; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s ; testing-case "float fold(float a) { return 1.2f * a * 2.3f; }" ; 1.2f and 2.3f is supposed to be fold. define float @fold(float %a) { ; CHECK-LABEL: @fold( ; CHECK-NEXT: [[MUL1:%.*]] = fmul fast float [[A:%.*]], 0x4006147AE0000000 ; CHECK-NEXT: ret float [[MUL1]] ; %mul = fmul fast float %a, 0x3FF3333340000000 %mul1 = fmul fast float %mul, 0x4002666660000000 ret float %mul1 } ; Same testing-case as the one used in fold() except that the operators have ; fixed FP mode. define float @notfold(float %a) { ; CHECK-LABEL: @notfold( ; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[A:%.*]], 0x3FF3333340000000 ; CHECK-NEXT: [[MUL1:%.*]] = fmul float [[MUL]], 0x4002666660000000 ; CHECK-NEXT: ret float [[MUL1]] ; %mul = fmul fast float %a, 0x3FF3333340000000 %mul1 = fmul float %mul, 0x4002666660000000 ret float %mul1 } define float @fold2(float %a) { ; CHECK-LABEL: @fold2( ; CHECK-NEXT: [[MUL1:%.*]] = fmul fast float [[A:%.*]], 0x4006147AE0000000 ; CHECK-NEXT: ret float [[MUL1]] ; %mul = fmul float %a, 0x3FF3333340000000 %mul1 = fmul fast float %mul, 0x4002666660000000 ret float %mul1 } ; C * f1 + f1 = (C+1) * f1 ; TODO: The particular case where C is 2 (so the folded result is 3.0*f1) is ; always safe, and so doesn't need any FMF. ; That is, (x + x + x) and (3*x) each have only a single rounding. define double @fold3(double %f1) { ; CHECK-LABEL: @fold3( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[F1:%.*]], 6.000000e+00 ; CHECK-NEXT: ret double [[TMP1]] ; %t1 = fmul fast double 5.000000e+00, %f1 %t2 = fadd fast double %f1, %t1 ret double %t2 } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define double @fold3_reassoc_nsz(double %f1) { ; CHECK-LABEL: @fold3_reassoc_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nsz double [[F1:%.*]], 6.000000e+00 ; CHECK-NEXT: ret double [[TMP1]] ; %t1 = fmul reassoc nsz double 5.000000e+00, %f1 %t2 = fadd reassoc nsz double %f1, %t1 ret double %t2 } ; TODO: This doesn't require 'nsz'. It should fold to f1 * 6.0. define double @fold3_reassoc(double %f1) { ; CHECK-LABEL: @fold3_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fmul reassoc double [[F1:%.*]], 5.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc double [[T1]], [[F1]] ; CHECK-NEXT: ret double [[T2]] ; %t1 = fmul reassoc double 5.000000e+00, %f1 %t2 = fadd reassoc double %f1, %t1 ret double %t2 } ; (C1 - X) + (C2 - Y) => (C1+C2) - (X + Y) define float @fold4(float %f1, float %f2) { ; CHECK-LABEL: @fold4( ; CHECK-NEXT: [[TMP1:%.*]] = fadd fast float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = fsub fast float 9.000000e+00, [[TMP1]] ; CHECK-NEXT: ret float [[TMP2]] ; %sub = fsub float 4.000000e+00, %f1 %sub1 = fsub float 5.000000e+00, %f2 %add = fadd fast float %sub, %sub1 ret float %add } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define float @fold4_reassoc_nsz(float %f1, float %f2) { ; CHECK-LABEL: @fold4_reassoc_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fadd reassoc nsz float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = fsub reassoc nsz float 9.000000e+00, [[TMP1]] ; CHECK-NEXT: ret float [[TMP2]] ; %sub = fsub float 4.000000e+00, %f1 %sub1 = fsub float 5.000000e+00, %f2 %add = fadd reassoc nsz float %sub, %sub1 ret float %add } ; TODO: This doesn't require 'nsz'. It should fold to (9.0 - (f1 + f2)). define float @fold4_reassoc(float %f1, float %f2) { ; CHECK-LABEL: @fold4_reassoc( ; CHECK-NEXT: [[SUB:%.*]] = fsub float 4.000000e+00, [[F1:%.*]] ; CHECK-NEXT: [[SUB1:%.*]] = fsub float 5.000000e+00, [[F2:%.*]] ; CHECK-NEXT: [[ADD:%.*]] = fadd reassoc float [[SUB]], [[SUB1]] ; CHECK-NEXT: ret float [[ADD]] ; %sub = fsub float 4.000000e+00, %f1 %sub1 = fsub float 5.000000e+00, %f2 %add = fadd reassoc float %sub, %sub1 ret float %add } ; (X + C1) + C2 => X + (C1 + C2) define float @fold5(float %f1) { ; CHECK-LABEL: @fold5( ; CHECK-NEXT: [[ADD1:%.*]] = fadd fast float [[F1:%.*]], 9.000000e+00 ; CHECK-NEXT: ret float [[ADD1]] ; %add = fadd float %f1, 4.000000e+00 %add1 = fadd fast float %add, 5.000000e+00 ret float %add1 } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define float @fold5_reassoc_nsz(float %f1) { ; CHECK-LABEL: @fold5_reassoc_nsz( ; CHECK-NEXT: [[ADD1:%.*]] = fadd reassoc nsz float [[F1:%.*]], 9.000000e+00 ; CHECK-NEXT: ret float [[ADD1]] ; %add = fadd float %f1, 4.000000e+00 %add1 = fadd reassoc nsz float %add, 5.000000e+00 ret float %add1 } ; TODO: This doesn't require 'nsz'. It should fold to f1 + 9.0 define float @fold5_reassoc(float %f1) { ; CHECK-LABEL: @fold5_reassoc( ; CHECK-NEXT: [[ADD:%.*]] = fadd float [[F1:%.*]], 4.000000e+00 ; CHECK-NEXT: [[ADD1:%.*]] = fadd reassoc float [[ADD]], 5.000000e+00 ; CHECK-NEXT: ret float [[ADD1]] ; %add = fadd float %f1, 4.000000e+00 %add1 = fadd reassoc float %add, 5.000000e+00 ret float %add1 } ; (X + X) + X + X => 4.0 * X define float @fold6(float %f1) { ; CHECK-LABEL: @fold6( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[F1:%.*]], 4.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fadd fast float %f1, %f1 %t2 = fadd fast float %f1, %t1 %t3 = fadd fast float %t2, %f1 ret float %t3 } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define float @fold6_reassoc_nsz(float %f1) { ; CHECK-LABEL: @fold6_reassoc_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nsz float [[F1:%.*]], 4.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fadd reassoc nsz float %f1, %f1 %t2 = fadd reassoc nsz float %f1, %t1 %t3 = fadd reassoc nsz float %t2, %f1 ret float %t3 } ; TODO: This doesn't require 'nsz'. It should fold to f1 * 4.0. define float @fold6_reassoc(float %f1) { ; CHECK-LABEL: @fold6_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fadd reassoc float [[F1:%.*]], [[F1]] ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc float [[T1]], [[F1]] ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[T2]], [[F1]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fadd reassoc float %f1, %f1 %t2 = fadd reassoc float %f1, %t1 %t3 = fadd reassoc float %t2, %f1 ret float %t3 } ; C1 * X + (X + X) = (C1 + 2) * X define float @fold7(float %f1) { ; CHECK-LABEL: @fold7( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[F1:%.*]], 7.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fmul fast float %f1, 5.000000e+00 %t2 = fadd fast float %f1, %f1 %t3 = fadd fast float %t1, %t2 ret float %t3 } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define float @fold7_reassoc_nsz(float %f1) { ; CHECK-LABEL: @fold7_reassoc_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nsz float [[F1:%.*]], 7.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fmul reassoc nsz float %f1, 5.000000e+00 %t2 = fadd reassoc nsz float %f1, %f1 %t3 = fadd reassoc nsz float %t1, %t2 ret float %t3 } ; TODO: This doesn't require 'nsz'. It should fold to f1 * 7.0. define float @fold7_reassoc(float %f1) { ; CHECK-LABEL: @fold7_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fmul reassoc float [[F1:%.*]], 5.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc float [[F1]], [[F1]] ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[T1]], [[T2]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul reassoc float %f1, 5.000000e+00 %t2 = fadd reassoc float %f1, %f1 %t3 = fadd reassoc float %t1, %t2 ret float %t3 } ; (X + X) + (X + X) + X => 5.0 * X define float @fold8(float %f1) { ; CHECK-LABEL: @fold8( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[F1:%.*]], 5.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fadd fast float %f1, %f1 %t2 = fadd fast float %f1, %f1 %t3 = fadd fast float %t1, %t2 %t4 = fadd fast float %t3, %f1 ret float %t4 } ; Check again with 'reassoc' and 'nsz' ('nsz' not technically required). define float @fold8_reassoc_nsz(float %f1) { ; CHECK-LABEL: @fold8_reassoc_nsz( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nsz float [[F1:%.*]], 5.000000e+00 ; CHECK-NEXT: ret float [[TMP1]] ; %t1 = fadd reassoc nsz float %f1, %f1 %t2 = fadd reassoc nsz float %f1, %f1 %t3 = fadd reassoc nsz float %t1, %t2 %t4 = fadd reassoc nsz float %t3, %f1 ret float %t4 } ; TODO: This doesn't require 'nsz'. It should fold to f1 * 5.0. define float @fold8_reassoc(float %f1) { ; CHECK-LABEL: @fold8_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fadd reassoc float [[F1:%.*]], [[F1]] ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc float [[F1]], [[F1]] ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[T1]], [[T2]] ; CHECK-NEXT: [[T4:%.*]] = fadd reassoc float [[T3]], [[F1]] ; CHECK-NEXT: ret float [[T4]] ; %t1 = fadd reassoc float %f1, %f1 %t2 = fadd reassoc float %f1, %f1 %t3 = fadd reassoc float %t1, %t2 %t4 = fadd reassoc float %t3, %f1 ret float %t4 } ; Y - (X + Y) --> -X define float @fsub_fadd_common_op_fneg(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_fneg( ; CHECK-NEXT: [[R:%.*]] = fneg fast float [[X:%.*]] ; CHECK-NEXT: ret float [[R]] ; %a = fadd float %x, %y %r = fsub fast float %y, %a ret float %r } ; Y - (X + Y) --> -X ; Check again with 'reassoc' and 'nsz'. ; nsz is required because: 0.0 - (0.0 + 0.0) -> 0.0, not -0.0 define float @fsub_fadd_common_op_fneg_reassoc_nsz(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_fneg_reassoc_nsz( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz float [[X:%.*]] ; CHECK-NEXT: ret float [[R]] ; %a = fadd float %x, %y %r = fsub reassoc nsz float %y, %a ret float %r } ; Y - (X + Y) --> -X define <2 x float> @fsub_fadd_common_op_fneg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fsub_fadd_common_op_fneg_vec( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz <2 x float> [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[R]] ; %a = fadd <2 x float> %x, %y %r = fsub nsz reassoc <2 x float> %y, %a ret <2 x float> %r } ; Y - (Y + X) --> -X ; Commute operands of the 'add'. define float @fsub_fadd_common_op_fneg_commute(float %x, float %y) { ; CHECK-LABEL: @fsub_fadd_common_op_fneg_commute( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz float [[X:%.*]] ; CHECK-NEXT: ret float [[R]] ; %a = fadd float %y, %x %r = fsub reassoc nsz float %y, %a ret float %r } ; Y - (Y + X) --> -X define <2 x float> @fsub_fadd_common_op_fneg_commute_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fsub_fadd_common_op_fneg_commute_vec( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz <2 x float> [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[R]] ; %a = fadd <2 x float> %y, %x %r = fsub reassoc nsz <2 x float> %y, %a ret <2 x float> %r } ; (Y - X) - Y --> -X ; nsz is required because: (0.0 - 0.0) - 0.0 -> 0.0, not -0.0 define float @fsub_fsub_common_op_fneg(float %x, float %y) { ; CHECK-LABEL: @fsub_fsub_common_op_fneg( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz float [[X:%.*]] ; CHECK-NEXT: ret float [[R]] ; %s = fsub float %y, %x %r = fsub reassoc nsz float %s, %y ret float %r } ; (Y - X) - Y --> -X define <2 x float> @fsub_fsub_common_op_fneg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fsub_fsub_common_op_fneg_vec( ; CHECK-NEXT: [[R:%.*]] = fneg reassoc nsz <2 x float> [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[R]] ; %s = fsub <2 x float> %y, %x %r = fsub reassoc nsz <2 x float> %s, %y ret <2 x float> %r } ; TODO: This doesn't require 'nsz'. It should fold to 0 - f2 define float @fold9_reassoc(float %f1, float %f2) { ; CHECK-LABEL: @fold9_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fadd float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: [[T3:%.*]] = fsub reassoc float [[F1]], [[T1]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fadd float %f1, %f2 %t3 = fsub reassoc float %f1, %t1 ret float %t3 } ; Let C3 = C1 + C2. (f1 + C1) + (f2 + C2) => (f1 + f2) + C3 instead of ; "(f1 + C3) + f2" or "(f2 + C3) + f1". Placing constant-addend at the ; top of resulting simplified expression tree may potentially reveal some ; optimization opportunities in the super-expression trees. ; define float @fold10(float %f1, float %f2) { ; CHECK-LABEL: @fold10( ; CHECK-NEXT: [[T2:%.*]] = fadd fast float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: [[T3:%.*]] = fadd fast float [[T2]], -1.000000e+00 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fadd fast float 2.000000e+00, %f1 %t2 = fsub fast float %f2, 3.000000e+00 %t3 = fadd fast float %t1, %t2 ret float %t3 } ; Check again with 'reassoc' and 'nsz'. ; TODO: We may be able to remove the 'nsz' requirement. define float @fold10_reassoc_nsz(float %f1, float %f2) { ; CHECK-LABEL: @fold10_reassoc_nsz( ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc nsz float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc nsz float [[T2]], -1.000000e+00 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fadd reassoc nsz float 2.000000e+00, %f1 %t2 = fsub reassoc nsz float %f2, 3.000000e+00 %t3 = fadd reassoc nsz float %t1, %t2 ret float %t3 } ; Observe that the fold is not done with only reassoc (the instructions are ; canonicalized, but not folded). ; TODO: As noted above, 'nsz' may not be required for this to be fully folded. define float @fold10_reassoc(float %f1, float %f2) { ; CHECK-LABEL: @fold10_reassoc( ; CHECK-NEXT: [[T1:%.*]] = fadd reassoc float [[F1:%.*]], 2.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fadd reassoc float [[F2:%.*]], -3.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[T1]], [[T2]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fadd reassoc float 2.000000e+00, %f1 %t2 = fsub reassoc float %f2, 3.000000e+00 %t3 = fadd reassoc float %t1, %t2 ret float %t3 } ; This used to crash/miscompile. define float @fail1(float %f1, float %f2) { ; CHECK-LABEL: @fail1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[F1:%.*]], 3.000000e+00 ; CHECK-NEXT: [[TMP2:%.*]] = fadd fast float [[TMP1]], -3.000000e+00 ; CHECK-NEXT: ret float [[TMP2]] ; %conv3 = fadd fast float %f1, -1.000000e+00 %add = fadd fast float %conv3, %conv3 %add2 = fadd fast float %add, %conv3 ret float %add2 } define double @fail2(double %f1, double %f2) { ; CHECK-LABEL: @fail2( ; CHECK-NEXT: [[TMP1:%.*]] = fadd fast double [[F2:%.*]], [[F2]] ; CHECK-NEXT: [[TMP2:%.*]] = fneg fast double [[TMP1]] ; CHECK-NEXT: ret double [[TMP2]] ; %t1 = fsub fast double %f1, %f2 %t2 = fadd fast double %f1, %f2 %t3 = fsub fast double %t1, %t2 ret double %t3 } ; (X * C) - X --> X * (C - 1.0) define float @fsub_op0_fmul_const(float %x) { ; CHECK-LABEL: @fsub_op0_fmul_const( ; CHECK-NEXT: [[SUB:%.*]] = fmul reassoc nsz float [[X:%.*]], 6.000000e+00 ; CHECK-NEXT: ret float [[SUB]] ; %mul = fmul float %x, 7.0 %sub = fsub reassoc nsz float %mul, %x ret float %sub } ; (X * C) - X --> X * (C - 1.0) define <2 x float> @fsub_op0_fmul_const_vec(<2 x float> %x) { ; CHECK-LABEL: @fsub_op0_fmul_const_vec( ; CHECK-NEXT: [[SUB:%.*]] = fmul reassoc nsz <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[SUB]] ; %mul = fmul <2 x float> %x, %sub = fsub reassoc nsz <2 x float> %mul, %x ret <2 x float> %sub } ; X - (X * C) --> X * (1.0 - C) define float @fsub_op1_fmul_const(float %x) { ; CHECK-LABEL: @fsub_op1_fmul_const( ; CHECK-NEXT: [[SUB:%.*]] = fmul reassoc nsz float [[X:%.*]], -6.000000e+00 ; CHECK-NEXT: ret float [[SUB]] ; %mul = fmul float %x, 7.0 %sub = fsub reassoc nsz float %x, %mul ret float %sub } ; X - (X * C) --> X * (1.0 - C) define <2 x float> @fsub_op1_fmul_const_vec(<2 x float> %x) { ; CHECK-LABEL: @fsub_op1_fmul_const_vec( ; CHECK-NEXT: [[SUB:%.*]] = fmul reassoc nsz <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[SUB]] ; %mul = fmul <2 x float> %x, %sub = fsub reassoc nsz <2 x float> %x, %mul ret <2 x float> %sub } ; Verify the fold is not done with only 'reassoc' ('nsz' is required). define float @fsub_op0_fmul_const_wrong_FMF(float %x) { ; CHECK-LABEL: @fsub_op0_fmul_const_wrong_FMF( ; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc float [[X:%.*]], 7.000000e+00 ; CHECK-NEXT: [[SUB:%.*]] = fsub reassoc float [[MUL]], [[X]] ; CHECK-NEXT: ret float [[SUB]] ; %mul = fmul reassoc float %x, 7.0 %sub = fsub reassoc float %mul, %x ret float %sub } ; (select X+Y, X-Y) => X + (select Y, -Y) ; This is always safe. No FMF required. define float @fold16(float %x, float %y) { ; CHECK-LABEL: @fold16( ; CHECK-NEXT: [[CMP:%.*]] = fcmp ogt float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = fneg float [[Y]] ; CHECK-NEXT: [[R_P:%.*]] = select i1 [[CMP]], float [[Y]], float [[TMP1]] ; CHECK-NEXT: [[R:%.*]] = fadd float [[R_P]], [[X]] ; CHECK-NEXT: ret float [[R]] ; %cmp = fcmp ogt float %x, %y %plus = fadd float %x, %y %minus = fsub float %x, %y %r = select i1 %cmp, float %plus, float %minus ret float %r } ; ========================================================================= ; ; Testing-cases about negation ; ; ========================================================================= define float @fneg1(float %f1, float %f2) { ; CHECK-LABEL: @fneg1( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[F1:%.*]], [[F2:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub float -0.000000e+00, %f1 %sub1 = fsub nsz float 0.000000e+00, %f2 %mul = fmul float %sub, %sub1 ret float %mul } define float @fneg2(float %x) { ; CHECK-LABEL: @fneg2( ; CHECK-NEXT: [[SUB:%.*]] = fneg nsz float [[X:%.*]] ; CHECK-NEXT: ret float [[SUB]] ; %sub = fsub nsz float 0.0, %x ret float %sub } define <2 x float> @fneg2_vec_undef(<2 x float> %x) { ; CHECK-LABEL: @fneg2_vec_undef( ; CHECK-NEXT: [[SUB:%.*]] = fneg nsz <2 x float> [[X:%.*]] ; CHECK-NEXT: ret <2 x float> [[SUB]] ; %sub = fsub nsz <2 x float> , %x ret <2 x float> %sub } ; ========================================================================= ; ; Testing-cases about div ; ; ========================================================================= ; X/C1 / C2 => X * (1/(C2*C1)) define float @fdiv1(float %x) { ; CHECK-LABEL: @fdiv1( ; CHECK-NEXT: [[DIV1:%.*]] = fmul fast float [[X:%.*]], 0x3FD7303B60000000 ; CHECK-NEXT: ret float [[DIV1]] ; %div = fdiv float %x, 0x3FF3333340000000 %div1 = fdiv fast float %div, 0x4002666660000000 ret float %div1 ; 0x3FF3333340000000 = 1.2f ; 0x4002666660000000 = 2.3f ; 0x3FD7303B60000000 = 0.36231884057971014492 } ; X*C1 / C2 => X * (C1/C2) define float @fdiv2(float %x) { ; CHECK-LABEL: @fdiv2( ; CHECK-NEXT: [[DIV1:%.*]] = fmul fast float [[X:%.*]], 0x3FE0B21660000000 ; CHECK-NEXT: ret float [[DIV1]] ; %mul = fmul float %x, 0x3FF3333340000000 %div1 = fdiv fast float %mul, 0x4002666660000000 ret float %div1 ; 0x3FF3333340000000 = 1.2f ; 0x4002666660000000 = 2.3f ; 0x3FE0B21660000000 = 0.52173918485641479492 } define <2 x float> @fdiv2_vec(<2 x float> %x) { ; CHECK-LABEL: @fdiv2_vec( ; CHECK-NEXT: [[DIV1:%.*]] = fmul fast <2 x float> [[X:%.*]], ; CHECK-NEXT: ret <2 x float> [[DIV1]] ; %mul = fmul <2 x float> %x, %div1 = fdiv fast <2 x float> %mul, ret <2 x float> %div1 } ; "X/C1 / C2 => X * (1/(C2*C1))" is disabled (for now) is C2/C1 is a denormal ; define float @fdiv3(float %x) { ; CHECK-LABEL: @fdiv3( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 0x3FDBD37A80000000 ; CHECK-NEXT: [[DIV1:%.*]] = fdiv fast float [[TMP1]], 0x47EFFFFFE0000000 ; CHECK-NEXT: ret float [[DIV1]] ; %div = fdiv float %x, 0x47EFFFFFE0000000 %div1 = fdiv fast float %div, 0x4002666660000000 ret float %div1 } ; "X*C1 / C2 => X * (C1/C2)" is disabled if C1/C2 is a denormal define float @fdiv4(float %x) { ; CHECK-LABEL: @fdiv4( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], 0x47EFFFFFE0000000 ; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[MUL]], 0x3FC99999A0000000 ; CHECK-NEXT: ret float [[DIV]] ; %mul = fmul float %x, 0x47EFFFFFE0000000 %div = fdiv float %mul, 0x3FC99999A0000000 ret float %div } ; ========================================================================= ; ; Test-cases for square root ; ; ========================================================================= ; A squared factor fed into a square root intrinsic should be hoisted out ; as a fabs() value. declare double @llvm.sqrt.f64(double) define double @sqrt_intrinsic_arg_squared(double %x) { ; CHECK-LABEL: @sqrt_intrinsic_arg_squared( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[FABS]] ; %mul = fmul fast double %x, %x %sqrt = call fast double @llvm.sqrt.f64(double %mul) ret double %sqrt } ; Check all 6 combinations of a 3-way multiplication tree where ; one factor is repeated. define double @sqrt_intrinsic_three_args1(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args1( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %y, %x %mul2 = fmul fast double %mul, %x %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_three_args2(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args2( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %x, %y %mul2 = fmul fast double %mul, %x %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_three_args3(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args3( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %y %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_three_args4(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args4( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %y, %x %mul2 = fmul fast double %x, %mul %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_three_args5(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args5( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %x, %y %mul2 = fmul fast double %x, %mul %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_three_args6(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_three_args6( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[FABS]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %x, %x %mul2 = fmul fast double %y, %mul %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } ; If any operation is not 'fast', we can't simplify. define double @sqrt_intrinsic_not_so_fast(double %x, double %y) { ; CHECK-LABEL: @sqrt_intrinsic_not_so_fast( ; CHECK-NEXT: [[MUL:%.*]] = fmul double [[X:%.*]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul fast double [[MUL]], [[Y:%.*]] ; CHECK-NEXT: [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[MUL2]]) ; CHECK-NEXT: ret double [[SQRT]] ; %mul = fmul double %x, %x %mul2 = fmul fast double %mul, %y %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_arg_4th(double %x) { ; CHECK-LABEL: @sqrt_intrinsic_arg_4th( ; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[X:%.*]], [[X]] ; CHECK-NEXT: ret double [[MUL]] ; %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %mul %sqrt = call fast double @llvm.sqrt.f64(double %mul2) ret double %sqrt } define double @sqrt_intrinsic_arg_5th(double %x) { ; CHECK-LABEL: @sqrt_intrinsic_arg_5th( ; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[X:%.*]], [[X]] ; CHECK-NEXT: [[SQRT1:%.*]] = call fast double @llvm.sqrt.f64(double [[X]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[MUL]], [[SQRT1]] ; CHECK-NEXT: ret double [[TMP1]] ; %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %x %mul3 = fmul fast double %mul2, %mul %sqrt = call fast double @llvm.sqrt.f64(double %mul3) ret double %sqrt } ; Check that square root calls have the same behavior. declare float @sqrtf(float) declare double @sqrt(double) declare fp128 @sqrtl(fp128) define float @sqrt_call_squared_f32(float %x) { ; CHECK-LABEL: @sqrt_call_squared_f32( ; CHECK-NEXT: [[FABS:%.*]] = call fast float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[FABS]] ; %mul = fmul fast float %x, %x %sqrt = call fast float @sqrtf(float %mul) ret float %sqrt } define double @sqrt_call_squared_f64(double %x) { ; CHECK-LABEL: @sqrt_call_squared_f64( ; CHECK-NEXT: [[FABS:%.*]] = call fast double @llvm.fabs.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[FABS]] ; %mul = fmul fast double %x, %x %sqrt = call fast double @sqrt(double %mul) ret double %sqrt } define fp128 @sqrt_call_squared_f128(fp128 %x) { ; CHECK-LABEL: @sqrt_call_squared_f128( ; CHECK-NEXT: [[FABS:%.*]] = call fast fp128 @llvm.fabs.f128(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[FABS]] ; %mul = fmul fast fp128 %x, %x %sqrt = call fast fp128 @sqrtl(fp128 %mul) ret fp128 %sqrt } ; ========================================================================= ; ; Test-cases for fmin / fmax ; ; ========================================================================= declare double @fmax(double, double) declare double @fmin(double, double) declare float @fmaxf(float, float) declare float @fminf(float, float) declare fp128 @fmaxl(fp128, fp128) declare fp128 @fminl(fp128, fp128) ; 'nsz' is implied by the definition of fmax or fmin itself. ; Shrink and replace the call. define float @max1(float %a, float %b) { ; CHECK-LABEL: @max1( ; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.maxnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = fpext float %a to double %d = fpext float %b to double %e = call fast double @fmax(double %c, double %d) %f = fptrunc double %e to float ret float %f } define float @fmax_no_fmf(float %a, float %b) { ; CHECK-LABEL: @fmax_no_fmf( ; CHECK-NEXT: [[TMP1:%.*]] = call nsz float @llvm.maxnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = call float @fmaxf(float %a, float %b) ret float %c } define float @max2(float %a, float %b) { ; CHECK-LABEL: @max2( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz float @llvm.maxnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = call nnan float @fmaxf(float %a, float %b) ret float %c } define double @max3(double %a, double %b) { ; CHECK-LABEL: @max3( ; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.maxnum.f64(double [[A:%.*]], double [[B:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %c = call fast double @fmax(double %a, double %b) ret double %c } define fp128 @max4(fp128 %a, fp128 %b) { ; CHECK-LABEL: @max4( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz fp128 @llvm.maxnum.f128(fp128 [[A:%.*]], fp128 [[B:%.*]]) ; CHECK-NEXT: ret fp128 [[TMP1]] ; %c = call nnan fp128 @fmaxl(fp128 %a, fp128 %b) ret fp128 %c } ; Shrink and remove the call. define float @min1(float %a, float %b) { ; CHECK-LABEL: @min1( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz float @llvm.minnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = fpext float %a to double %d = fpext float %b to double %e = call nnan double @fmin(double %c, double %d) %f = fptrunc double %e to float ret float %f } define float @fmin_no_fmf(float %a, float %b) { ; CHECK-LABEL: @fmin_no_fmf( ; CHECK-NEXT: [[TMP1:%.*]] = call nsz float @llvm.minnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = call float @fminf(float %a, float %b) ret float %c } define float @min2(float %a, float %b) { ; CHECK-LABEL: @min2( ; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.minnum.f32(float [[A:%.*]], float [[B:%.*]]) ; CHECK-NEXT: ret float [[TMP1]] ; %c = call fast float @fminf(float %a, float %b) ret float %c } define double @min3(double %a, double %b) { ; CHECK-LABEL: @min3( ; CHECK-NEXT: [[TMP1:%.*]] = call nnan nsz double @llvm.minnum.f64(double [[A:%.*]], double [[B:%.*]]) ; CHECK-NEXT: ret double [[TMP1]] ; %c = call nnan double @fmin(double %a, double %b) ret double %c } define fp128 @min4(fp128 %a, fp128 %b) { ; CHECK-LABEL: @min4( ; CHECK-NEXT: [[TMP1:%.*]] = call fast fp128 @llvm.minnum.f128(fp128 [[A:%.*]], fp128 [[B:%.*]]) ; CHECK-NEXT: ret fp128 [[TMP1]] ; %c = call fast fp128 @fminl(fp128 %a, fp128 %b) ret fp128 %c } ; ((which ? 2.0 : a) + 1.0) => (which ? 3.0 : (a + 1.0)) ; This is always safe. No FMF required. define float @test55(i1 %which, float %a) { ; CHECK-LABEL: @test55( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: [[PHITMP:%.*]] = fadd float [[A:%.*]], 1.000000e+00 ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi float [ 3.000000e+00, [[ENTRY:%.*]] ], [ [[PHITMP]], [[DELAY]] ] ; CHECK-NEXT: ret float [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi float [ 2.0, %entry ], [ %a, %delay ] %value = fadd float %A, 1.0 ret float %value }