//===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/AArch64FixupKinds.h" #include "MCTargetDesc/AArch64MCExpr.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/Triple.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; namespace { class AArch64AsmBackend : public MCAsmBackend { static const unsigned PCRelFlagVal = MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel; protected: Triple TheTriple; public: AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian) : MCAsmBackend(IsLittleEndian ? support::little : support::big), TheTriple(TT) {} unsigned getNumFixupKinds() const override { return AArch64::NumTargetFixupKinds; } Optional<MCFixupKind> getFixupKind(StringRef Name) const override; const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override { const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = { // This table *must* be in the order that the fixup_* kinds are defined // in AArch64FixupKinds.h. // // Name Offset (bits) Size (bits) Flags {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal}, {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal}, {"fixup_aarch64_add_imm12", 10, 12, 0}, {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0}, {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0}, {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0}, {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0}, {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0}, {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal}, {"fixup_aarch64_movw", 5, 16, 0}, {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal}, {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal}, {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal}, {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}, {"fixup_aarch64_tlsdesc_call", 0, 0, 0}}; // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not // require any extra processing. if (Kind >= FirstLiteralRelocationKind) return MCAsmBackend::getFixupKindInfo(FK_NONE); if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef<char> Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const override; bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const override; void relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const override; bool writeNopData(raw_ostream &OS, uint64_t Count) const override; void HandleAssemblerFlag(MCAssemblerFlag Flag) {} unsigned getPointerSize() const { return 8; } unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const; bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) override; }; } // end anonymous namespace /// The number of bytes the fixup may change. static unsigned getFixupKindNumBytes(unsigned Kind) { switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case AArch64::fixup_aarch64_tlsdesc_call: return 0; case FK_Data_1: return 1; case FK_Data_2: case FK_SecRel_2: return 2; case AArch64::fixup_aarch64_movw: case AArch64::fixup_aarch64_pcrel_branch14: case AArch64::fixup_aarch64_add_imm12: case AArch64::fixup_aarch64_ldst_imm12_scale1: case AArch64::fixup_aarch64_ldst_imm12_scale2: case AArch64::fixup_aarch64_ldst_imm12_scale4: case AArch64::fixup_aarch64_ldst_imm12_scale8: case AArch64::fixup_aarch64_ldst_imm12_scale16: case AArch64::fixup_aarch64_ldr_pcrel_imm19: case AArch64::fixup_aarch64_pcrel_branch19: return 3; case AArch64::fixup_aarch64_pcrel_adr_imm21: case AArch64::fixup_aarch64_pcrel_adrp_imm21: case AArch64::fixup_aarch64_pcrel_branch26: case AArch64::fixup_aarch64_pcrel_call26: case FK_Data_4: case FK_SecRel_4: return 4; case FK_Data_8: return 8; } } static unsigned AdrImmBits(unsigned Value) { unsigned lo2 = Value & 0x3; unsigned hi19 = (Value & 0x1ffffc) >> 2; return (hi19 << 5) | (lo2 << 29); } static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t Value, MCContext &Ctx, const Triple &TheTriple, bool IsResolved) { int64_t SignedValue = static_cast<int64_t>(Value); switch (Fixup.getTargetKind()) { default: llvm_unreachable("Unknown fixup kind!"); case AArch64::fixup_aarch64_pcrel_adr_imm21: if (SignedValue > 2097151 || SignedValue < -2097152) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); return AdrImmBits(Value & 0x1fffffULL); case AArch64::fixup_aarch64_pcrel_adrp_imm21: assert(!IsResolved); if (TheTriple.isOSBinFormatCOFF()) return AdrImmBits(Value & 0x1fffffULL); return AdrImmBits((Value & 0x1fffff000ULL) >> 12); case AArch64::fixup_aarch64_ldr_pcrel_imm19: case AArch64::fixup_aarch64_pcrel_branch19: // Signed 21-bit immediate if (SignedValue > 2097151 || SignedValue < -2097152) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x3) Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); // Low two bits are not encoded. return (Value >> 2) & 0x7ffff; case AArch64::fixup_aarch64_add_imm12: case AArch64::fixup_aarch64_ldst_imm12_scale1: if (TheTriple.isOSBinFormatCOFF() && !IsResolved) Value &= 0xfff; // Unsigned 12-bit immediate if (Value >= 0x1000) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); return Value; case AArch64::fixup_aarch64_ldst_imm12_scale2: if (TheTriple.isOSBinFormatCOFF() && !IsResolved) Value &= 0xfff; // Unsigned 12-bit immediate which gets multiplied by 2 if (Value >= 0x2000) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x1) Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned"); return Value >> 1; case AArch64::fixup_aarch64_ldst_imm12_scale4: if (TheTriple.isOSBinFormatCOFF() && !IsResolved) Value &= 0xfff; // Unsigned 12-bit immediate which gets multiplied by 4 if (Value >= 0x4000) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x3) Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned"); return Value >> 2; case AArch64::fixup_aarch64_ldst_imm12_scale8: if (TheTriple.isOSBinFormatCOFF() && !IsResolved) Value &= 0xfff; // Unsigned 12-bit immediate which gets multiplied by 8 if (Value >= 0x8000) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0x7) Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned"); return Value >> 3; case AArch64::fixup_aarch64_ldst_imm12_scale16: if (TheTriple.isOSBinFormatCOFF() && !IsResolved) Value &= 0xfff; // Unsigned 12-bit immediate which gets multiplied by 16 if (Value >= 0x10000) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); if (Value & 0xf) Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned"); return Value >> 4; case AArch64::fixup_aarch64_movw: { AArch64MCExpr::VariantKind RefKind = static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS && AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) { if (!RefKind) { // The fixup is an expression if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) Ctx.reportError(Fixup.getLoc(), "fixup value out of range [-0xFFFF, 0xFFFF]"); // Invert the negative immediate because it will feed into a MOVN. if (SignedValue < 0) SignedValue = ~SignedValue; Value = static_cast<uint64_t>(SignedValue); } else // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't // ever be resolved in the assembler. Ctx.reportError(Fixup.getLoc(), "relocation for a thread-local variable points to an " "absolute symbol"); return Value; } if (!IsResolved) { // FIXME: Figure out when this can actually happen, and verify our // behavior. Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet " "implemented"); return Value; } if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { switch (AArch64MCExpr::getAddressFrag(RefKind)) { case AArch64MCExpr::VK_G0: break; case AArch64MCExpr::VK_G1: SignedValue = SignedValue >> 16; break; case AArch64MCExpr::VK_G2: SignedValue = SignedValue >> 32; break; case AArch64MCExpr::VK_G3: SignedValue = SignedValue >> 48; break; default: llvm_unreachable("Variant kind doesn't correspond to fixup"); } } else { switch (AArch64MCExpr::getAddressFrag(RefKind)) { case AArch64MCExpr::VK_G0: break; case AArch64MCExpr::VK_G1: Value = Value >> 16; break; case AArch64MCExpr::VK_G2: Value = Value >> 32; break; case AArch64MCExpr::VK_G3: Value = Value >> 48; break; default: llvm_unreachable("Variant kind doesn't correspond to fixup"); } } if (RefKind & AArch64MCExpr::VK_NC) { Value &= 0xFFFF; } else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); // Invert the negative immediate because it will feed into a MOVN. if (SignedValue < 0) SignedValue = ~SignedValue; Value = static_cast<uint64_t>(SignedValue); } else if (Value > 0xFFFF) { Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); } return Value; } case AArch64::fixup_aarch64_pcrel_branch14: // Signed 16-bit immediate if (SignedValue > 32767 || SignedValue < -32768) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); // Low two bits are not encoded (4-byte alignment assumed). if (Value & 0x3) Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); return (Value >> 2) & 0x3fff; case AArch64::fixup_aarch64_pcrel_branch26: case AArch64::fixup_aarch64_pcrel_call26: // Signed 28-bit immediate if (SignedValue > 134217727 || SignedValue < -134217728) Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); // Low two bits are not encoded (4-byte alignment assumed). if (Value & 0x3) Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); return (Value >> 2) & 0x3ffffff; case FK_Data_1: case FK_Data_2: case FK_Data_4: case FK_Data_8: case FK_SecRel_2: case FK_SecRel_4: return Value; } } Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const { if (!TheTriple.isOSBinFormatELF()) return None; unsigned Type = llvm::StringSwitch<unsigned>(Name) #define ELF_RELOC(X, Y) .Case(#X, Y) #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" #undef ELF_RELOC .Default(-1u); if (Type == -1u) return None; return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); } /// getFixupKindContainereSizeInBytes - The number of bytes of the /// container involved in big endian or 0 if the item is little endian unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const { if (Endian == support::little) return 0; switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: return 1; case FK_Data_2: return 2; case FK_Data_4: return 4; case FK_Data_8: return 8; case AArch64::fixup_aarch64_tlsdesc_call: case AArch64::fixup_aarch64_movw: case AArch64::fixup_aarch64_pcrel_branch14: case AArch64::fixup_aarch64_add_imm12: case AArch64::fixup_aarch64_ldst_imm12_scale1: case AArch64::fixup_aarch64_ldst_imm12_scale2: case AArch64::fixup_aarch64_ldst_imm12_scale4: case AArch64::fixup_aarch64_ldst_imm12_scale8: case AArch64::fixup_aarch64_ldst_imm12_scale16: case AArch64::fixup_aarch64_ldr_pcrel_imm19: case AArch64::fixup_aarch64_pcrel_branch19: case AArch64::fixup_aarch64_pcrel_adr_imm21: case AArch64::fixup_aarch64_pcrel_adrp_imm21: case AArch64::fixup_aarch64_pcrel_branch26: case AArch64::fixup_aarch64_pcrel_call26: // Instructions are always little endian return 0; } } void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef<char> Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const { if (!Value) return; // Doesn't change encoding. unsigned Kind = Fixup.getKind(); if (Kind >= FirstLiteralRelocationKind) return; unsigned NumBytes = getFixupKindNumBytes(Kind); MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); MCContext &Ctx = Asm.getContext(); int64_t SignedValue = static_cast<int64_t>(Value); // Apply any target-specific value adjustments. Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved); // Shift the value into position. Value <<= Info.TargetOffset; unsigned Offset = Fixup.getOffset(); assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); // Used to point to big endian bytes. unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind()); // For each byte of the fragment that the fixup touches, mask in the // bits from the fixup value. if (FulleSizeInBytes == 0) { // Handle as little-endian for (unsigned i = 0; i != NumBytes; ++i) { Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); } } else { // Handle as big-endian assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!"); assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!"); for (unsigned i = 0; i != NumBytes; ++i) { unsigned Idx = FulleSizeInBytes - 1 - i; Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); } } // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to // handle this more cleanly. This may affect the output of -show-mc-encoding. AArch64MCExpr::VariantKind RefKind = static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS || (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) { // If the immediate is negative, generate MOVN else MOVZ. // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ. if (SignedValue < 0) Data[Offset + 3] &= ~(1 << 6); else Data[Offset + 3] |= (1 << 6); } } bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { // FIXME: This isn't correct for AArch64. Just moving the "generic" logic // into the targets for now. // // Relax if the value is too big for a (signed) i8. return int64_t(Value) != int64_t(int8_t(Value)); } void AArch64AsmBackend::relaxInstruction(MCInst &Inst, const MCSubtargetInfo &STI) const { llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented"); } bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { // If the count is not 4-byte aligned, we must be writing data into the text // section (otherwise we have unaligned instructions, and thus have far // bigger problems), so just write zeros instead. OS.write_zeros(Count % 4); // We are properly aligned, so write NOPs as requested. Count /= 4; for (uint64_t i = 0; i != Count; ++i) support::endian::write<uint32_t>(OS, 0xd503201f, Endian); return true; } bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) { unsigned Kind = Fixup.getKind(); if (Kind >= FirstLiteralRelocationKind) return true; // The ADRP instruction adds some multiple of 0x1000 to the current PC & // ~0xfff. This means that the required offset to reach a symbol can vary by // up to one step depending on where the ADRP is in memory. For example: // // ADRP x0, there // there: // // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and // we'll need that as an offset. At any other address "there" will be in the // same page as the ADRP and the instruction should encode 0x0. Assuming the // section isn't 0x1000-aligned, we therefore need to delegate this decision // to the linker -- a relocation! if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21) return true; AArch64MCExpr::VariantKind RefKind = static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind); // LDR GOT relocations need a relocation if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 && SymLoc == AArch64MCExpr::VK_GOT) return true; return false; } namespace { namespace CU { /// Compact unwind encoding values. enum CompactUnwindEncodings { /// A "frameless" leaf function, where no non-volatile registers are /// saved. The return remains in LR throughout the function. UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, /// No compact unwind encoding available. Instead the low 23-bits of /// the compact unwind encoding is the offset of the DWARF FDE in the /// __eh_frame section. This mode is never used in object files. It is only /// generated by the linker in final linked images, which have only DWARF info /// for a function. UNWIND_ARM64_MODE_DWARF = 0x03000000, /// This is a standard arm64 prologue where FP/LR are immediately /// pushed on the stack, then SP is copied to FP. If there are any /// non-volatile register saved, they are copied into the stack fame in pairs /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the /// five X pairs and four D pairs can be saved, but the memory layout must be /// in register number order. UNWIND_ARM64_MODE_FRAME = 0x04000000, /// Frame register pair encodings. UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800 }; } // end CU namespace // FIXME: This should be in a separate file. class DarwinAArch64AsmBackend : public AArch64AsmBackend { const MCRegisterInfo &MRI; /// Encode compact unwind stack adjustment for frameless functions. /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h. /// The stack size always needs to be 16 byte aligned. uint32_t encodeStackAdjustment(uint32_t StackSize) const { return (StackSize / 16) << 12; } public: DarwinAArch64AsmBackend(const Target &T, const Triple &TT, const MCRegisterInfo &MRI) : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {} std::unique_ptr<MCObjectTargetWriter> createObjectTargetWriter() const override { uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple)); uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple)); return createAArch64MachObjectWriter(CPUType, CPUSubType, TheTriple.isArch32Bit()); } /// Generate the compact unwind encoding from the CFI directives. uint32_t generateCompactUnwindEncoding( ArrayRef<MCCFIInstruction> Instrs) const override { if (Instrs.empty()) return CU::UNWIND_ARM64_MODE_FRAMELESS; bool HasFP = false; unsigned StackSize = 0; uint32_t CompactUnwindEncoding = 0; for (size_t i = 0, e = Instrs.size(); i != e; ++i) { const MCCFIInstruction &Inst = Instrs[i]; switch (Inst.getOperation()) { default: // Cannot handle this directive: bail out. return CU::UNWIND_ARM64_MODE_DWARF; case MCCFIInstruction::OpDefCfa: { // Defines a frame pointer. unsigned XReg = getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true)); // Other CFA registers than FP are not supported by compact unwind. // Fallback on DWARF. // FIXME: When opt-remarks are supported in MC, add a remark to notify // the user. if (XReg != AArch64::FP) return CU::UNWIND_ARM64_MODE_DWARF; assert(XReg == AArch64::FP && "Invalid frame pointer!"); assert(i + 2 < e && "Insufficient CFI instructions to define a frame!"); const MCCFIInstruction &LRPush = Instrs[++i]; assert(LRPush.getOperation() == MCCFIInstruction::OpOffset && "Link register not pushed!"); const MCCFIInstruction &FPPush = Instrs[++i]; assert(FPPush.getOperation() == MCCFIInstruction::OpOffset && "Frame pointer not pushed!"); unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true); unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true); LRReg = getXRegFromWReg(LRReg); FPReg = getXRegFromWReg(FPReg); assert(LRReg == AArch64::LR && FPReg == AArch64::FP && "Pushing invalid registers for frame!"); // Indicate that the function has a frame. CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME; HasFP = true; break; } case MCCFIInstruction::OpDefCfaOffset: { assert(StackSize == 0 && "We already have the CFA offset!"); StackSize = std::abs(Inst.getOffset()); break; } case MCCFIInstruction::OpOffset: { // Registers are saved in pairs. We expect there to be two consecutive // `.cfi_offset' instructions with the appropriate registers specified. unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true); if (i + 1 == e) return CU::UNWIND_ARM64_MODE_DWARF; const MCCFIInstruction &Inst2 = Instrs[++i]; if (Inst2.getOperation() != MCCFIInstruction::OpOffset) return CU::UNWIND_ARM64_MODE_DWARF; unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true); // N.B. The encodings must be in register number order, and the X // registers before the D registers. // X19/X20 pair = 0x00000001, // X21/X22 pair = 0x00000002, // X23/X24 pair = 0x00000004, // X25/X26 pair = 0x00000008, // X27/X28 pair = 0x00000010 Reg1 = getXRegFromWReg(Reg1); Reg2 = getXRegFromWReg(Reg2); if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 && (CompactUnwindEncoding & 0xF1E) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR; else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 && (CompactUnwindEncoding & 0xF1C) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR; else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 && (CompactUnwindEncoding & 0xF18) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR; else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 && (CompactUnwindEncoding & 0xF10) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR; else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 && (CompactUnwindEncoding & 0xF00) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR; else { Reg1 = getDRegFromBReg(Reg1); Reg2 = getDRegFromBReg(Reg2); // D8/D9 pair = 0x00000100, // D10/D11 pair = 0x00000200, // D12/D13 pair = 0x00000400, // D14/D15 pair = 0x00000800 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 && (CompactUnwindEncoding & 0xE00) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR; else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 && (CompactUnwindEncoding & 0xC00) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR; else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 && (CompactUnwindEncoding & 0x800) == 0) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR; else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15) CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR; else // A pair was pushed which we cannot handle. return CU::UNWIND_ARM64_MODE_DWARF; } break; } } } if (!HasFP) { // With compact unwind info we can only represent stack adjustments of up // to 65520 bytes. if (StackSize > 65520) return CU::UNWIND_ARM64_MODE_DWARF; CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS; CompactUnwindEncoding |= encodeStackAdjustment(StackSize); } return CompactUnwindEncoding; } }; } // end anonymous namespace namespace { class ELFAArch64AsmBackend : public AArch64AsmBackend { public: uint8_t OSABI; bool IsILP32; ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI, bool IsLittleEndian, bool IsILP32) : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI), IsILP32(IsILP32) {} std::unique_ptr<MCObjectTargetWriter> createObjectTargetWriter() const override { return createAArch64ELFObjectWriter(OSABI, IsILP32); } }; } namespace { class COFFAArch64AsmBackend : public AArch64AsmBackend { public: COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple) : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {} std::unique_ptr<MCObjectTargetWriter> createObjectTargetWriter() const override { return createAArch64WinCOFFObjectWriter(); } }; } MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TheTriple = STI.getTargetTriple(); if (TheTriple.isOSBinFormatMachO()) { return new DarwinAArch64AsmBackend(T, TheTriple, MRI); } if (TheTriple.isOSBinFormatCOFF()) return new COFFAArch64AsmBackend(T, TheTriple); assert(TheTriple.isOSBinFormatELF() && "Invalid target"); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true, IsILP32); } MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options) { const Triple &TheTriple = STI.getTargetTriple(); assert(TheTriple.isOSBinFormatELF() && "Big endian is only supported for ELF targets!"); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false, IsILP32); }