//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass hoists and/or decomposes/recomposes integer division and remainder // instructions to enable CFG improvements and better codegen. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/DivRemPairs.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BypassSlowDivision.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "div-rem-pairs" STATISTIC(NumPairs, "Number of div/rem pairs"); STATISTIC(NumRecomposed, "Number of instructions recomposed"); STATISTIC(NumHoisted, "Number of instructions hoisted"); STATISTIC(NumDecomposed, "Number of instructions decomposed"); DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", "Controls transformations in div-rem-pairs pass"); namespace { struct ExpandedMatch { DivRemMapKey Key; Instruction *Value; }; } // namespace /// See if we can match: (which is the form we expand into) /// X - ((X ?/ Y) * Y) /// which is equivalent to: /// X ?% Y static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { Value *Dividend, *XroundedDownToMultipleOfY; if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) return llvm::None; Value *Divisor; Instruction *Div; // Look for ((X / Y) * Y) if (!match( XroundedDownToMultipleOfY, m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), m_Instruction(Div)), m_Deferred(Divisor)))) return llvm::None; ExpandedMatch M; M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; M.Key.Dividend = Dividend; M.Key.Divisor = Divisor; M.Value = &I; return M; } namespace { /// A thin wrapper to store two values that we matched as div-rem pair. /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. struct DivRemPairWorklistEntry { /// The actual udiv/sdiv instruction. Source of truth. AssertingVH<Instruction> DivInst; /// The instruction that we have matched as a remainder instruction. /// Should only be used as Value, don't introspect it. AssertingVH<Instruction> RemInst; DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) : DivInst(DivInst_), RemInst(RemInst_) { assert((DivInst->getOpcode() == Instruction::UDiv || DivInst->getOpcode() == Instruction::SDiv) && "Not a division."); assert(DivInst->getType() == RemInst->getType() && "Types should match."); // We can't check anything else about remainder instruction, // it's not strictly required to be a urem/srem. } /// The type for this pair, identical for both the div and rem. Type *getType() const { return DivInst->getType(); } /// Is this pair signed or unsigned? bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } /// In this pair, what are the divident and divisor? Value *getDividend() const { return DivInst->getOperand(0); } Value *getDivisor() const { return DivInst->getOperand(1); } bool isRemExpanded() const { switch (RemInst->getOpcode()) { case Instruction::SRem: case Instruction::URem: return false; // single 'rem' instruction - unexpanded form. default: return true; // anything else means we have remainder in expanded form. } } }; } // namespace using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; /// Find matching pairs of integer div/rem ops (they have the same numerator, /// denominator, and signedness). Place those pairs into a worklist for further /// processing. This indirection is needed because we have to use TrackingVH<> /// because we will be doing RAUW, and if one of the rem instructions we change /// happens to be an input to another div/rem in the maps, we'd have problems. static DivRemWorklistTy getWorklist(Function &F) { // Insert all divide and remainder instructions into maps keyed by their // operands and opcode (signed or unsigned). DenseMap<DivRemMapKey, Instruction *> DivMap; // Use a MapVector for RemMap so that instructions are moved/inserted in a // deterministic order. MapVector<DivRemMapKey, Instruction *> RemMap; for (auto &BB : F) { for (auto &I : BB) { if (I.getOpcode() == Instruction::SDiv) DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; else if (I.getOpcode() == Instruction::UDiv) DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; else if (I.getOpcode() == Instruction::SRem) RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; else if (I.getOpcode() == Instruction::URem) RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; else if (auto Match = matchExpandedRem(I)) RemMap[Match->Key] = Match->Value; } } // We'll accumulate the matching pairs of div-rem instructions here. DivRemWorklistTy Worklist; // We can iterate over either map because we are only looking for matched // pairs. Choose remainders for efficiency because they are usually even more // rare than division. for (auto &RemPair : RemMap) { // Find the matching division instruction from the division map. auto It = DivMap.find(RemPair.first); if (It == DivMap.end()) continue; // We have a matching pair of div/rem instructions. NumPairs++; Instruction *RemInst = RemPair.second; // Place it in the worklist. Worklist.emplace_back(It->second, RemInst); } return Worklist; } /// Find matching pairs of integer div/rem ops (they have the same numerator, /// denominator, and signedness). If they exist in different basic blocks, bring /// them together by hoisting or replace the common division operation that is /// implicit in the remainder: /// X % Y <--> X - ((X / Y) * Y). /// /// We can largely ignore the normal safety and cost constraints on speculation /// of these ops when we find a matching pair. This is because we are already /// guaranteed that any exceptions and most cost are already incurred by the /// first member of the pair. /// /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or /// SimplifyCFG, but it's split off on its own because it's different enough /// that it doesn't quite match the stated objectives of those passes. static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, const DominatorTree &DT) { bool Changed = false; // Get the matching pairs of div-rem instructions. We want this extra // indirection to avoid dealing with having to RAUW the keys of the maps. DivRemWorklistTy Worklist = getWorklist(F); // Process each entry in the worklist. for (DivRemPairWorklistEntry &E : Worklist) { if (!DebugCounter::shouldExecute(DRPCounter)) continue; bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); auto &DivInst = E.DivInst; auto &RemInst = E.RemInst; const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning if (HasDivRemOp && E.isRemExpanded()) { // The target supports div+rem but the rem is expanded. // We should recompose it first. Value *X = E.getDividend(); Value *Y = E.getDivisor(); Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) : BinaryOperator::CreateURem(X, Y); // Note that we place it right next to the original expanded instruction, // and letting further handling to move it if needed. RealRem->setName(RemInst->getName() + ".recomposed"); RealRem->insertAfter(RemInst); Instruction *OrigRemInst = RemInst; // Update AssertingVH<> with new instruction so it doesn't assert. RemInst = RealRem; // And replace the original instruction with the new one. OrigRemInst->replaceAllUsesWith(RealRem); OrigRemInst->eraseFromParent(); NumRecomposed++; // Note that we have left ((X / Y) * Y) around. // If it had other uses we could rewrite it as X - X % Y Changed = true; } assert((!E.isRemExpanded() || !HasDivRemOp) && "*If* the target supports div-rem, then by now the RemInst *is* " "Instruction::[US]Rem."); // If the target supports div+rem and the instructions are in the same block // already, there's nothing to do. The backend should handle this. If the // target does not support div+rem, then we will decompose the rem. if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) continue; bool DivDominates = DT.dominates(DivInst, RemInst); if (!DivDominates && !DT.dominates(RemInst, DivInst)) { // We have matching div-rem pair, but they are in two different blocks, // neither of which dominates one another. // FIXME: We could hoist both ops to the common predecessor block? continue; } // The target does not have a single div/rem operation, // and the rem is already in expanded form. Nothing to do. if (!HasDivRemOp && E.isRemExpanded()) continue; if (HasDivRemOp) { // The target has a single div/rem operation. Hoist the lower instruction // to make the matched pair visible to the backend. if (DivDominates) RemInst->moveAfter(DivInst); else DivInst->moveAfter(RemInst); NumHoisted++; } else { // The target does not have a single div/rem operation, // and the rem is *not* in a already-expanded form. // Decompose the remainder calculation as: // X % Y --> X - ((X / Y) * Y). assert(!RemOriginallyWasInExpandedForm && "We should not be expanding if the rem was in expanded form to " "begin with."); Value *X = E.getDividend(); Value *Y = E.getDivisor(); Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); Instruction *Sub = BinaryOperator::CreateSub(X, Mul); // If the remainder dominates, then hoist the division up to that block: // // bb1: // %rem = srem %x, %y // bb2: // %div = sdiv %x, %y // --> // bb1: // %div = sdiv %x, %y // %mul = mul %div, %y // %rem = sub %x, %mul // // If the division dominates, it's already in the right place. The mul+sub // will be in a different block because we don't assume that they are // cheap to speculatively execute: // // bb1: // %div = sdiv %x, %y // bb2: // %rem = srem %x, %y // --> // bb1: // %div = sdiv %x, %y // bb2: // %mul = mul %div, %y // %rem = sub %x, %mul // // If the div and rem are in the same block, we do the same transform, // but any code movement would be within the same block. if (!DivDominates) DivInst->moveBefore(RemInst); Mul->insertAfter(RemInst); Sub->insertAfter(Mul); // If X can be undef, X should be frozen first. // For example, let's assume that Y = 1 & X = undef: // %div = sdiv undef, 1 // %div = undef // %rem = srem undef, 1 // %rem = 0 // => // %div = sdiv undef, 1 // %div = undef // %mul = mul %div, 1 // %mul = undef // %rem = sub %x, %mul // %rem = undef - undef = undef // If X is not frozen, %rem becomes undef after transformation. // TODO: We need a undef-specific checking function in ValueTracking if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) { auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst); DivInst->setOperand(0, FrX); Sub->setOperand(0, FrX); } // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, // but %rem in tgt can be one of many integer values. if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) { auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst); DivInst->setOperand(1, FrY); Mul->setOperand(1, FrY); } // Now kill the explicit remainder. We have replaced it with: // (sub X, (mul (div X, Y), Y) Sub->setName(RemInst->getName() + ".decomposed"); Instruction *OrigRemInst = RemInst; // Update AssertingVH<> with new instruction so it doesn't assert. RemInst = Sub; // And replace the original instruction with the new one. OrigRemInst->replaceAllUsesWith(Sub); OrigRemInst->eraseFromParent(); NumDecomposed++; } Changed = true; } return Changed; } // Pass manager boilerplate below here. namespace { struct DivRemPairsLegacyPass : public FunctionPass { static char ID; DivRemPairsLegacyPass() : FunctionPass(ID) { initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<TargetTransformInfoWrapperPass>(); AU.setPreservesCFG(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); return optimizeDivRem(F, TTI, DT); } }; } // namespace char DivRemPairsLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", "Hoist/decompose integer division and remainder", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", "Hoist/decompose integer division and remainder", false, false) FunctionPass *llvm::createDivRemPairsPass() { return new DivRemPairsLegacyPass(); } PreservedAnalyses DivRemPairsPass::run(Function &F, FunctionAnalysisManager &FAM) { TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); if (!optimizeDivRem(F, TTI, DT)) return PreservedAnalyses::all(); // TODO: This pass just hoists/replaces math ops - all analyses are preserved? PreservedAnalyses PA; PA.preserveSet<CFGAnalyses>(); PA.preserve<GlobalsAA>(); return PA; }