; RUN: opt < %s -ipsccp -S | FileCheck %s ; Constant range for %a is [1, 48) and for %b is [301, 1000) ; CHECK-LABEL: f1 ; CHECK: ret i32 undef define internal i32 @f1(i32 %a, i32 %b) { entry: %cmp.a = icmp sgt i32 %a, 300 %cmp.b = icmp sgt i32 %b, 300 %cmp.a2 = icmp ugt i32 %a, 300 %cmp.b2 = icmp ugt i32 %b, 300 %a.1 = select i1 %cmp.a, i32 1, i32 2 %b.1 = select i1 %cmp.b, i32 1, i32 2 %a.2 = select i1 %cmp.a2, i32 1, i32 2 %b.2 = select i1 %cmp.b2, i32 1, i32 2 %res1 = add i32 %a.1, %b.1 %res2 = add i32 %a.2, %b.2 %res3 = add i32 %res1, %res2 ret i32 %res3 } ; Constant range for %x is [47, 302) ; CHECK-LABEL: f2 ; CHECK: %cmp = icmp sgt i32 %x, 300 ; CHECK: %res1 = select i1 %cmp, i32 1, i32 2 ; CHECK-NEXT: %res4 = select i1 %cmp4, i32 3, i32 4 ; CHECK-NEXT: %res6 = add i32 %res1, 3 ; CHECK-NEXT: %res7 = add i32 5, %res4 ; CHECK-NEXT: %res = add i32 %res6, 5 ; CHECK-NEXT: ret i32 %res define internal i32 @f2(i32 %x) { entry: %cmp = icmp sgt i32 %x, 300 %cmp2 = icmp ne i32 %x, 10 %cmp3 = icmp sge i32 %x, 47 %cmp4 = icmp ugt i32 %x, 300 %cmp5 = icmp uge i32 %x, 47 %res1 = select i1 %cmp, i32 1, i32 2 %res2 = select i1 %cmp2, i32 3, i32 4 %res3 = select i1 %cmp3, i32 5, i32 6 %res4 = select i1 %cmp4, i32 3, i32 4 %res5 = select i1 %cmp5, i32 5, i32 6 %res6 = add i32 %res1, %res2 %res7 = add i32 %res3, %res4 %res = add i32 %res6, %res5 ret i32 %res } define i32 @caller1() { entry: %call1 = tail call i32 @f1(i32 1, i32 301) %call2 = tail call i32 @f1(i32 47, i32 999) %call3 = tail call i32 @f2(i32 47) %call4 = tail call i32 @f2(i32 301) %res.1 = add nsw i32 12, %call3 %res.2 = add nsw i32 %res.1, %call4 ret i32 %res.2 } ; CHECK-LABEL: f3 ; CHECK-LABEL: entry: ; CHECK: ret i32 undef define internal i32 @f3(i32 %x) { entry: %cmp = icmp sgt i32 %x, 300 %res = select i1 %cmp, i32 1, i32 2 ret i32 %res } ; The phi node could be converted in a ConstantRange. define i32 @caller2(i1 %cmp) { entry: br i1 %cmp, label %if.true, label %end if.true: br label %end end: %res = phi i32 [ 0, %entry], [ 1, %if.true ] %call1 = tail call i32 @f3(i32 %res) ret i32 2 } ; CHECK-LABEL: f4 ; CHECK: ret i32 undef define internal i32 @f4(i32 %x) { entry: %cmp = icmp sgt i32 %x, 300 %res = select i1 %cmp, i32 1, i32 2 ret i32 %res } ; ICmp introduces bounds on ConstantRanges. define i32 @caller3(i32 %x) { ; CHECK-LABEL: define i32 @caller3(i32 %x) ; CHECK-LABEL: end: ; CHECK-NEXT: %res = phi i32 [ 0, %entry ], [ 1, %if.true ] ; CHECK-NEXT: ret i32 %res ; entry: %cmp = icmp sgt i32 %x, 300 br i1 %cmp, label %if.true, label %end if.true: %x.1 = tail call i32 @f4(i32 %x) br label %end end: %res = phi i32 [ 0, %entry], [ %x.1, %if.true ] ret i32 %res } ; Check to make sure we do not attempt to access lattice values in unreachable ; blocks. define i32 @test_unreachable() { entry: call i1 @test_unreachable_callee(i32 1) call i1 @test_unreachable_callee(i32 2) ret i32 1 } define internal i1 @test_unreachable_callee(i32 %a) { entry: ret i1 true unreachablebb: %cmp = icmp eq i32 undef, %a unreachable } ; Check that we do not attempt to get range info for non-integer types and ; crash. define double @test_struct({ double, double } %test) { %v = extractvalue { double, double } %test, 0 %r = fmul double %v, %v ret double %r } ; Constant range for %x is [47, 302) ; CHECK-LABEL: @f5 ; CHECK-NEXT: entry: ; CHECK-NEXT: %cmp = icmp sgt i32 %x, undef ; CHECK-NEXT: %cmp2 = icmp ne i32 undef, %x ; CHECK-NEXT: %res1 = select i1 %cmp, i32 1, i32 2 ; CHECK-NEXT: %res2 = select i1 %cmp2, i32 3, i32 4 ; CHECK-NEXT: %res = add i32 %res1, %res2 ; CHECK-NEXT: ret i32 %res define internal i32 @f5(i32 %x) { entry: %cmp = icmp sgt i32 %x, undef %cmp2 = icmp ne i32 undef, %x %res1 = select i1 %cmp, i32 1, i32 2 %res2 = select i1 %cmp2, i32 3, i32 4 %res = add i32 %res1, %res2 ret i32 %res } define i32 @caller4() { entry: %call1 = tail call i32 @f5(i32 47) %call2 = tail call i32 @f5(i32 301) %res = add nsw i32 %call1, %call2 ret i32 %res } ; Make sure we do re-evaluate the function after ParamState changes. ; CHECK-LABEL: @recursive_f ; CHECK-LABEL: entry: ; CHECK: %cmp = icmp eq i32 %i, 0 ; CHECK-NEXT: br i1 %cmp, label %if.then, label %if.else define internal i32 @recursive_f(i32 %i) { entry: %cmp = icmp eq i32 %i, 0 br i1 %cmp, label %if.then, label %if.else if.then: ; preds = %entry br label %return if.else: ; preds = %entry %sub = sub nsw i32 %i, 1 %call = call i32 @recursive_f(i32 %sub) %add = add i32 %i, %call br label %return return: ; preds = %if.else, %if.then %retval.0 = phi i32 [ 0, %if.then ], [ %add, %if.else ] ret i32 %retval.0 } ; CHECK-LABEL: @caller5 ; CHECK: %call = call i32 @recursive_f(i32 42) ; CHECK-NEXT: ret i32 %call define i32 @caller5() { entry: %call = call i32 @recursive_f(i32 42) ret i32 %call } define internal i32 @callee6.1(i32 %i) { ; CHECK-LABEL: define internal i32 @callee6.1( ; CHECK-NEXT: %res = call i32 @callee6.2(i32 %i) ; CHECK-NEXT: ret i32 undef ; %res = call i32 @callee6.2(i32 %i) ret i32 %res } define internal i32 @callee6.2(i32 %i) { ; CHECK-LABEL: define internal i32 @callee6.2(i32 %i) { ; CHECK-NEXT: br label %if.then ; CHECK-LABEL: if.then: ; CHECK-NEXT: ret i32 undef ; %cmp = icmp ne i32 %i, 0 br i1 %cmp, label %if.then, label %if.else if.then: ; preds = %entry ret i32 1 if.else: ; preds = %entry ret i32 2 } define i32 @caller6() { ; CHECK-LABEL: define i32 @caller6() { ; CHECK-NEXT: %call.1 = call i32 @callee6.1(i32 30) ; CHECK-NEXT: %call.2 = call i32 @callee6.1(i32 43) ; CHECK-NEXT: ret i32 2 ; %call.1 = call i32 @callee6.1(i32 30) %call.2 = call i32 @callee6.1(i32 43) %res = add i32 %call.1, %call.2 ret i32 %res }