; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -S -early-cse -earlycse-debug-hash | FileCheck %s ; RUN: opt < %s -S -basic-aa -early-cse-memssa | FileCheck %s define void @test1(float %A, float %B, float* %PA, float* %PB) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: [[C:%.*]] = fadd float [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store float [[C]], float* [[PA:%.*]], align 4 ; CHECK-NEXT: store float [[C]], float* [[PB:%.*]], align 4 ; CHECK-NEXT: ret void ; %C = fadd float %A, %B store float %C, float* %PA %D = fadd float %B, %A store float %D, float* %PB ret void } define void @test2(float %A, float %B, i1* %PA, i1* %PB) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[C:%.*]] = fcmp oeq float [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i1 [[C]], i1* [[PA:%.*]], align 1 ; CHECK-NEXT: store i1 [[C]], i1* [[PB:%.*]], align 1 ; CHECK-NEXT: ret void ; %C = fcmp oeq float %A, %B store i1 %C, i1* %PA %D = fcmp oeq float %B, %A store i1 %D, i1* %PB ret void } define void @test3(float %A, float %B, i1* %PA, i1* %PB) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[C:%.*]] = fcmp uge float [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i1 [[C]], i1* [[PA:%.*]], align 1 ; CHECK-NEXT: store i1 [[C]], i1* [[PB:%.*]], align 1 ; CHECK-NEXT: ret void ; %C = fcmp uge float %A, %B store i1 %C, i1* %PA %D = fcmp ule float %B, %A store i1 %D, i1* %PB ret void } define void @test4(i32 %A, i32 %B, i1* %PA, i1* %PB) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i1 [[C]], i1* [[PA:%.*]], align 1 ; CHECK-NEXT: store i1 [[C]], i1* [[PB:%.*]], align 1 ; CHECK-NEXT: ret void ; %C = icmp eq i32 %A, %B store i1 %C, i1* %PA %D = icmp eq i32 %B, %A store i1 %D, i1* %PB ret void } define void @test5(i32 %A, i32 %B, i1* %PA, i1* %PB) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i1 [[C]], i1* [[PA:%.*]], align 1 ; CHECK-NEXT: store i1 [[C]], i1* [[PB:%.*]], align 1 ; CHECK-NEXT: ret void ; %C = icmp sgt i32 %A, %B store i1 %C, i1* %PA %D = icmp slt i32 %B, %A store i1 %D, i1* %PB ret void } ; Test degenerate case of commuted compare of identical comparands. define void @test6(float %f, i1* %p1, i1* %p2) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: [[C1:%.*]] = fcmp ult float [[F:%.*]], [[F]] ; CHECK-NEXT: store i1 [[C1]], i1* [[P1:%.*]], align 1 ; CHECK-NEXT: store i1 [[C1]], i1* [[P2:%.*]], align 1 ; CHECK-NEXT: ret void ; %c1 = fcmp ult float %f, %f %c2 = fcmp ugt float %f, %f store i1 %c1, i1* %p1 store i1 %c2, i1* %p2 ret void } ; Min/max operands may be commuted in the compare and select. define i8 @smin_commute(i8 %a, i8 %b) { ; CHECK-LABEL: @smin_commute( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i8 [[B]], [[A]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: [[R:%.*]] = mul i8 [[M1]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %cmp1 = icmp slt i8 %a, %b %cmp2 = icmp slt i8 %b, %a %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = mul i8 %m1, %m2 ret i8 %r } ; Min/max can also have a swapped predicate and select operands. define i1 @smin_swapped(i8 %a, i8 %b) { ; CHECK-LABEL: @smin_swapped( ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i8 [[A]], [[B]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[B]], i8 [[A]] ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp sgt i8 %a, %b %cmp2 = icmp slt i8 %a, %b %m1 = select i1 %cmp1, i8 %b, i8 %a %m2 = select i1 %cmp2, i8 %a, i8 %b %r = icmp eq i8 %m2, %m1 ret i1 %r } ; Min/max can also have an inverted predicate and select operands. define i1 @smin_inverted(i8 %a, i8 %b) { ; CHECK-LABEL: @smin_inverted( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp slt i8 %a, %b %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = icmp eq i8 %m1, %m2 ret i1 %r } define i8 @smax_commute(i8 %a, i8 %b) { ; CHECK-LABEL: @smax_commute( ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i8 [[B]], [[A]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i8 0 ; %cmp1 = icmp sgt i8 %a, %b %cmp2 = icmp sgt i8 %b, %a %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = urem i8 %m2, %m1 ret i8 %r } define i8 @smax_swapped(i8 %a, i8 %b) { ; CHECK-LABEL: @smax_swapped( ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i8 [[A]], [[B]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[B]], i8 [[A]] ; CHECK-NEXT: ret i8 1 ; %cmp1 = icmp slt i8 %a, %b %cmp2 = icmp sgt i8 %a, %b %m1 = select i1 %cmp1, i8 %b, i8 %a %m2 = select i1 %cmp2, i8 %a, i8 %b %r = sdiv i8 %m1, %m2 ret i8 %r } define i1 @smax_inverted(i8 %a, i8 %b) { ; CHECK-LABEL: @smax_inverted( ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp sgt i8 %a, %b %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = icmp eq i8 %m1, %m2 ret i1 %r } define i8 @umin_commute(i8 %a, i8 %b) { ; CHECK-LABEL: @umin_commute( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i8 [[B]], [[A]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i8 0 ; %cmp1 = icmp ult i8 %a, %b %cmp2 = icmp ult i8 %b, %a %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = sub i8 %m2, %m1 ret i8 %r } ; Choose a vector type just to show that works. define <2 x i8> @umin_swapped(<2 x i8> %a, <2 x i8> %b) { ; CHECK-LABEL: @umin_swapped( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt <2 x i8> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp ult <2 x i8> [[A]], [[B]] ; CHECK-NEXT: [[M1:%.*]] = select <2 x i1> [[CMP1]], <2 x i8> [[B]], <2 x i8> [[A]] ; CHECK-NEXT: ret <2 x i8> zeroinitializer ; %cmp1 = icmp ugt <2 x i8> %a, %b %cmp2 = icmp ult <2 x i8> %a, %b %m1 = select <2 x i1> %cmp1, <2 x i8> %b, <2 x i8> %a %m2 = select <2 x i1> %cmp2, <2 x i8> %a, <2 x i8> %b %r = sub <2 x i8> %m2, %m1 ret <2 x i8> %r } define i1 @umin_inverted(i8 %a, i8 %b) { ; CHECK-LABEL: @umin_inverted( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp ult i8 %a, %b %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = icmp eq i8 %m1, %m2 ret i1 %r } define i8 @umax_commute(i8 %a, i8 %b) { ; CHECK-LABEL: @umax_commute( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i8 [[B]], [[A]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i8 1 ; %cmp1 = icmp ugt i8 %a, %b %cmp2 = icmp ugt i8 %b, %a %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = udiv i8 %m1, %m2 ret i8 %r } define i8 @umax_swapped(i8 %a, i8 %b) { ; CHECK-LABEL: @umax_swapped( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i8 [[A]], [[B]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[B]], i8 [[A]] ; CHECK-NEXT: [[R:%.*]] = add i8 [[M1]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %cmp1 = icmp ult i8 %a, %b %cmp2 = icmp ugt i8 %a, %b %m1 = select i1 %cmp1, i8 %b, i8 %a %m2 = select i1 %cmp2, i8 %a, i8 %b %r = add i8 %m2, %m1 ret i8 %r } define i1 @umax_inverted(i8 %a, i8 %b) { ; CHECK-LABEL: @umax_inverted( ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[B]] ; CHECK-NEXT: ret i1 true ; %cmp1 = icmp ugt i8 %a, %b %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %b %m2 = select i1 %cmp2, i8 %b, i8 %a %r = icmp eq i8 %m1, %m2 ret i1 %r } ; Min/max may exist with non-canonical operands. Value tracking can match those. ; But we do not use value tracking, so we expect instcombine will canonicalize ; this code to a form that allows CSE. define i8 @smax_nsw(i8 %a, i8 %b) { ; CHECK-LABEL: @smax_nsw( ; CHECK-NEXT: [[SUB:%.*]] = sub nsw i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A]], [[B]] ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i8 [[SUB]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 0, i8 [[SUB]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[CMP2]], i8 [[SUB]], i8 0 ; CHECK-NEXT: [[R:%.*]] = sub i8 [[M2]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %sub = sub nsw i8 %a, %b %cmp1 = icmp slt i8 %a, %b %cmp2 = icmp sgt i8 %sub, 0 %m1 = select i1 %cmp1, i8 0, i8 %sub %m2 = select i1 %cmp2, i8 %sub, i8 0 %r = sub i8 %m2, %m1 ret i8 %r } define i8 @abs_swapped_sge(i8 %a) { ; CHECK-LABEL: @abs_swapped_sge( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp sge i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: ret i8 0 ; %neg = sub i8 0, %a %cmp1 = icmp sge i8 %a, 0 %cmp2 = icmp slt i8 %a, 0 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = xor i8 %m2, %m1 ret i8 %r } define i8 @nabs_swapped_sge(i8 %a) { ; CHECK-LABEL: @nabs_swapped_sge( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sge i8 [[A]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: ret i8 0 ; %neg = sub i8 0, %a %cmp1 = icmp slt i8 %a, 0 %cmp2 = icmp sge i8 %a, 0 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = xor i8 %m2, %m1 ret i8 %r } ; Abs/nabs may exist with non-canonical operands. Value tracking can match those. ; But we do not use value tracking, so we expect instcombine will canonicalize ; this code to a form that allows CSE. define i8 @abs_swapped(i8 %a) { ; CHECK-LABEL: @abs_swapped( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[CMP2]], i8 [[NEG]], i8 [[A]] ; CHECK-NEXT: [[R:%.*]] = or i8 [[M2]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %neg = sub i8 0, %a %cmp1 = icmp sgt i8 %a, 0 %cmp2 = icmp slt i8 %a, 0 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = or i8 %m2, %m1 ret i8 %r } define i8 @abs_inverted(i8 %a) { ; CHECK-LABEL: @abs_inverted( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: ret i8 [[M1]] ; %neg = sub i8 0, %a %cmp1 = icmp sgt i8 %a, 0 %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = or i8 %m2, %m1 ret i8 %r } ; Abs/nabs may exist with non-canonical operands. Value tracking can match those. ; But we do not use value tracking, so we expect instcombine will canonicalize ; this code to a form that allows CSE. define i8 @nabs_swapped(i8 %a) { ; CHECK-LABEL: @nabs_swapped( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i8 [[A]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[CMP2]], i8 [[NEG]], i8 [[A]] ; CHECK-NEXT: [[R:%.*]] = xor i8 [[M2]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %neg = sub i8 0, %a %cmp1 = icmp slt i8 %a, 0 %cmp2 = icmp sgt i8 %a, 0 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = xor i8 %m2, %m1 ret i8 %r } define i8 @nabs_inverted(i8 %a) { ; CHECK-LABEL: @nabs_inverted( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = xor i1 [[CMP1]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: ret i8 0 ; %neg = sub i8 0, %a %cmp1 = icmp slt i8 %a, 0 %cmp2 = xor i1 %cmp1, -1 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = xor i8 %m2, %m1 ret i8 %r } ; Abs/nabs may exist with non-canonical operands. Value tracking can match those. ; But we do not use value tracking, so we expect instcombine will canonicalize ; this code to a form that allows CSE. ; compares are different. define i8 @abs_different_constants(i8 %a) { ; CHECK-LABEL: @abs_different_constants( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i8 [[A]], -1 ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[CMP2]], i8 [[NEG]], i8 [[A]] ; CHECK-NEXT: [[R:%.*]] = or i8 [[M2]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %neg = sub i8 0, %a %cmp1 = icmp sgt i8 %a, -1 %cmp2 = icmp slt i8 %a, 0 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = or i8 %m2, %m1 ret i8 %r } ; Abs/nabs may exist with non-canonical operands. Value tracking can match those. ; But we do not use value tracking, so we expect instcombine will canonicalize ; this code to a form that allows CSE. define i8 @nabs_different_constants(i8 %a) { ; CHECK-LABEL: @nabs_different_constants( ; CHECK-NEXT: [[NEG:%.*]] = sub i8 0, [[A:%.*]] ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i8 [[A]], 0 ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i8 [[A]], -1 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP1]], i8 [[A]], i8 [[NEG]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[CMP2]], i8 [[NEG]], i8 [[A]] ; CHECK-NEXT: [[R:%.*]] = xor i8 [[M2]], [[M1]] ; CHECK-NEXT: ret i8 [[R]] ; %neg = sub i8 0, %a %cmp1 = icmp slt i8 %a, 0 %cmp2 = icmp sgt i8 %a, -1 %m1 = select i1 %cmp1, i8 %a, i8 %neg %m2 = select i1 %cmp2, i8 %neg, i8 %a %r = xor i8 %m2, %m1 ret i8 %r } ; https://bugs.llvm.org/show_bug.cgi?id=41101 ; Detect equivalence of selects with commuted operands: 'not' cond. define i32 @select_not_cond(i1 %cond, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_cond( ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[COND:%.*]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: ret i32 0 ; %not = xor i1 %cond, -1 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %not, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; Detect equivalence of selects with commuted operands: 'not' cond with vector select. define <2 x double> @select_not_cond_commute_vec(<2 x i1> %cond, <2 x double> %t, <2 x double> %f) { ; CHECK-LABEL: @select_not_cond_commute_vec( ; CHECK-NEXT: [[NOT:%.*]] = xor <2 x i1> [[COND:%.*]], ; CHECK-NEXT: [[M1:%.*]] = select <2 x i1> [[COND]], <2 x double> [[T:%.*]], <2 x double> [[F:%.*]] ; CHECK-NEXT: ret <2 x double> ; %not = xor <2 x i1> %cond, %m1 = select <2 x i1> %cond, <2 x double> %t, <2 x double> %f %m2 = select <2 x i1> %not, <2 x double> %f, <2 x double> %t %r = fdiv nnan <2 x double> %m1, %m2 ret <2 x double> %r } ; Negative test - select ops must be commuted. define i32 @select_not_cond_wrong_select_ops(i1 %cond, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_cond_wrong_select_ops( ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[COND:%.*]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[NOT]], i32 [[T]], i32 [[F]] ; CHECK-NEXT: [[R:%.*]] = xor i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %not = xor i1 %cond, -1 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %not, i32 %t, i32 %f %r = xor i32 %m2, %m1 ret i32 %r } ; Negative test - not a 'not'. define i32 @select_not_cond_wrong_cond(i1 %cond, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_cond_wrong_cond( ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND:%.*]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[COND]], i32 [[F]], i32 [[T]] ; CHECK-NEXT: [[R:%.*]] = xor i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %not = xor i1 %cond, -2 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %not, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; Detect equivalence of selects with commuted operands: inverted pred with fcmps. define i32 @select_invert_pred_cond(float %x, i32 %t, i32 %f) { ; CHECK-LABEL: @select_invert_pred_cond( ; CHECK-NEXT: [[COND:%.*]] = fcmp ueq float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[INVCOND:%.*]] = fcmp one float [[X]], 4.200000e+01 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: ret i32 0 ; %cond = fcmp ueq float %x, 42.0 %invcond = fcmp one float %x, 42.0 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %invcond, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; Detect equivalence of selects with commuted operands: inverted pred with icmps and vectors. define <2 x i32> @select_invert_pred_cond_commute_vec(<2 x i8> %x, <2 x i32> %t, <2 x i32> %f) { ; CHECK-LABEL: @select_invert_pred_cond_commute_vec( ; CHECK-NEXT: [[COND:%.*]] = icmp sgt <2 x i8> [[X:%.*]], ; CHECK-NEXT: [[INVCOND:%.*]] = icmp sle <2 x i8> [[X]], ; CHECK-NEXT: [[M1:%.*]] = select <2 x i1> [[COND]], <2 x i32> [[T:%.*]], <2 x i32> [[F:%.*]] ; CHECK-NEXT: ret <2 x i32> zeroinitializer ; %cond = icmp sgt <2 x i8> %x, %invcond = icmp sle <2 x i8> %x, %m1 = select <2 x i1> %cond, <2 x i32> %t, <2 x i32> %f %m2 = select <2 x i1> %invcond, <2 x i32> %f, <2 x i32> %t %r = xor <2 x i32> %m1, %m2 ret <2 x i32> %r } ; Negative test - select ops must be commuted. define i32 @select_invert_pred_wrong_select_ops(float %x, i32 %t, i32 %f) { ; CHECK-LABEL: @select_invert_pred_wrong_select_ops( ; CHECK-NEXT: [[COND:%.*]] = fcmp ueq float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[INVCOND:%.*]] = fcmp one float [[X]], 4.200000e+01 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[F:%.*]], i32 [[T:%.*]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[INVCOND]], i32 [[F]], i32 [[T]] ; CHECK-NEXT: [[R:%.*]] = xor i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %cond = fcmp ueq float %x, 42.0 %invcond = fcmp one float %x, 42.0 %m1 = select i1 %cond, i32 %f, i32 %t %m2 = select i1 %invcond, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; Negative test - not an inverted predicate. define i32 @select_invert_pred_wrong_cond(float %x, i32 %t, i32 %f) { ; CHECK-LABEL: @select_invert_pred_wrong_cond( ; CHECK-NEXT: [[COND:%.*]] = fcmp ueq float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[INVCOND:%.*]] = fcmp une float [[X]], 4.200000e+01 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[INVCOND]], i32 [[F]], i32 [[T]] ; CHECK-NEXT: [[R:%.*]] = xor i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %cond = fcmp ueq float %x, 42.0 %invcond = fcmp une float %x, 42.0 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %invcond, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; Negative test - cmp ops must match. define i32 @select_invert_pred_wrong_cmp_ops(float %x, i32 %t, i32 %f) { ; CHECK-LABEL: @select_invert_pred_wrong_cmp_ops( ; CHECK-NEXT: [[COND:%.*]] = fcmp ueq float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[INVCOND:%.*]] = fcmp one float [[X]], 4.300000e+01 ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[M2:%.*]] = select i1 [[INVCOND]], i32 [[F]], i32 [[T]] ; CHECK-NEXT: [[R:%.*]] = xor i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %cond = fcmp ueq float %x, 42.0 %invcond = fcmp one float %x, 43.0 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %invcond, i32 %f, i32 %t %r = xor i32 %m2, %m1 ret i32 %r } ; If we have both an inverted predicate and a 'not' op, recognize the double-negation. define i32 @select_not_invert_pred_cond(i8 %x, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_invert_pred_cond( ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i8 [[X:%.*]], 42 ; CHECK-NEXT: [[INVCOND:%.*]] = icmp ule i8 [[X]], 42 ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[INVCOND]], true ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: ret i32 0 ; %cond = icmp ugt i8 %x, 42 %invcond = icmp ule i8 %x, 42 %not = xor i1 %invcond, -1 %m1 = select i1 %cond, i32 %t, i32 %f %m2 = select i1 %not, i32 %t, i32 %f %r = sub i32 %m1, %m2 ret i32 %r } ; If we have both an inverted predicate and a 'not' op, recognize the double-negation. define i32 @select_not_invert_pred_cond_commute(i8 %x, i8 %y, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_invert_pred_cond_commute( ; CHECK-NEXT: [[INVCOND:%.*]] = icmp ule i8 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[INVCOND]], true ; CHECK-NEXT: [[M2:%.*]] = select i1 [[NOT]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i8 [[X]], [[Y]] ; CHECK-NEXT: ret i32 0 ; %invcond = icmp ule i8 %x, %y %not = xor i1 %invcond, -1 %m2 = select i1 %not, i32 %t, i32 %f %cond = icmp ugt i8 %x, %y %m1 = select i1 %cond, i32 %t, i32 %f %r = sub i32 %m2, %m1 ret i32 %r } ; Negative test - not an inverted predicate. define i32 @select_not_invert_pred_cond_wrong_pred(i8 %x, i8 %y, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_invert_pred_cond_wrong_pred( ; CHECK-NEXT: [[INVCOND:%.*]] = icmp ult i8 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[INVCOND]], true ; CHECK-NEXT: [[M2:%.*]] = select i1 [[NOT]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i8 [[X]], [[Y]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T]], i32 [[F]] ; CHECK-NEXT: [[R:%.*]] = sub i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %invcond = icmp ult i8 %x, %y %not = xor i1 %invcond, -1 %m2 = select i1 %not, i32 %t, i32 %f %cond = icmp ugt i8 %x, %y %m1 = select i1 %cond, i32 %t, i32 %f %r = sub i32 %m2, %m1 ret i32 %r } ; Negative test - cmp ops must match. define i32 @select_not_invert_pred_cond_wrong_cmp_op(i8 %x, i8 %y, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_invert_pred_cond_wrong_cmp_op( ; CHECK-NEXT: [[INVCOND:%.*]] = icmp ule i8 [[X:%.*]], 42 ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[INVCOND]], true ; CHECK-NEXT: [[M2:%.*]] = select i1 [[NOT]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i8 [[X]], [[Y:%.*]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[T]], i32 [[F]] ; CHECK-NEXT: [[R:%.*]] = sub i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %invcond = icmp ule i8 %x, 42 %not = xor i1 %invcond, -1 %m2 = select i1 %not, i32 %t, i32 %f %cond = icmp ugt i8 %x, %y %m1 = select i1 %cond, i32 %t, i32 %f %r = sub i32 %m2, %m1 ret i32 %r } ; Negative test - select ops must be same (and not commuted). define i32 @select_not_invert_pred_cond_wrong_select_op(i8 %x, i8 %y, i32 %t, i32 %f) { ; CHECK-LABEL: @select_not_invert_pred_cond_wrong_select_op( ; CHECK-NEXT: [[INVCOND:%.*]] = icmp ule i8 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[INVCOND]], true ; CHECK-NEXT: [[M2:%.*]] = select i1 [[NOT]], i32 [[T:%.*]], i32 [[F:%.*]] ; CHECK-NEXT: [[COND:%.*]] = icmp ugt i8 [[X]], [[Y]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[COND]], i32 [[F]], i32 [[T]] ; CHECK-NEXT: [[R:%.*]] = sub i32 [[M2]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %invcond = icmp ule i8 %x, %y %not = xor i1 %invcond, -1 %m2 = select i1 %not, i32 %t, i32 %f %cond = icmp ugt i8 %x, %y %m1 = select i1 %cond, i32 %f, i32 %t %r = sub i32 %m2, %m1 ret i32 %r } ; This test is a reproducer for a bug involving inverted min/max selects ; hashing differently but comparing as equal. It exhibits such a pair of ; values, and we run this test with -earlycse-debug-hash which would catch ; the disagreement and fail if it regressed. ; EarlyCSE should be able to detect the 2nd redundant `select` and eliminate ; it. define i32 @inverted_max(i32 %i) { ; CHECK-LABEL: @inverted_max( ; CHECK-NEXT: [[CMP:%.*]] = icmp sle i32 0, [[I:%.*]] ; CHECK-NEXT: [[M1:%.*]] = select i1 [[CMP]], i32 [[I]], i32 0 ; CHECK-NEXT: [[CMPINV:%.*]] = icmp sgt i32 0, [[I]] ; CHECK-NEXT: [[R:%.*]] = add i32 [[M1]], [[M1]] ; CHECK-NEXT: ret i32 [[R]] ; %cmp = icmp sle i32 0, %i %m1 = select i1 %cmp, i32 %i, i32 0 %cmpinv = icmp sgt i32 0, %i %m2 = select i1 %cmpinv, i32 0, i32 %i %r = add i32 %m1, %m2 ret i32 %r } ; This test is a reproducer for a bug involving inverted min/max selects ; hashing differently but comparing as equal. It exhibits such a pair of ; values, and we run this test with -earlycse-debug-hash which would catch ; the disagreement and fail if it regressed. This test also includes a ; negation of each negation to check for the same issue one level deeper. define void @not_not_min(i32* %px, i32* %py, i32* %pout) { ; CHECK-LABEL: @not_not_min( ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[PX:%.*]], align 4 ; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[PY:%.*]], align 4 ; CHECK-NEXT: [[CMPA:%.*]] = icmp slt i32 [[X]], [[Y]] ; CHECK-NEXT: [[CMPB:%.*]] = xor i1 [[CMPA]], true ; CHECK-NEXT: [[RA:%.*]] = select i1 [[CMPA]], i32 [[X]], i32 [[Y]] ; CHECK-NEXT: store volatile i32 [[RA]], i32* [[POUT:%.*]], align 4 ; CHECK-NEXT: store volatile i32 [[RA]], i32* [[POUT]], align 4 ; CHECK-NEXT: store volatile i32 [[RA]], i32* [[POUT]], align 4 ; CHECK-NEXT: ret void ; %x = load volatile i32, i32* %px %y = load volatile i32, i32* %py %cmpa = icmp slt i32 %x, %y %cmpb = xor i1 %cmpa, -1 %cmpc = xor i1 %cmpb, -1 %ra = select i1 %cmpa, i32 %x, i32 %y %rb = select i1 %cmpb, i32 %y, i32 %x %rc = select i1 %cmpc, i32 %x, i32 %y store volatile i32 %ra, i32* %pout store volatile i32 %rb, i32* %pout store volatile i32 %rc, i32* %pout ret void } ; This would cause an assert/crash because we matched ; a ValueTracking select pattern that required 'nsw' ; on an operand, but we remove that flag as part of ; CSE matching/hashing. define void @PR41083_1(i32 %span_left, i32 %clip_left) { ; CHECK-LABEL: @PR41083_1( ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[CLIP_LEFT:%.*]], [[SPAN_LEFT:%.*]] ; CHECK-NEXT: [[SUB:%.*]] = sub i32 [[CLIP_LEFT]], [[SPAN_LEFT]] ; CHECK-NEXT: [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 0 ; CHECK-NEXT: ret void ; %cmp = icmp sgt i32 %clip_left, %span_left %sub = sub nsw i32 %clip_left, %span_left %cond = select i1 %cmp, i32 %sub, i32 0 %cmp83292 = icmp slt i32 %cond, undef %sub2 = sub i32 %clip_left, %span_left %sel2 = select i1 %cmp, i32 %sub2, i32 0 ret void } ; This would cause an assert/crash because we matched ; a ValueTracking select pattern that required 'nsw' ; on an operand, but we remove that flag as part of ; CSE matching/hashing. define i32 @PR41083_2(i32 %p) { ; CHECK-LABEL: @PR41083_2( ; CHECK-NEXT: [[S:%.*]] = sub i32 0, [[P:%.*]] ; CHECK-NEXT: [[A:%.*]] = ashr exact i32 [[S]], 2 ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 0, [[A]] ; CHECK-NEXT: [[SUB:%.*]] = sub i32 0, [[A]] ; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 0 ; CHECK-NEXT: [[M:%.*]] = mul i32 [[SEL]], [[SUB]] ; CHECK-NEXT: ret i32 [[M]] ; %s = sub i32 0, %p %a = ashr exact i32 %s, 2 %cmp = icmp sgt i32 0, %a %sub = sub nsw i32 0, %a %sel = select i1 %cmp, i32 %sub, i32 0 %s2 = sub i32 0, %a %m = mul i32 %sel, %s2 ret i32 %m } define float @maxnum(float %a, float %b) { ; CHECK-LABEL: @maxnum( ; CHECK-NEXT: [[X:%.*]] = call float @llvm.maxnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float 1.000000e+00 ; %x = call float @llvm.maxnum.f32(float %a, float %b) %y = call float @llvm.maxnum.f32(float %b, float %a) %r = fdiv nnan float %x, %y ret float %r } define <2 x float> @minnum(<2 x float> %a, <2 x float> %b) { ; CHECK-LABEL: @minnum( ; CHECK-NEXT: [[X:%.*]] = call fast <2 x float> @llvm.minnum.v2f32(<2 x float> [[A:%.*]], <2 x float> [[B:%.*]]) ; CHECK-NEXT: ret <2 x float> ; %x = call fast <2 x float> @llvm.minnum.v2f32(<2 x float> %a, <2 x float> %b) %y = call fast <2 x float> @llvm.minnum.v2f32(<2 x float> %b, <2 x float> %a) %r = fdiv nnan <2 x float> %x, %y ret <2 x float> %r } define <2 x double> @maximum(<2 x double> %a, <2 x double> %b) { ; CHECK-LABEL: @maximum( ; CHECK-NEXT: [[X:%.*]] = call <2 x double> @llvm.maximum.v2f64(<2 x double> [[A:%.*]], <2 x double> [[B:%.*]]) ; CHECK-NEXT: ret <2 x double> ; %x = call fast <2 x double> @llvm.maximum.v2f64(<2 x double> %a, <2 x double> %b) %y = call <2 x double> @llvm.maximum.v2f64(<2 x double> %b, <2 x double> %a) %r = fdiv nnan <2 x double> %x, %y ret <2 x double> %r } define double @minimum(double %a, double %b) { ; CHECK-LABEL: @minimum( ; CHECK-NEXT: [[X:%.*]] = call double @llvm.minimum.f64(double [[A:%.*]], double [[B:%.*]]) ; CHECK-NEXT: ret double 1.000000e+00 ; %x = call nsz double @llvm.minimum.f64(double %a, double %b) %y = call ninf double @llvm.minimum.f64(double %b, double %a) %r = fdiv nnan double %x, %y ret double %r } define i16 @sadd_ov(i16 %a, i16 %b) { ; CHECK-LABEL: @sadd_ov( ; CHECK-NEXT: [[X:%.*]] = call { i16, i1 } @llvm.sadd.with.overflow.i16(i16 [[A:%.*]], i16 [[B:%.*]]) ; CHECK-NEXT: [[X1:%.*]] = extractvalue { i16, i1 } [[X]], 0 ; CHECK-NEXT: ret i16 [[X1]] ; %x = call {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) %y = call {i16, i1} @llvm.sadd.with.overflow.i16(i16 %b, i16 %a) %x1 = extractvalue {i16, i1} %x, 0 %y1 = extractvalue {i16, i1} %y, 0 %o = or i16 %x1, %y1 ret i16 %o } define <5 x i65> @uadd_ov(<5 x i65> %a, <5 x i65> %b) { ; CHECK-LABEL: @uadd_ov( ; CHECK-NEXT: [[X:%.*]] = call { <5 x i65>, <5 x i1> } @llvm.uadd.with.overflow.v5i65(<5 x i65> [[A:%.*]], <5 x i65> [[B:%.*]]) ; CHECK-NEXT: [[X1:%.*]] = extractvalue { <5 x i65>, <5 x i1> } [[X]], 0 ; CHECK-NEXT: ret <5 x i65> [[X1]] ; %x = call {<5 x i65>, <5 x i1>} @llvm.uadd.with.overflow.v5i65(<5 x i65> %a, <5 x i65> %b) %y = call {<5 x i65>, <5 x i1>} @llvm.uadd.with.overflow.v5i65(<5 x i65> %b, <5 x i65> %a) %x1 = extractvalue {<5 x i65>, <5 x i1>} %x, 0 %y1 = extractvalue {<5 x i65>, <5 x i1>} %y, 0 %o = or <5 x i65> %x1, %y1 ret <5 x i65> %o } define i37 @smul_ov(i37 %a, i37 %b) { ; CHECK-LABEL: @smul_ov( ; CHECK-NEXT: [[X:%.*]] = call { i37, i1 } @llvm.smul.with.overflow.i37(i37 [[A:%.*]], i37 [[B:%.*]]) ; CHECK-NEXT: [[X1:%.*]] = extractvalue { i37, i1 } [[X]], 0 ; CHECK-NEXT: ret i37 [[X1]] ; %x = call {i37, i1} @llvm.smul.with.overflow.i37(i37 %a, i37 %b) %y = call {i37, i1} @llvm.smul.with.overflow.i37(i37 %b, i37 %a) %x1 = extractvalue {i37, i1} %x, 0 %y1 = extractvalue {i37, i1} %y, 0 %o = or i37 %x1, %y1 ret i37 %o } define <2 x i31> @umul_ov(<2 x i31> %a, <2 x i31> %b) { ; CHECK-LABEL: @umul_ov( ; CHECK-NEXT: [[X:%.*]] = call { <2 x i31>, <2 x i1> } @llvm.umul.with.overflow.v2i31(<2 x i31> [[A:%.*]], <2 x i31> [[B:%.*]]) ; CHECK-NEXT: [[X1:%.*]] = extractvalue { <2 x i31>, <2 x i1> } [[X]], 0 ; CHECK-NEXT: ret <2 x i31> [[X1]] ; %x = call {<2 x i31>, <2 x i1>} @llvm.umul.with.overflow.v2i31(<2 x i31> %a, <2 x i31> %b) %y = call {<2 x i31>, <2 x i1>} @llvm.umul.with.overflow.v2i31(<2 x i31> %b, <2 x i31> %a) %x1 = extractvalue {<2 x i31>, <2 x i1>} %x, 0 %y1 = extractvalue {<2 x i31>, <2 x i1>} %y, 0 %o = or <2 x i31> %x1, %y1 ret <2 x i31> %o } define i64 @sadd_sat(i64 %a, i64 %b) { ; CHECK-LABEL: @sadd_sat( ; CHECK-NEXT: [[X:%.*]] = call i64 @llvm.sadd.sat.i64(i64 [[A:%.*]], i64 [[B:%.*]]) ; CHECK-NEXT: ret i64 [[X]] ; %x = call i64 @llvm.sadd.sat.i64(i64 %a, i64 %b) %y = call i64 @llvm.sadd.sat.i64(i64 %b, i64 %a) %o = or i64 %x, %y ret i64 %o } define <2 x i64> @uadd_sat(<2 x i64> %a, <2 x i64> %b) { ; CHECK-LABEL: @uadd_sat( ; CHECK-NEXT: [[X:%.*]] = call <2 x i64> @llvm.uadd.sat.v2i64(<2 x i64> [[A:%.*]], <2 x i64> [[B:%.*]]) ; CHECK-NEXT: ret <2 x i64> [[X]] ; %x = call <2 x i64> @llvm.uadd.sat.v2i64(<2 x i64> %a, <2 x i64> %b) %y = call <2 x i64> @llvm.uadd.sat.v2i64(<2 x i64> %b, <2 x i64> %a) %o = or <2 x i64> %x, %y ret <2 x i64> %o } define <2 x i64> @smax(<2 x i64> %a, <2 x i64> %b) { ; CHECK-LABEL: @smax( ; CHECK-NEXT: [[X:%.*]] = call <2 x i64> @llvm.smax.v2i64(<2 x i64> [[A:%.*]], <2 x i64> [[B:%.*]]) ; CHECK-NEXT: ret <2 x i64> [[X]] ; %x = call <2 x i64> @llvm.smax.v2i64(<2 x i64> %a, <2 x i64> %b) %y = call <2 x i64> @llvm.smax.v2i64(<2 x i64> %b, <2 x i64> %a) %o = or <2 x i64> %x, %y ret <2 x i64> %o } define i4 @smin(i4 %a, i4 %b) { ; CHECK-LABEL: @smin( ; CHECK-NEXT: [[X:%.*]] = call i4 @llvm.smin.i4(i4 [[A:%.*]], i4 [[B:%.*]]) ; CHECK-NEXT: ret i4 [[X]] ; %x = call i4 @llvm.smin.i4(i4 %a, i4 %b) %y = call i4 @llvm.smin.i4(i4 %b, i4 %a) %o = or i4 %x, %y ret i4 %o } define i67 @umax(i67 %a, i67 %b) { ; CHECK-LABEL: @umax( ; CHECK-NEXT: [[X:%.*]] = call i67 @llvm.umax.i67(i67 [[A:%.*]], i67 [[B:%.*]]) ; CHECK-NEXT: ret i67 [[X]] ; %x = call i67 @llvm.umax.i67(i67 %a, i67 %b) %y = call i67 @llvm.umax.i67(i67 %b, i67 %a) %o = or i67 %x, %y ret i67 %o } define <3 x i17> @umin(<3 x i17> %a, <3 x i17> %b) { ; CHECK-LABEL: @umin( ; CHECK-NEXT: [[X:%.*]] = call <3 x i17> @llvm.umin.v3i17(<3 x i17> [[A:%.*]], <3 x i17> [[B:%.*]]) ; CHECK-NEXT: ret <3 x i17> [[X]] ; %x = call <3 x i17> @llvm.umin.v3i17(<3 x i17> %a, <3 x i17> %b) %y = call <3 x i17> @llvm.umin.v3i17(<3 x i17> %b, <3 x i17> %a) %o = or <3 x i17> %x, %y ret <3 x i17> %o } ; Negative test - mismatched intrinsics define i4 @smin_umin(i4 %a, i4 %b) { ; CHECK-LABEL: @smin_umin( ; CHECK-NEXT: [[X:%.*]] = call i4 @llvm.smin.i4(i4 [[A:%.*]], i4 [[B:%.*]]) ; CHECK-NEXT: [[Y:%.*]] = call i4 @llvm.umin.i4(i4 [[B]], i4 [[A]]) ; CHECK-NEXT: [[O:%.*]] = or i4 [[X]], [[Y]] ; CHECK-NEXT: ret i4 [[O]] ; %x = call i4 @llvm.smin.i4(i4 %a, i4 %b) %y = call i4 @llvm.umin.i4(i4 %b, i4 %a) %o = or i4 %x, %y ret i4 %o } ; TODO: handle >2 args define i16 @smul_fix(i16 %a, i16 %b) { ; CHECK-LABEL: @smul_fix( ; CHECK-NEXT: [[X:%.*]] = call i16 @llvm.smul.fix.i16(i16 [[A:%.*]], i16 [[B:%.*]], i32 3) ; CHECK-NEXT: [[Y:%.*]] = call i16 @llvm.smul.fix.i16(i16 [[B]], i16 [[A]], i32 3) ; CHECK-NEXT: [[O:%.*]] = or i16 [[X]], [[Y]] ; CHECK-NEXT: ret i16 [[O]] ; %x = call i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 3) %y = call i16 @llvm.smul.fix.i16(i16 %b, i16 %a, i32 3) %o = or i16 %x, %y ret i16 %o } ; TODO: handle >2 args define i16 @umul_fix(i16 %a, i16 %b, i32 %s) { ; CHECK-LABEL: @umul_fix( ; CHECK-NEXT: [[X:%.*]] = call i16 @llvm.umul.fix.i16(i16 [[A:%.*]], i16 [[B:%.*]], i32 1) ; CHECK-NEXT: [[Y:%.*]] = call i16 @llvm.umul.fix.i16(i16 [[B]], i16 [[A]], i32 1) ; CHECK-NEXT: [[O:%.*]] = or i16 [[X]], [[Y]] ; CHECK-NEXT: ret i16 [[O]] ; %x = call i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 1) %y = call i16 @llvm.umul.fix.i16(i16 %b, i16 %a, i32 1) %o = or i16 %x, %y ret i16 %o } ; TODO: handle >2 args define <3 x i16> @smul_fix_sat(<3 x i16> %a, <3 x i16> %b) { ; CHECK-LABEL: @smul_fix_sat( ; CHECK-NEXT: [[X:%.*]] = call <3 x i16> @llvm.smul.fix.sat.v3i16(<3 x i16> [[A:%.*]], <3 x i16> [[B:%.*]], i32 2) ; CHECK-NEXT: [[Y:%.*]] = call <3 x i16> @llvm.smul.fix.sat.v3i16(<3 x i16> [[B]], <3 x i16> [[A]], i32 2) ; CHECK-NEXT: [[O:%.*]] = or <3 x i16> [[X]], [[Y]] ; CHECK-NEXT: ret <3 x i16> [[O]] ; %x = call <3 x i16> @llvm.smul.fix.sat.v3i16(<3 x i16> %a, <3 x i16> %b, i32 2) %y = call <3 x i16> @llvm.smul.fix.sat.v3i16(<3 x i16> %b, <3 x i16> %a, i32 2) %o = or <3 x i16> %x, %y ret <3 x i16> %o } ; TODO: handle >2 args define <3 x i16> @umul_fix_sat(<3 x i16> %a, <3 x i16> %b) { ; CHECK-LABEL: @umul_fix_sat( ; CHECK-NEXT: [[X:%.*]] = call <3 x i16> @llvm.umul.fix.sat.v3i16(<3 x i16> [[A:%.*]], <3 x i16> [[B:%.*]], i32 3) ; CHECK-NEXT: [[Y:%.*]] = call <3 x i16> @llvm.umul.fix.sat.v3i16(<3 x i16> [[B]], <3 x i16> [[A]], i32 3) ; CHECK-NEXT: [[O:%.*]] = or <3 x i16> [[X]], [[Y]] ; CHECK-NEXT: ret <3 x i16> [[O]] ; %x = call <3 x i16> @llvm.umul.fix.sat.v3i16(<3 x i16> %a, <3 x i16> %b, i32 3) %y = call <3 x i16> @llvm.umul.fix.sat.v3i16(<3 x i16> %b, <3 x i16> %a, i32 3) %o = or <3 x i16> %x, %y ret <3 x i16> %o } define i16 @umul_smul_fix(i16 %a, i16 %b, i32 %s) { ; CHECK-LABEL: @umul_smul_fix( ; CHECK-NEXT: [[X:%.*]] = call i16 @llvm.umul.fix.i16(i16 [[A:%.*]], i16 [[B:%.*]], i32 1) ; CHECK-NEXT: [[Y:%.*]] = call i16 @llvm.smul.fix.i16(i16 [[B]], i16 [[A]], i32 1) ; CHECK-NEXT: [[O:%.*]] = or i16 [[X]], [[Y]] ; CHECK-NEXT: ret i16 [[O]] ; %x = call i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 1) %y = call i16 @llvm.smul.fix.i16(i16 %b, i16 %a, i32 1) %o = or i16 %x, %y ret i16 %o } define i16 @umul_fix_scale(i16 %a, i16 %b, i32 %s) { ; CHECK-LABEL: @umul_fix_scale( ; CHECK-NEXT: [[X:%.*]] = call i16 @llvm.umul.fix.i16(i16 [[A:%.*]], i16 [[B:%.*]], i32 1) ; CHECK-NEXT: [[Y:%.*]] = call i16 @llvm.umul.fix.i16(i16 [[B]], i16 [[A]], i32 2) ; CHECK-NEXT: [[O:%.*]] = or i16 [[X]], [[Y]] ; CHECK-NEXT: ret i16 [[O]] ; %x = call i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 1) %y = call i16 @llvm.umul.fix.i16(i16 %b, i16 %a, i32 2) %o = or i16 %x, %y ret i16 %o } ; TODO: handle >2 args define float @fma(float %a, float %b, float %c) { ; CHECK-LABEL: @fma( ; CHECK-NEXT: [[X:%.*]] = call float @llvm.fma.f32(float [[A:%.*]], float [[B:%.*]], float [[C:%.*]]) ; CHECK-NEXT: [[Y:%.*]] = call float @llvm.fma.f32(float [[B]], float [[A]], float [[C]]) ; CHECK-NEXT: [[R:%.*]] = fdiv nnan float [[X]], [[Y]] ; CHECK-NEXT: ret float [[R]] ; %x = call float @llvm.fma.f32(float %a, float %b, float %c) %y = call float @llvm.fma.f32(float %b, float %a, float %c) %r = fdiv nnan float %x, %y ret float %r } define float @fma_different_add_ops(float %a, float %b, float %c, float %d) { ; CHECK-LABEL: @fma_different_add_ops( ; CHECK-NEXT: [[X:%.*]] = call float @llvm.fma.f32(float [[A:%.*]], float [[B:%.*]], float [[C:%.*]]) ; CHECK-NEXT: [[Y:%.*]] = call float @llvm.fma.f32(float [[B]], float [[A]], float [[D:%.*]]) ; CHECK-NEXT: [[R:%.*]] = fdiv nnan float [[X]], [[Y]] ; CHECK-NEXT: ret float [[R]] ; %x = call float @llvm.fma.f32(float %a, float %b, float %c) %y = call float @llvm.fma.f32(float %b, float %a, float %d) %r = fdiv nnan float %x, %y ret float %r } ; TODO: handle >2 args define <2 x double> @fmuladd(<2 x double> %a, <2 x double> %b, <2 x double> %c) { ; CHECK-LABEL: @fmuladd( ; CHECK-NEXT: [[X:%.*]] = call <2 x double> @llvm.fmuladd.v2f64(<2 x double> [[A:%.*]], <2 x double> [[B:%.*]], <2 x double> [[C:%.*]]) ; CHECK-NEXT: [[Y:%.*]] = call <2 x double> @llvm.fmuladd.v2f64(<2 x double> [[B]], <2 x double> [[A]], <2 x double> [[C]]) ; CHECK-NEXT: [[R:%.*]] = fdiv nnan <2 x double> [[X]], [[Y]] ; CHECK-NEXT: ret <2 x double> [[R]] ; %x = call <2 x double> @llvm.fmuladd.v2f64(<2 x double> %a, <2 x double> %b, <2 x double> %c) %y = call <2 x double> @llvm.fmuladd.v2f64(<2 x double> %b, <2 x double> %a, <2 x double> %c) %r = fdiv nnan <2 x double> %x, %y ret <2 x double> %r } declare float @llvm.maxnum.f32(float, float) declare <2 x float> @llvm.minnum.v2f32(<2 x float>, <2 x float>) declare <2 x double> @llvm.maximum.v2f64(<2 x double>, <2 x double>) declare double @llvm.minimum.f64(double, double) declare {i16, i1} @llvm.sadd.with.overflow.i16(i16, i16) declare {<5 x i65>, <5 x i1>} @llvm.uadd.with.overflow.v5i65(<5 x i65>, <5 x i65>) declare {i37, i1} @llvm.smul.with.overflow.i37(i37, i37) declare {<2 x i31>, <2 x i1>} @llvm.umul.with.overflow.v2i31(<2 x i31>, <2 x i31>) declare i64 @llvm.sadd.sat.i64(i64, i64) declare <2 x i64> @llvm.uadd.sat.v2i64(<2 x i64>, <2 x i64>) declare <2 x i64> @llvm.smax.v2i64(<2 x i64>, <2 x i64>) declare i4 @llvm.smin.i4(i4, i4) declare i4 @llvm.umin.i4(i4, i4) declare i67 @llvm.umax.i67(i67, i67) declare <3 x i17> @llvm.umin.v3i17(<3 x i17>, <3 x i17>) declare i16 @llvm.smul.fix.i16(i16, i16, i32) declare i16 @llvm.umul.fix.i16(i16, i16, i32) declare <3 x i16> @llvm.smul.fix.sat.v3i16(<3 x i16>, <3 x i16>, i32) declare <3 x i16> @llvm.umul.fix.sat.v3i16(<3 x i16>, <3 x i16>, i32) declare float @llvm.fma.f32(float, float, float) declare <2 x double> @llvm.fmuladd.v2f64(<2 x double>, <2 x double>, <2 x double>)