// uint64_t raw_svector_ostream::current_pos() const { return OS.size(); } void raw_svector_ostream::write_impl(const char *Ptr, size_t Size) { OS.append(Ptr, Ptr + Size); } void raw_svector_ostream::pwrite_impl(const char *Ptr, size_t Size, uint64_t Offset) { memcpy(OS.data() + Offset, Ptr, Size); } //===----------------------------------------------------------------------===// // raw_null_ostream //===----------------------------------------------------------------------===// raw_null_ostream::~raw_null_ostream() { #ifndef NDEBUG // ~raw_ostream asserts that the buffer is empty. This isn't necessary // with raw_null_ostream, but it's better to have raw_null_ostream follow // the rules than to change the rules just for raw_null_ostream. flush(); #endif } void raw_null_ostream::write_impl(const char *Ptr, size_t Size) { } uint64_t raw_null_ostream::current_pos() const { return 0; } void raw_null_ostream::pwrite_impl(const char *Ptr, size_t Size, uint64_t Offset) {} void raw_pwrite_stream::anchor() {} void buffer_ostream::anchor() {} void buffer_unique_ostream::anchor() {}