//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineInstr class, which is the // basic representation for all target dependent machine instructions used by // the back end. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/PointerSumType.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/InlineAsm.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/TrailingObjects.h" #include #include #include #include namespace llvm { class AAResults; template class ArrayRef; class DIExpression; class DILocalVariable; class MachineBasicBlock; class MachineFunction; class MachineRegisterInfo; class ModuleSlotTracker; class raw_ostream; template class SmallVectorImpl; class SmallBitVector; class StringRef; class TargetInstrInfo; class TargetRegisterClass; class TargetRegisterInfo; //===----------------------------------------------------------------------===// /// Representation of each machine instruction. /// /// This class isn't a POD type, but it must have a trivial destructor. When a /// MachineFunction is deleted, all the contained MachineInstrs are deallocated /// without having their destructor called. /// class MachineInstr : public ilist_node_with_parent> { public: using mmo_iterator = ArrayRef::iterator; /// Flags to specify different kinds of comments to output in /// assembly code. These flags carry semantic information not /// otherwise easily derivable from the IR text. /// enum CommentFlag { ReloadReuse = 0x1, // higher bits are reserved for target dep comments. NoSchedComment = 0x2, TAsmComments = 0x4 // Target Asm comments should start from this value. }; enum MIFlag { NoFlags = 0, FrameSetup = 1 << 0, // Instruction is used as a part of // function frame setup code. FrameDestroy = 1 << 1, // Instruction is used as a part of // function frame destruction code. BundledPred = 1 << 2, // Instruction has bundled predecessors. BundledSucc = 1 << 3, // Instruction has bundled successors. FmNoNans = 1 << 4, // Instruction does not support Fast // math nan values. FmNoInfs = 1 << 5, // Instruction does not support Fast // math infinity values. FmNsz = 1 << 6, // Instruction is not required to retain // signed zero values. FmArcp = 1 << 7, // Instruction supports Fast math // reciprocal approximations. FmContract = 1 << 8, // Instruction supports Fast math // contraction operations like fma. FmAfn = 1 << 9, // Instruction may map to Fast math // instrinsic approximation. FmReassoc = 1 << 10, // Instruction supports Fast math // reassociation of operand order. NoUWrap = 1 << 11, // Instruction supports binary operator // no unsigned wrap. NoSWrap = 1 << 12, // Instruction supports binary operator // no signed wrap. IsExact = 1 << 13, // Instruction supports division is // known to be exact. NoFPExcept = 1 << 14, // Instruction does not raise // floatint-point exceptions. NoMerge = 1 << 15, // Passes that drop source location info // (e.g. branch folding) should skip // this instruction. }; private: const MCInstrDesc *MCID; // Instruction descriptor. MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. // Operands are allocated by an ArrayRecycler. MachineOperand *Operands = nullptr; // Pointer to the first operand. unsigned NumOperands = 0; // Number of operands on instruction. uint16_t Flags = 0; // Various bits of additional // information about machine // instruction. uint8_t AsmPrinterFlags = 0; // Various bits of information used by // the AsmPrinter to emit helpful // comments. This is *not* semantic // information. Do not use this for // anything other than to convey comment // information to AsmPrinter. // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags // to properly pack. using OperandCapacity = ArrayRecycler::Capacity; OperandCapacity CapOperands; // Capacity of the Operands array. /// Internal implementation detail class that provides out-of-line storage for /// extra info used by the machine instruction when this info cannot be stored /// in-line within the instruction itself. /// /// This has to be defined eagerly due to the implementation constraints of /// `PointerSumType` where it is used. class ExtraInfo final : TrailingObjects { public: static ExtraInfo *create(BumpPtrAllocator &Allocator, ArrayRef MMOs, MCSymbol *PreInstrSymbol = nullptr, MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr) { bool HasPreInstrSymbol = PreInstrSymbol != nullptr; bool HasPostInstrSymbol = PostInstrSymbol != nullptr; bool HasHeapAllocMarker = HeapAllocMarker != nullptr; auto *Result = new (Allocator.Allocate( totalSizeToAlloc( MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, HasHeapAllocMarker), alignof(ExtraInfo))) ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, HasHeapAllocMarker); // Copy the actual data into the trailing objects. std::copy(MMOs.begin(), MMOs.end(), Result->getTrailingObjects()); if (HasPreInstrSymbol) Result->getTrailingObjects()[0] = PreInstrSymbol; if (HasPostInstrSymbol) Result->getTrailingObjects()[HasPreInstrSymbol] = PostInstrSymbol; if (HasHeapAllocMarker) Result->getTrailingObjects()[0] = HeapAllocMarker; return Result; } ArrayRef getMMOs() const { return makeArrayRef(getTrailingObjects(), NumMMOs); } MCSymbol *getPreInstrSymbol() const { return HasPreInstrSymbol ? getTrailingObjects()[0] : nullptr; } MCSymbol *getPostInstrSymbol() const { return HasPostInstrSymbol ? getTrailingObjects()[HasPreInstrSymbol] : nullptr; } MDNode *getHeapAllocMarker() const { return HasHeapAllocMarker ? getTrailingObjects()[0] : nullptr; } private: friend TrailingObjects; // Description of the extra info, used to interpret the actual optional // data appended. // // Note that this is not terribly space optimized. This leaves a great deal // of flexibility to fit more in here later. const int NumMMOs; const bool HasPreInstrSymbol; const bool HasPostInstrSymbol; const bool HasHeapAllocMarker; // Implement the `TrailingObjects` internal API. size_t numTrailingObjects(OverloadToken) const { return NumMMOs; } size_t numTrailingObjects(OverloadToken) const { return HasPreInstrSymbol + HasPostInstrSymbol; } size_t numTrailingObjects(OverloadToken) const { return HasHeapAllocMarker; } // Just a boring constructor to allow us to initialize the sizes. Always use // the `create` routine above. ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, bool HasHeapAllocMarker) : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), HasPostInstrSymbol(HasPostInstrSymbol), HasHeapAllocMarker(HasHeapAllocMarker) {} }; /// Enumeration of the kinds of inline extra info available. It is important /// that the `MachineMemOperand` inline kind has a tag value of zero to make /// it accessible as an `ArrayRef`. enum ExtraInfoInlineKinds { EIIK_MMO = 0, EIIK_PreInstrSymbol, EIIK_PostInstrSymbol, EIIK_OutOfLine }; // We store extra information about the instruction here. The common case is // expected to be nothing or a single pointer (typically a MMO or a symbol). // We work to optimize this common case by storing it inline here rather than // requiring a separate allocation, but we fall back to an allocation when // multiple pointers are needed. PointerSumType, PointerSumTypeMember, PointerSumTypeMember, PointerSumTypeMember> Info; DebugLoc debugLoc; // Source line information. /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values /// defined by this instruction. unsigned DebugInstrNum; // Intrusive list support friend struct ilist_traits; friend struct ilist_callback_traits; void setParent(MachineBasicBlock *P) { Parent = P; } /// This constructor creates a copy of the given /// MachineInstr in the given MachineFunction. MachineInstr(MachineFunction &, const MachineInstr &); /// This constructor create a MachineInstr and add the implicit operands. /// It reserves space for number of operands specified by /// MCInstrDesc. An explicit DebugLoc is supplied. MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, bool NoImp = false); // MachineInstrs are pool-allocated and owned by MachineFunction. friend class MachineFunction; void dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, SmallPtrSetImpl &AlreadySeenInstrs) const; public: MachineInstr(const MachineInstr &) = delete; MachineInstr &operator=(const MachineInstr &) = delete; // Use MachineFunction::DeleteMachineInstr() instead. ~MachineInstr() = delete; const MachineBasicBlock* getParent() const { return Parent; } MachineBasicBlock* getParent() { return Parent; } /// Move the instruction before \p MovePos. void moveBefore(MachineInstr *MovePos); /// Return the function that contains the basic block that this instruction /// belongs to. /// /// Note: this is undefined behaviour if the instruction does not have a /// parent. const MachineFunction *getMF() const; MachineFunction *getMF() { return const_cast( static_cast(this)->getMF()); } /// Return the asm printer flags bitvector. uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } /// Clear the AsmPrinter bitvector. void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } /// Return whether an AsmPrinter flag is set. bool getAsmPrinterFlag(CommentFlag Flag) const { return AsmPrinterFlags & Flag; } /// Set a flag for the AsmPrinter. void setAsmPrinterFlag(uint8_t Flag) { AsmPrinterFlags |= Flag; } /// Clear specific AsmPrinter flags. void clearAsmPrinterFlag(CommentFlag Flag) { AsmPrinterFlags &= ~Flag; } /// Return the MI flags bitvector. uint16_t getFlags() const { return Flags; } /// Return whether an MI flag is set. bool getFlag(MIFlag Flag) const { return Flags & Flag; } /// Set a MI flag. void setFlag(MIFlag Flag) { Flags |= (uint16_t)Flag; } void setFlags(unsigned flags) { // Filter out the automatically maintained flags. unsigned Mask = BundledPred | BundledSucc; Flags = (Flags & Mask) | (flags & ~Mask); } /// clearFlag - Clear a MI flag. void clearFlag(MIFlag Flag) { Flags &= ~((uint16_t)Flag); } /// Return true if MI is in a bundle (but not the first MI in a bundle). /// /// A bundle looks like this before it's finalized: /// ---------------- /// | MI | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// In this case, the first MI starts a bundle but is not inside a bundle, the /// next 2 MIs are considered "inside" the bundle. /// /// After a bundle is finalized, it looks like this: /// ---------------- /// | Bundle | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// | /// ---------------- /// | MI * | /// ---------------- /// The first instruction has the special opcode "BUNDLE". It's not "inside" /// a bundle, but the next three MIs are. bool isInsideBundle() const { return getFlag(BundledPred); } /// Return true if this instruction part of a bundle. This is true /// if either itself or its following instruction is marked "InsideBundle". bool isBundled() const { return isBundledWithPred() || isBundledWithSucc(); } /// Return true if this instruction is part of a bundle, and it is not the /// first instruction in the bundle. bool isBundledWithPred() const { return getFlag(BundledPred); } /// Return true if this instruction is part of a bundle, and it is not the /// last instruction in the bundle. bool isBundledWithSucc() const { return getFlag(BundledSucc); } /// Bundle this instruction with its predecessor. This can be an unbundled /// instruction, or it can be the first instruction in a bundle. void bundleWithPred(); /// Bundle this instruction with its successor. This can be an unbundled /// instruction, or it can be the last instruction in a bundle. void bundleWithSucc(); /// Break bundle above this instruction. void unbundleFromPred(); /// Break bundle below this instruction. void unbundleFromSucc(); /// Returns the debug location id of this MachineInstr. const DebugLoc &getDebugLoc() const { return debugLoc; } /// Return the operand containing the offset to be used if this DBG_VALUE /// instruction is indirect; will be an invalid register if this value is /// not indirect, and an immediate with value 0 otherwise. const MachineOperand &getDebugOffset() const { assert(isDebugValue() && "not a DBG_VALUE"); return getOperand(1); } MachineOperand &getDebugOffset() { assert(isDebugValue() && "not a DBG_VALUE"); return getOperand(1); } /// Return the operand for the debug variable referenced by /// this DBG_VALUE instruction. const MachineOperand &getDebugVariableOp() const; MachineOperand &getDebugVariableOp(); /// Return the debug variable referenced by /// this DBG_VALUE instruction. const DILocalVariable *getDebugVariable() const; /// Return the operand for the complex address expression referenced by /// this DBG_VALUE instruction. MachineOperand &getDebugExpressionOp(); /// Return the complex address expression referenced by /// this DBG_VALUE instruction. const DIExpression *getDebugExpression() const; /// Return the debug label referenced by /// this DBG_LABEL instruction. const DILabel *getDebugLabel() const; /// Fetch the instruction number of this MachineInstr. If it does not have /// one already, a new and unique number will be assigned. unsigned getDebugInstrNum(); /// Examine the instruction number of this MachineInstr. May be zero if /// it hasn't been assigned a number yet. unsigned peekDebugInstrNum() const { return DebugInstrNum; } /// Set instruction number of this MachineInstr. Avoid using unless you're /// deserializing this information. void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } /// Emit an error referring to the source location of this instruction. /// This should only be used for inline assembly that is somehow /// impossible to compile. Other errors should have been handled much /// earlier. /// /// If this method returns, the caller should try to recover from the error. void emitError(StringRef Msg) const; /// Returns the target instruction descriptor of this MachineInstr. const MCInstrDesc &getDesc() const { return *MCID; } /// Returns the opcode of this MachineInstr. unsigned getOpcode() const { return MCID->Opcode; } /// Retuns the total number of operands. unsigned getNumOperands() const { return NumOperands; } /// Returns the total number of operands which are debug locations. unsigned getNumDebugOperands() const { return std::distance(debug_operands().begin(), debug_operands().end()); } const MachineOperand& getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; } MachineOperand& getOperand(unsigned i) { assert(i < getNumOperands() && "getOperand() out of range!"); return Operands[i]; } MachineOperand &getDebugOperand(unsigned Index) { assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); return *(debug_operands().begin() + Index); } const MachineOperand &getDebugOperand(unsigned Index) const { assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); return *(debug_operands().begin() + Index); } /// Returns a pointer to the operand corresponding to a debug use of Reg, or /// nullptr if Reg is not used in any debug operand. const MachineOperand *getDebugOperandForReg(Register Reg) const { const MachineOperand *RegOp = find_if(debug_operands(), [Reg](const MachineOperand &Op) { return Op.isReg() && Op.getReg() == Reg; }); return RegOp == adl_end(debug_operands()) ? nullptr : RegOp; } MachineOperand *getDebugOperandForReg(Register Reg) { MachineOperand *RegOp = find_if(debug_operands(), [Reg](const MachineOperand &Op) { return Op.isReg() && Op.getReg() == Reg; }); return RegOp == adl_end(debug_operands()) ? nullptr : RegOp; } unsigned getDebugOperandIndex(const MachineOperand *Op) const { assert(Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()) && "Expected a debug operand."); return std::distance(adl_begin(debug_operands()), Op); } /// Returns the total number of definitions. unsigned getNumDefs() const { return getNumExplicitDefs() + MCID->getNumImplicitDefs(); } /// Returns true if the instruction has implicit definition. bool hasImplicitDef() const { for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); I != E; ++I) { const MachineOperand &MO = getOperand(I); if (MO.isDef() && MO.isImplicit()) return true; } return false; } /// Returns the implicit operands number. unsigned getNumImplicitOperands() const { return getNumOperands() - getNumExplicitOperands(); } /// Return true if operand \p OpIdx is a subregister index. bool isOperandSubregIdx(unsigned OpIdx) const { assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && "Expected MO_Immediate operand type."); if (isExtractSubreg() && OpIdx == 2) return true; if (isInsertSubreg() && OpIdx == 3) return true; if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) return true; if (isSubregToReg() && OpIdx == 3) return true; return false; } /// Returns the number of non-implicit operands. unsigned getNumExplicitOperands() const; /// Returns the number of non-implicit definitions. unsigned getNumExplicitDefs() const; /// iterator/begin/end - Iterate over all operands of a machine instruction. using mop_iterator = MachineOperand *; using const_mop_iterator = const MachineOperand *; mop_iterator operands_begin() { return Operands; } mop_iterator operands_end() { return Operands + NumOperands; } const_mop_iterator operands_begin() const { return Operands; } const_mop_iterator operands_end() const { return Operands + NumOperands; } iterator_range operands() { return make_range(operands_begin(), operands_end()); } iterator_range operands() const { return make_range(operands_begin(), operands_end()); } iterator_range explicit_operands() { return make_range(operands_begin(), operands_begin() + getNumExplicitOperands()); } iterator_range explicit_operands() const { return make_range(operands_begin(), operands_begin() + getNumExplicitOperands()); } iterator_range implicit_operands() { return make_range(explicit_operands().end(), operands_end()); } iterator_range implicit_operands() const { return make_range(explicit_operands().end(), operands_end()); } /// Returns a range over all operands that are used to determine the variable /// location for this DBG_VALUE instruction. iterator_range debug_operands() { assert(isDebugValue() && "Must be a debug value instruction."); return make_range(operands_begin(), operands_begin() + 1); } /// \copydoc debug_operands() iterator_range debug_operands() const { assert(isDebugValue() && "Must be a debug value instruction."); return make_range(operands_begin(), operands_begin() + 1); } /// Returns a range over all explicit operands that are register definitions. /// Implicit definition are not included! iterator_range defs() { return make_range(operands_begin(), operands_begin() + getNumExplicitDefs()); } /// \copydoc defs() iterator_range defs() const { return make_range(operands_begin(), operands_begin() + getNumExplicitDefs()); } /// Returns a range that includes all operands that are register uses. /// This may include unrelated operands which are not register uses. iterator_range uses() { return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); } /// \copydoc uses() iterator_range uses() const { return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); } iterator_range explicit_uses() { return make_range(operands_begin() + getNumExplicitDefs(), operands_begin() + getNumExplicitOperands()); } iterator_range explicit_uses() const { return make_range(operands_begin() + getNumExplicitDefs(), operands_begin() + getNumExplicitOperands()); } /// Returns the number of the operand iterator \p I points to. unsigned getOperandNo(const_mop_iterator I) const { return I - operands_begin(); } /// Access to memory operands of the instruction. If there are none, that does /// not imply anything about whether the function accesses memory. Instead, /// the caller must behave conservatively. ArrayRef memoperands() const { if (!Info) return {}; if (Info.is()) return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); if (ExtraInfo *EI = Info.get()) return EI->getMMOs(); return {}; } /// Access to memory operands of the instruction. /// /// If `memoperands_begin() == memoperands_end()`, that does not imply /// anything about whether the function accesses memory. Instead, the caller /// must behave conservatively. mmo_iterator memoperands_begin() const { return memoperands().begin(); } /// Access to memory operands of the instruction. /// /// If `memoperands_begin() == memoperands_end()`, that does not imply /// anything about whether the function accesses memory. Instead, the caller /// must behave conservatively. mmo_iterator memoperands_end() const { return memoperands().end(); } /// Return true if we don't have any memory operands which described the /// memory access done by this instruction. If this is true, calling code /// must be conservative. bool memoperands_empty() const { return memoperands().empty(); } /// Return true if this instruction has exactly one MachineMemOperand. bool hasOneMemOperand() const { return memoperands().size() == 1; } /// Return the number of memory operands. unsigned getNumMemOperands() const { return memoperands().size(); } /// Helper to extract a pre-instruction symbol if one has been added. MCSymbol *getPreInstrSymbol() const { if (!Info) return nullptr; if (MCSymbol *S = Info.get()) return S; if (ExtraInfo *EI = Info.get()) return EI->getPreInstrSymbol(); return nullptr; } /// Helper to extract a post-instruction symbol if one has been added. MCSymbol *getPostInstrSymbol() const { if (!Info) return nullptr; if (MCSymbol *S = Info.get()) return S; if (ExtraInfo *EI = Info.get()) return EI->getPostInstrSymbol(); return nullptr; } /// Helper to extract a heap alloc marker if one has been added. MDNode *getHeapAllocMarker() const { if (!Info) return nullptr; if (ExtraInfo *EI = Info.get()) return EI->getHeapAllocMarker(); return nullptr; } /// API for querying MachineInstr properties. They are the same as MCInstrDesc /// queries but they are bundle aware. enum QueryType { IgnoreBundle, // Ignore bundles AnyInBundle, // Return true if any instruction in bundle has property AllInBundle // Return true if all instructions in bundle have property }; /// Return true if the instruction (or in the case of a bundle, /// the instructions inside the bundle) has the specified property. /// The first argument is the property being queried. /// The second argument indicates whether the query should look inside /// instruction bundles. bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { assert(MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); // Inline the fast path for unbundled or bundle-internal instructions. if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) return getDesc().getFlags() & (1ULL << MCFlag); // If this is the first instruction in a bundle, take the slow path. return hasPropertyInBundle(1ULL << MCFlag, Type); } /// Return true if this is an instruction that should go through the usual /// legalization steps. bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::PreISelOpcode, Type); } /// Return true if this instruction can have a variable number of operands. /// In this case, the variable operands will be after the normal /// operands but before the implicit definitions and uses (if any are /// present). bool isVariadic(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Variadic, Type); } /// Set if this instruction has an optional definition, e.g. /// ARM instructions which can set condition code if 's' bit is set. bool hasOptionalDef(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasOptionalDef, Type); } /// Return true if this is a pseudo instruction that doesn't /// correspond to a real machine instruction. bool isPseudo(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Pseudo, Type); } bool isReturn(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Return, Type); } /// Return true if this is an instruction that marks the end of an EH scope, /// i.e., a catchpad or a cleanuppad instruction. bool isEHScopeReturn(QueryType Type = AnyInBundle) const { return hasProperty(MCID::EHScopeReturn, Type); } bool isCall(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Call, Type); } /// Return true if this is a call instruction that may have an associated /// call site entry in the debug info. bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; /// Return true if copying, moving, or erasing this instruction requires /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, /// \ref eraseCallSiteInfo). bool shouldUpdateCallSiteInfo() const; /// Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Barrier, Type); } /// Returns true if this instruction part of the terminator for a basic block. /// Typically this is things like return and branch instructions. /// /// Various passes use this to insert code into the bottom of a basic block, /// but before control flow occurs. bool isTerminator(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Terminator, Type); } /// Returns true if this is a conditional, unconditional, or indirect branch. /// Predicates below can be used to discriminate between /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to /// get more information. bool isBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::Branch, Type); } /// Return true if this is an indirect branch, such as a /// branch through a register. bool isIndirectBranch(QueryType Type = AnyInBundle) const { return hasProperty(MCID::IndirectBranch, Type); } /// Return true if this is a branch which may fall /// through to the next instruction or may transfer control flow to some other /// block. The TargetInstrInfo::analyzeBranch method can be used to get more /// information about this branch. bool isConditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); } /// Return true if this is a branch which always /// transfers control flow to some other block. The /// TargetInstrInfo::analyzeBranch method can be used to get more information /// about this branch. bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); } /// Return true if this instruction has a predicate operand that /// controls execution. It may be set to 'always', or may be set to other /// values. There are various methods in TargetInstrInfo that can be used to /// control and modify the predicate in this instruction. bool isPredicable(QueryType Type = AllInBundle) const { // If it's a bundle than all bundled instructions must be predicable for this // to return true. return hasProperty(MCID::Predicable, Type); } /// Return true if this instruction is a comparison. bool isCompare(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Compare, Type); } /// Return true if this instruction is a move immediate /// (including conditional moves) instruction. bool isMoveImmediate(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::MoveImm, Type); } /// Return true if this instruction is a register move. /// (including moving values from subreg to reg) bool isMoveReg(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::MoveReg, Type); } /// Return true if this instruction is a bitcast instruction. bool isBitcast(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Bitcast, Type); } /// Return true if this instruction is a select instruction. bool isSelect(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Select, Type); } /// Return true if this instruction cannot be safely duplicated. /// For example, if the instruction has a unique labels attached /// to it, duplicating it would cause multiple definition errors. bool isNotDuplicable(QueryType Type = AnyInBundle) const { return hasProperty(MCID::NotDuplicable, Type); } /// Return true if this instruction is convergent. /// Convergent instructions can not be made control-dependent on any /// additional values. bool isConvergent(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsConvergent) return true; } return hasProperty(MCID::Convergent, Type); } /// Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot(QueryType Type = AnyInBundle) const { return hasProperty(MCID::DelaySlot, Type); } /// Return true for instructions that can be folded as /// memory operands in other instructions. The most common use for this /// is instructions that are simple loads from memory that don't modify /// the loaded value in any way, but it can also be used for instructions /// that can be expressed as constant-pool loads, such as V_SETALLONES /// on x86, to allow them to be folded when it is beneficial. /// This should only be set on instructions that return a value in their /// only virtual register definition. bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::FoldableAsLoad, Type); } /// Return true if this instruction behaves /// the same way as the generic REG_SEQUENCE instructions. /// E.g., on ARM, /// dX VMOVDRR rY, rZ /// is equivalent to /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be /// override accordingly. bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::RegSequence, Type); } /// Return true if this instruction behaves /// the same way as the generic EXTRACT_SUBREG instructions. /// E.g., on ARM, /// rX, rY VMOVRRD dZ /// is equivalent to two EXTRACT_SUBREG: /// rX = EXTRACT_SUBREG dZ, ssub_0 /// rY = EXTRACT_SUBREG dZ, ssub_1 /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be /// override accordingly. bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::ExtractSubreg, Type); } /// Return true if this instruction behaves /// the same way as the generic INSERT_SUBREG instructions. /// E.g., on ARM, /// dX = VSETLNi32 dY, rZ, Imm /// is equivalent to a INSERT_SUBREG: /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) /// /// Note that for the optimizers to be able to take advantage of /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be /// override accordingly. bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::InsertSubreg, Type); } //===--------------------------------------------------------------------===// // Side Effect Analysis //===--------------------------------------------------------------------===// /// Return true if this instruction could possibly read memory. /// Instructions with this flag set are not necessarily simple load /// instructions, they may load a value and modify it, for example. bool mayLoad(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayLoad) return true; } return hasProperty(MCID::MayLoad, Type); } /// Return true if this instruction could possibly modify memory. /// Instructions with this flag set are not necessarily simple store /// instructions, they may store a modified value based on their operands, or /// may not actually modify anything, for example. bool mayStore(QueryType Type = AnyInBundle) const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_MayStore) return true; } return hasProperty(MCID::MayStore, Type); } /// Return true if this instruction could possibly read or modify memory. bool mayLoadOrStore(QueryType Type = AnyInBundle) const { return mayLoad(Type) || mayStore(Type); } /// Return true if this instruction could possibly raise a floating-point /// exception. This is the case if the instruction is a floating-point /// instruction that can in principle raise an exception, as indicated /// by the MCID::MayRaiseFPException property, *and* at the same time, /// the instruction is used in a context where we expect floating-point /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. bool mayRaiseFPException() const { return hasProperty(MCID::MayRaiseFPException) && !getFlag(MachineInstr::MIFlag::NoFPExcept); } //===--------------------------------------------------------------------===// // Flags that indicate whether an instruction can be modified by a method. //===--------------------------------------------------------------------===// /// Return true if this may be a 2- or 3-address /// instruction (of the form "X = op Y, Z, ..."), which produces the same /// result if Y and Z are exchanged. If this flag is set, then the /// TargetInstrInfo::commuteInstruction method may be used to hack on the /// instruction. /// /// Note that this flag may be set on instructions that are only commutable /// sometimes. In these cases, the call to commuteInstruction will fail. /// Also note that some instructions require non-trivial modification to /// commute them. bool isCommutable(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::Commutable, Type); } /// Return true if this is a 2-address instruction /// which can be changed into a 3-address instruction if needed. Doing this /// transformation can be profitable in the register allocator, because it /// means that the instruction can use a 2-address form if possible, but /// degrade into a less efficient form if the source and dest register cannot /// be assigned to the same register. For example, this allows the x86 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which /// is the same speed as the shift but has bigger code size. /// /// If this returns true, then the target must implement the /// TargetInstrInfo::convertToThreeAddress method for this instruction, which /// is allowed to fail if the transformation isn't valid for this specific /// instruction (e.g. shl reg, 4 on x86). /// bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::ConvertibleTo3Addr, Type); } /// Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. If this is true for the instruction, it basically /// means that it is a pseudo instruction used at SelectionDAG time that is /// expanded out into magic code by the target when MachineInstrs are formed. /// /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method /// is used to insert this into the MachineBasicBlock. bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::UsesCustomInserter, Type); } /// Return true if this instruction requires *adjustment* /// after instruction selection by calling a target hook. For example, this /// can be used to fill in ARM 's' optional operand depending on whether /// the conditional flag register is used. bool hasPostISelHook(QueryType Type = IgnoreBundle) const { return hasProperty(MCID::HasPostISelHook, Type); } /// Returns true if this instruction is a candidate for remat. /// This flag is deprecated, please don't use it anymore. If this /// flag is set, the isReallyTriviallyReMaterializable() method is called to /// verify the instruction is really rematable. bool isRematerializable(QueryType Type = AllInBundle) const { // It's only possible to re-mat a bundle if all bundled instructions are // re-materializable. return hasProperty(MCID::Rematerializable, Type); } /// Returns true if this instruction has the same cost (or less) than a move /// instruction. This is useful during certain types of optimizations /// (e.g., remat during two-address conversion or machine licm) /// where we would like to remat or hoist the instruction, but not if it costs /// more than moving the instruction into the appropriate register. Note, we /// are not marking copies from and to the same register class with this flag. bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { // Only returns true for a bundle if all bundled instructions are cheap. return hasProperty(MCID::CheapAsAMove, Type); } /// Returns true if this instruction source operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::STRD's two source registers must be an /// even / odd pair, ARM::STM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for sources of instructions with this flag. bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraSrcRegAllocReq, Type); } /// Returns true if this instruction def operands /// have special register allocation requirements that are not captured by the /// operand register classes. e.g. ARM::LDRD's two def registers must be an /// even / odd pair, ARM::LDM registers have to be in ascending order. /// Post-register allocation passes should not attempt to change allocations /// for definitions of instructions with this flag. bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { return hasProperty(MCID::ExtraDefRegAllocReq, Type); } enum MICheckType { CheckDefs, // Check all operands for equality CheckKillDead, // Check all operands including kill / dead markers IgnoreDefs, // Ignore all definitions IgnoreVRegDefs // Ignore virtual register definitions }; /// Return true if this instruction is identical to \p Other. /// Two instructions are identical if they have the same opcode and all their /// operands are identical (with respect to MachineOperand::isIdenticalTo()). /// Note that this means liveness related flags (dead, undef, kill) do not /// affect the notion of identical. bool isIdenticalTo(const MachineInstr &Other, MICheckType Check = CheckDefs) const; /// Unlink 'this' from the containing basic block, and return it without /// deleting it. /// /// This function can not be used on bundled instructions, use /// removeFromBundle() to remove individual instructions from a bundle. MachineInstr *removeFromParent(); /// Unlink this instruction from its basic block and return it without /// deleting it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. MachineInstr *removeFromBundle(); /// Unlink 'this' from the containing basic block and delete it. /// /// If this instruction is the header of a bundle, the whole bundle is erased. /// This function can not be used for instructions inside a bundle, use /// eraseFromBundle() to erase individual bundled instructions. void eraseFromParent(); /// Unlink 'this' from the containing basic block and delete it. /// /// For all definitions mark their uses in DBG_VALUE nodes /// as undefined. Otherwise like eraseFromParent(). void eraseFromParentAndMarkDBGValuesForRemoval(); /// Unlink 'this' form its basic block and delete it. /// /// If the instruction is part of a bundle, the other instructions in the /// bundle remain bundled. void eraseFromBundle(); bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } bool isAnnotationLabel() const { return getOpcode() == TargetOpcode::ANNOTATION_LABEL; } /// Returns true if the MachineInstr represents a label. bool isLabel() const { return isEHLabel() || isGCLabel() || isAnnotationLabel(); } bool isCFIInstruction() const { return getOpcode() == TargetOpcode::CFI_INSTRUCTION; } bool isPseudoProbe() const { return getOpcode() == TargetOpcode::PSEUDO_PROBE; } // True if the instruction represents a position in the function. bool isPosition() const { return isLabel() || isCFIInstruction(); } bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } bool isDebugInstr() const { return isDebugValue() || isDebugLabel() || isDebugRef(); } bool isDebugOrPseudoInstr() const { return isDebugInstr() || isPseudoProbe(); } bool isDebugOffsetImm() const { return getDebugOffset().isImm(); } /// A DBG_VALUE is indirect iff the location operand is a register and /// the offset operand is an immediate. bool isIndirectDebugValue() const { return isDebugValue() && getDebugOperand(0).isReg() && isDebugOffsetImm(); } /// A DBG_VALUE is an entry value iff its debug expression contains the /// DW_OP_LLVM_entry_value operation. bool isDebugEntryValue() const; /// Return true if the instruction is a debug value which describes a part of /// a variable as unavailable. bool isUndefDebugValue() const { return isDebugValue() && getDebugOperand(0).isReg() && !getDebugOperand(0).getReg().isValid(); } bool isPHI() const { return getOpcode() == TargetOpcode::PHI || getOpcode() == TargetOpcode::G_PHI; } bool isKill() const { return getOpcode() == TargetOpcode::KILL; } bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM || getOpcode() == TargetOpcode::INLINEASM_BR; } /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 /// specific, be attached to a generic MachineInstr. bool isMSInlineAsm() const { return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; } bool isStackAligningInlineAsm() const; InlineAsm::AsmDialect getInlineAsmDialect() const; bool isInsertSubreg() const { return getOpcode() == TargetOpcode::INSERT_SUBREG; } bool isSubregToReg() const { return getOpcode() == TargetOpcode::SUBREG_TO_REG; } bool isRegSequence() const { return getOpcode() == TargetOpcode::REG_SEQUENCE; } bool isBundle() const { return getOpcode() == TargetOpcode::BUNDLE; } bool isCopy() const { return getOpcode() == TargetOpcode::COPY; } bool isFullCopy() const { return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); } bool isExtractSubreg() const { return getOpcode() == TargetOpcode::EXTRACT_SUBREG; } /// Return true if the instruction behaves like a copy. /// This does not include native copy instructions. bool isCopyLike() const { return isCopy() || isSubregToReg(); } /// Return true is the instruction is an identity copy. bool isIdentityCopy() const { return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && getOperand(0).getSubReg() == getOperand(1).getSubReg(); } /// Return true if this instruction doesn't produce any output in the form of /// executable instructions. bool isMetaInstruction() const { switch (getOpcode()) { default: return false; case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::CFI_INSTRUCTION: case TargetOpcode::EH_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::DBG_VALUE: case TargetOpcode::DBG_INSTR_REF: case TargetOpcode::DBG_LABEL: case TargetOpcode::LIFETIME_START: case TargetOpcode::LIFETIME_END: case TargetOpcode::PSEUDO_PROBE: return true; } } /// Return true if this is a transient instruction that is either very likely /// to be eliminated during register allocation (such as copy-like /// instructions), or if this instruction doesn't have an execution-time cost. bool isTransient() const { switch (getOpcode()) { default: return isMetaInstruction(); // Copy-like instructions are usually eliminated during register allocation. case TargetOpcode::PHI: case TargetOpcode::G_PHI: case TargetOpcode::COPY: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: return true; } } /// Return the number of instructions inside the MI bundle, excluding the /// bundle header. /// /// This is the number of instructions that MachineBasicBlock::iterator /// skips, 0 for unbundled instructions. unsigned getBundleSize() const; /// Return true if the MachineInstr reads the specified register. /// If TargetRegisterInfo is passed, then it also checks if there /// is a read of a super-register. /// This does not count partial redefines of virtual registers as reads: /// %reg1024:6 = OP. bool readsRegister(Register Reg, const TargetRegisterInfo *TRI = nullptr) const { return findRegisterUseOperandIdx(Reg, false, TRI) != -1; } /// Return true if the MachineInstr reads the specified virtual register. /// Take into account that a partial define is a /// read-modify-write operation. bool readsVirtualRegister(Register Reg) const { return readsWritesVirtualRegister(Reg).first; } /// Return a pair of bools (reads, writes) indicating if this instruction /// reads or writes Reg. This also considers partial defines. /// If Ops is not null, all operand indices for Reg are added. std::pair readsWritesVirtualRegister(Register Reg, SmallVectorImpl *Ops = nullptr) const; /// Return true if the MachineInstr kills the specified register. /// If TargetRegisterInfo is passed, then it also checks if there is /// a kill of a super-register. bool killsRegister(Register Reg, const TargetRegisterInfo *TRI = nullptr) const { return findRegisterUseOperandIdx(Reg, true, TRI) != -1; } /// Return true if the MachineInstr fully defines the specified register. /// If TargetRegisterInfo is passed, then it also checks /// if there is a def of a super-register. /// NOTE: It's ignoring subreg indices on virtual registers. bool definesRegister(Register Reg, const TargetRegisterInfo *TRI = nullptr) const { return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; } /// Return true if the MachineInstr modifies (fully define or partially /// define) the specified register. /// NOTE: It's ignoring subreg indices on virtual registers. bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI = nullptr) const { return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; } /// Returns true if the register is dead in this machine instruction. /// If TargetRegisterInfo is passed, then it also checks /// if there is a dead def of a super-register. bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI = nullptr) const { return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; } /// Returns true if the MachineInstr has an implicit-use operand of exactly /// the given register (not considering sub/super-registers). bool hasRegisterImplicitUseOperand(Register Reg) const; /// Returns the operand index that is a use of the specific register or -1 /// if it is not found. It further tightens the search criteria to a use /// that kills the register if isKill is true. int findRegisterUseOperandIdx(Register Reg, bool isKill = false, const TargetRegisterInfo *TRI = nullptr) const; /// Wrapper for findRegisterUseOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, const TargetRegisterInfo *TRI = nullptr) { int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); return (Idx == -1) ? nullptr : &getOperand(Idx); } const MachineOperand *findRegisterUseOperand( Register Reg, bool isKill = false, const TargetRegisterInfo *TRI = nullptr) const { return const_cast(this)-> findRegisterUseOperand(Reg, isKill, TRI); } /// Returns the operand index that is a def of the specified register or /// -1 if it is not found. If isDead is true, defs that are not dead are /// skipped. If Overlap is true, then it also looks for defs that merely /// overlap the specified register. If TargetRegisterInfo is non-null, /// then it also checks if there is a def of a super-register. /// This may also return a register mask operand when Overlap is true. int findRegisterDefOperandIdx(Register Reg, bool isDead = false, bool Overlap = false, const TargetRegisterInfo *TRI = nullptr) const; /// Wrapper for findRegisterDefOperandIdx, it returns /// a pointer to the MachineOperand rather than an index. MachineOperand * findRegisterDefOperand(Register Reg, bool isDead = false, bool Overlap = false, const TargetRegisterInfo *TRI = nullptr) { int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); return (Idx == -1) ? nullptr : &getOperand(Idx); } const MachineOperand * findRegisterDefOperand(Register Reg, bool isDead = false, bool Overlap = false, const TargetRegisterInfo *TRI = nullptr) const { return const_cast(this)->findRegisterDefOperand( Reg, isDead, Overlap, TRI); } /// Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int findFirstPredOperandIdx() const; /// Find the index of the flag word operand that /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if /// getOperand(OpIdx) does not belong to an inline asm operand group. /// /// If GroupNo is not NULL, it will receive the number of the operand group /// containing OpIdx. /// /// The flag operand is an immediate that can be decoded with methods like /// InlineAsm::hasRegClassConstraint(). int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; /// Compute the static register class constraint for operand OpIdx. /// For normal instructions, this is derived from the MCInstrDesc. /// For inline assembly it is derived from the flag words. /// /// Returns NULL if the static register class constraint cannot be /// determined. const TargetRegisterClass* getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; /// Applies the constraints (def/use) implied by this MI on \p Reg to /// the given \p CurRC. /// If \p ExploreBundle is set and MI is part of a bundle, all the /// instructions inside the bundle will be taken into account. In other words, /// this method accumulates all the constraints of the operand of this MI and /// the related bundle if MI is a bundle or inside a bundle. /// /// Returns the register class that satisfies both \p CurRC and the /// constraints set by MI. Returns NULL if such a register class does not /// exist. /// /// \pre CurRC must not be NULL. const TargetRegisterClass *getRegClassConstraintEffectForVReg( Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ExploreBundle = false) const; /// Applies the constraints (def/use) implied by the \p OpIdx operand /// to the given \p CurRC. /// /// Returns the register class that satisfies both \p CurRC and the /// constraints set by \p OpIdx MI. Returns NULL if such a register class /// does not exist. /// /// \pre CurRC must not be NULL. /// \pre The operand at \p OpIdx must be a register. const TargetRegisterClass * getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; /// Add a tie between the register operands at DefIdx and UseIdx. /// The tie will cause the register allocator to ensure that the two /// operands are assigned the same physical register. /// /// Tied operands are managed automatically for explicit operands in the /// MCInstrDesc. This method is for exceptional cases like inline asm. void tieOperands(unsigned DefIdx, unsigned UseIdx); /// Given the index of a tied register operand, find the /// operand it is tied to. Defs are tied to uses and vice versa. Returns the /// index of the tied operand which must exist. unsigned findTiedOperandIdx(unsigned OpIdx) const; /// Given the index of a register def operand, /// check if the register def is tied to a source operand, due to either /// two-address elimination or inline assembly constraints. Returns the /// first tied use operand index by reference if UseOpIdx is not null. bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = nullptr) const { const MachineOperand &MO = getOperand(DefOpIdx); if (!MO.isReg() || !MO.isDef() || !MO.isTied()) return false; if (UseOpIdx) *UseOpIdx = findTiedOperandIdx(DefOpIdx); return true; } /// Return true if the use operand of the specified index is tied to a def /// operand. It also returns the def operand index by reference if DefOpIdx /// is not null. bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = nullptr) const { const MachineOperand &MO = getOperand(UseOpIdx); if (!MO.isReg() || !MO.isUse() || !MO.isTied()) return false; if (DefOpIdx) *DefOpIdx = findTiedOperandIdx(UseOpIdx); return true; } /// Clears kill flags on all operands. void clearKillInfo(); /// Replace all occurrences of FromReg with ToReg:SubIdx, /// properly composing subreg indices where necessary. void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo); /// We have determined MI kills a register. Look for the /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, /// add a implicit operand if it's not found. Returns true if the operand /// exists / is added. bool addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false); /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes /// all aliasing registers. void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); /// We have determined MI defined a register without a use. /// Look for the operand that defines it and mark it as IsDead. If /// AddIfNotFound is true, add a implicit operand if it's not found. Returns /// true if the operand exists / is added. bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound = false); /// Clear all dead flags on operands defining register @p Reg. void clearRegisterDeads(Register Reg); /// Mark all subregister defs of register @p Reg with the undef flag. /// This function is used when we determined to have a subregister def in an /// otherwise undefined super register. void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); /// We have determined MI defines a register. Make sure there is an operand /// defining Reg. void addRegisterDefined(Register Reg, const TargetRegisterInfo *RegInfo = nullptr); /// Mark every physreg used by this instruction as /// dead except those in the UsedRegs list. /// /// On instructions with register mask operands, also add implicit-def /// operands for all registers in UsedRegs. void setPhysRegsDeadExcept(ArrayRef UsedRegs, const TargetRegisterInfo &TRI); /// Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool isSafeToMove(AAResults *AA, bool &SawStore) const; /// Returns true if this instruction's memory access aliases the memory /// access of Other. // /// Assumes any physical registers used to compute addresses /// have the same value for both instructions. Returns false if neither /// instruction writes to memory. /// /// @param AA Optional alias analysis, used to compare memory operands. /// @param Other MachineInstr to check aliasing against. /// @param UseTBAA Whether to pass TBAA information to alias analysis. bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; /// Return true if this instruction may have an ordered /// or volatile memory reference, or if the information describing the memory /// reference is not available. Return false if it is known to have no /// ordered or volatile memory references. bool hasOrderedMemoryRef() const; /// Return true if this load instruction never traps and points to a memory /// location whose value doesn't change during the execution of this function. /// /// Examples include loading a value from the constant pool or from the /// argument area of a function (if it does not change). If the instruction /// does multiple loads, this returns true only if all of the loads are /// dereferenceable and invariant. bool isDereferenceableInvariantLoad(AAResults *AA) const; /// If the specified instruction is a PHI that always merges together the /// same virtual register, return the register, otherwise return 0. unsigned isConstantValuePHI() const; /// Return true if this instruction has side effects that are not modeled /// by mayLoad / mayStore, etc. /// For all instructions, the property is encoded in MCInstrDesc::Flags /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is /// INLINEASM instruction, in which case the side effect property is encoded /// in one of its operands (see InlineAsm::Extra_HasSideEffect). /// bool hasUnmodeledSideEffects() const; /// Returns true if it is illegal to fold a load across this instruction. bool isLoadFoldBarrier() const; /// Return true if all the defs of this instruction are dead. bool allDefsAreDead() const; /// Return a valid size if the instruction is a spill instruction. Optional getSpillSize(const TargetInstrInfo *TII) const; /// Return a valid size if the instruction is a folded spill instruction. Optional getFoldedSpillSize(const TargetInstrInfo *TII) const; /// Return a valid size if the instruction is a restore instruction. Optional getRestoreSize(const TargetInstrInfo *TII) const; /// Return a valid size if the instruction is a folded restore instruction. Optional getFoldedRestoreSize(const TargetInstrInfo *TII) const; /// Copy implicit register operands from specified /// instruction to this instruction. void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); /// Debugging support /// @{ /// Determine the generic type to be printed (if needed) on uses and defs. LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, const MachineRegisterInfo &MRI) const; /// Return true when an instruction has tied register that can't be determined /// by the instruction's descriptor. This is useful for MIR printing, to /// determine whether we need to print the ties or not. bool hasComplexRegisterTies() const; /// Print this MI to \p OS. /// Don't print information that can be inferred from other instructions if /// \p IsStandalone is false. It is usually true when only a fragment of the /// function is printed. /// Only print the defs and the opcode if \p SkipOpers is true. /// Otherwise, also print operands if \p SkipDebugLoc is true. /// Otherwise, also print the debug loc, with a terminating newline. /// \p TII is used to print the opcode name. If it's not present, but the /// MI is in a function, the opcode will be printed using the function's TII. void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, bool SkipDebugLoc = false, bool AddNewLine = true, const TargetInstrInfo *TII = nullptr) const; void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, bool SkipOpers = false, bool SkipDebugLoc = false, bool AddNewLine = true, const TargetInstrInfo *TII = nullptr) const; void dump() const; /// Print on dbgs() the current instruction and the instructions defining its /// operands and so on until we reach \p MaxDepth. void dumpr(const MachineRegisterInfo &MRI, unsigned MaxDepth = UINT_MAX) const; /// @} //===--------------------------------------------------------------------===// // Accessors used to build up machine instructions. /// Add the specified operand to the instruction. If it is an implicit /// operand, it is added to the end of the operand list. If it is an /// explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). /// /// MF must be the machine function that was used to allocate this /// instruction. /// /// MachineInstrBuilder provides a more convenient interface for creating /// instructions and adding operands. void addOperand(MachineFunction &MF, const MachineOperand &Op); /// Add an operand without providing an MF reference. This only works for /// instructions that are inserted in a basic block. /// /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be /// preferred. void addOperand(const MachineOperand &Op); /// Replace the instruction descriptor (thus opcode) of /// the current instruction with a new one. void setDesc(const MCInstrDesc &tid) { MCID = &tid; } /// Replace current source information with new such. /// Avoid using this, the constructor argument is preferable. void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); } /// Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. void RemoveOperand(unsigned OpNo); /// Clear this MachineInstr's memory reference descriptor list. This resets /// the memrefs to their most conservative state. This should be used only /// as a last resort since it greatly pessimizes our knowledge of the memory /// access performed by the instruction. void dropMemRefs(MachineFunction &MF); /// Assign this MachineInstr's memory reference descriptor list. /// /// Unlike other methods, this *will* allocate them into a new array /// associated with the provided `MachineFunction`. void setMemRefs(MachineFunction &MF, ArrayRef MemRefs); /// Add a MachineMemOperand to the machine instruction. /// This function should be used only occasionally. The setMemRefs function /// is the primary method for setting up a MachineInstr's MemRefs list. void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); /// Clone another MachineInstr's memory reference descriptor list and replace /// ours with it. /// /// Note that `*this` may be the incoming MI! /// /// Prefer this API whenever possible as it can avoid allocations in common /// cases. void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); /// Clone the merge of multiple MachineInstrs' memory reference descriptors /// list and replace ours with it. /// /// Note that `*this` may be one of the incoming MIs! /// /// Prefer this API whenever possible as it can avoid allocations in common /// cases. void cloneMergedMemRefs(MachineFunction &MF, ArrayRef MIs); /// Set a symbol that will be emitted just prior to the instruction itself. /// /// Setting this to a null pointer will remove any such symbol. /// /// FIXME: This is not fully implemented yet. void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); /// Set a symbol that will be emitted just after the instruction itself. /// /// Setting this to a null pointer will remove any such symbol. /// /// FIXME: This is not fully implemented yet. void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); /// Clone another MachineInstr's pre- and post- instruction symbols and /// replace ours with it. void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); /// Set a marker on instructions that denotes where we should create and emit /// heap alloc site labels. This waits until after instruction selection and /// optimizations to create the label, so it should still work if the /// instruction is removed or duplicated. void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); /// Return the MIFlags which represent both MachineInstrs. This /// should be used when merging two MachineInstrs into one. This routine does /// not modify the MIFlags of this MachineInstr. uint16_t mergeFlagsWith(const MachineInstr& Other) const; static uint16_t copyFlagsFromInstruction(const Instruction &I); /// Copy all flags to MachineInst MIFlags void copyIRFlags(const Instruction &I); /// Break any tie involving OpIdx. void untieRegOperand(unsigned OpIdx) { MachineOperand &MO = getOperand(OpIdx); if (MO.isReg() && MO.isTied()) { getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; MO.TiedTo = 0; } } /// Add all implicit def and use operands to this instruction. void addImplicitDefUseOperands(MachineFunction &MF); /// Scan instructions immediately following MI and collect any matching /// DBG_VALUEs. void collectDebugValues(SmallVectorImpl &DbgValues); /// Find all DBG_VALUEs that point to the register def in this instruction /// and point them to \p Reg instead. void changeDebugValuesDefReg(Register Reg); /// Returns the Intrinsic::ID for this instruction. /// \pre Must have an intrinsic ID operand. unsigned getIntrinsicID() const { return getOperand(getNumExplicitDefs()).getIntrinsicID(); } /// Sets all register debug operands in this debug value instruction to be /// undef. void setDebugValueUndef() { assert(isDebugValue() && "Must be a debug value instruction."); for (MachineOperand &MO : debug_operands()) { if (MO.isReg()) { MO.setReg(0); MO.setSubReg(0); } } } private: /// If this instruction is embedded into a MachineFunction, return the /// MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *getRegInfo(); /// Unlink all of the register operands in this instruction from their /// respective use lists. This requires that the operands already be on their /// use lists. void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); /// Add all of the register operands in this instruction from their /// respective use lists. This requires that the operands not be on their /// use lists yet. void AddRegOperandsToUseLists(MachineRegisterInfo&); /// Slow path for hasProperty when we're dealing with a bundle. bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; /// Implements the logic of getRegClassConstraintEffectForVReg for the /// this MI and the given operand index \p OpIdx. /// If the related operand does not constrained Reg, this returns CurRC. const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; /// Stores extra instruction information inline or allocates as ExtraInfo /// based on the number of pointers. void setExtraInfo(MachineFunction &MF, ArrayRef MMOs, MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker); }; /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the /// instruction rather than by pointer value. /// The hashing and equality testing functions ignore definitions so this is /// useful for CSE, etc. struct MachineInstrExpressionTrait : DenseMapInfo { static inline MachineInstr *getEmptyKey() { return nullptr; } static inline MachineInstr *getTombstoneKey() { return reinterpret_cast(-1); } static unsigned getHashValue(const MachineInstr* const &MI); static bool isEqual(const MachineInstr* const &LHS, const MachineInstr* const &RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey() || LHS == getEmptyKey() || LHS == getTombstoneKey()) return LHS == RHS; return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); } }; //===----------------------------------------------------------------------===// // Debugging Support inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { MI.print(OS); return OS; } } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEINSTR_H