//===-- MVEVPTOptimisationsPass.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass does a few optimisations related to Tail predicated loops /// and MVE VPT blocks before register allocation is performed. For VPT blocks /// the goal is to maximize the sizes of the blocks that will be created by the /// MVE VPT Block Insertion pass (which runs after register allocation). For /// tail predicated loops we transform the loop into something that will /// hopefully make the backend ARMLowOverheadLoops pass's job easier. /// //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MVETailPredUtils.h" #include "Thumb2InstrInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include using namespace llvm; #define DEBUG_TYPE "arm-mve-vpt-opts" static cl::opt MergeEndDec("arm-enable-merge-loopenddec", cl::Hidden, cl::desc("Enable merging Loop End and Dec instructions."), cl::init(true)); namespace { class MVEVPTOptimisations : public MachineFunctionPass { public: static char ID; const Thumb2InstrInfo *TII; MachineRegisterInfo *MRI; MVEVPTOptimisations() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &Fn) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return "ARM MVE TailPred and VPT Optimisation Pass"; } private: bool MergeLoopEnd(MachineLoop *ML); bool ConvertTailPredLoop(MachineLoop *ML, MachineDominatorTree *DT); MachineInstr &ReplaceRegisterUseWithVPNOT(MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User, Register Target); bool ReduceOldVCCRValueUses(MachineBasicBlock &MBB); bool ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB); bool ReplaceConstByVPNOTs(MachineBasicBlock &MBB, MachineDominatorTree *DT); bool ConvertVPSEL(MachineBasicBlock &MBB); }; char MVEVPTOptimisations::ID = 0; } // end anonymous namespace INITIALIZE_PASS_BEGIN(MVEVPTOptimisations, DEBUG_TYPE, "ARM MVE TailPred and VPT Optimisations pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(MVEVPTOptimisations, DEBUG_TYPE, "ARM MVE TailPred and VPT Optimisations pass", false, false) static MachineInstr *LookThroughCOPY(MachineInstr *MI, MachineRegisterInfo *MRI) { while (MI && MI->getOpcode() == TargetOpcode::COPY && MI->getOperand(1).getReg().isVirtual()) MI = MRI->getVRegDef(MI->getOperand(1).getReg()); return MI; } // Given a loop ML, this attempts to find the t2LoopEnd, t2LoopDec and // corresponding PHI that make up a low overhead loop. Only handles 'do' loops // at the moment, returning a t2DoLoopStart in LoopStart. static bool findLoopComponents(MachineLoop *ML, MachineRegisterInfo *MRI, MachineInstr *&LoopStart, MachineInstr *&LoopPhi, MachineInstr *&LoopDec, MachineInstr *&LoopEnd) { MachineBasicBlock *Header = ML->getHeader(); MachineBasicBlock *Latch = ML->getLoopLatch(); if (!Header || !Latch) { LLVM_DEBUG(dbgs() << " no Loop Latch or Header\n"); return false; } // Find the loop end from the terminators. LoopEnd = nullptr; for (auto &T : Latch->terminators()) { if (T.getOpcode() == ARM::t2LoopEnd && T.getOperand(1).getMBB() == Header) { LoopEnd = &T; break; } if (T.getOpcode() == ARM::t2LoopEndDec && T.getOperand(2).getMBB() == Header) { LoopEnd = &T; break; } } if (!LoopEnd) { LLVM_DEBUG(dbgs() << " no LoopEnd\n"); return false; } LLVM_DEBUG(dbgs() << " found loop end: " << *LoopEnd); // Find the dec from the use of the end. There may be copies between // instructions. We expect the loop to loop like: // $vs = t2DoLoopStart ... // loop: // $vp = phi [ $vs ], [ $vd ] // ... // $vd = t2LoopDec $vp // ... // t2LoopEnd $vd, loop if (LoopEnd->getOpcode() == ARM::t2LoopEndDec) LoopDec = LoopEnd; else { LoopDec = LookThroughCOPY(MRI->getVRegDef(LoopEnd->getOperand(0).getReg()), MRI); if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) { LLVM_DEBUG(dbgs() << " didn't find LoopDec where we expected!\n"); return false; } } LLVM_DEBUG(dbgs() << " found loop dec: " << *LoopDec); LoopPhi = LookThroughCOPY(MRI->getVRegDef(LoopDec->getOperand(1).getReg()), MRI); if (!LoopPhi || LoopPhi->getOpcode() != TargetOpcode::PHI || LoopPhi->getNumOperands() != 5 || (LoopPhi->getOperand(2).getMBB() != Latch && LoopPhi->getOperand(4).getMBB() != Latch)) { LLVM_DEBUG(dbgs() << " didn't find PHI where we expected!\n"); return false; } LLVM_DEBUG(dbgs() << " found loop phi: " << *LoopPhi); Register StartReg = LoopPhi->getOperand(2).getMBB() == Latch ? LoopPhi->getOperand(3).getReg() : LoopPhi->getOperand(1).getReg(); LoopStart = LookThroughCOPY(MRI->getVRegDef(StartReg), MRI); if (!LoopStart || LoopStart->getOpcode() != ARM::t2DoLoopStart) { LLVM_DEBUG(dbgs() << " didn't find Start where we expected!\n"); return false; } LLVM_DEBUG(dbgs() << " found loop start: " << *LoopStart); return true; } // This function converts loops with t2LoopEnd and t2LoopEnd instructions into // a single t2LoopEndDec instruction. To do that it needs to make sure that LR // will be valid to be used for the low overhead loop, which means nothing else // is using LR (especially calls) and there are no superfluous copies in the // loop. The t2LoopEndDec is a branching terminator that produces a value (the // decrement) around the loop edge, which means we need to be careful that they // will be valid to allocate without any spilling. bool MVEVPTOptimisations::MergeLoopEnd(MachineLoop *ML) { if (!MergeEndDec) return false; LLVM_DEBUG(dbgs() << "MergeLoopEnd on loop " << ML->getHeader()->getName() << "\n"); MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec; if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd)) return false; // Check if there is an illegal instruction (a call) in the low overhead loop // and if so revert it now before we get any further. for (MachineBasicBlock *MBB : ML->blocks()) { for (MachineInstr &MI : *MBB) { if (MI.isCall()) { LLVM_DEBUG(dbgs() << "Found call in loop, reverting: " << MI); RevertDoLoopStart(LoopStart, TII); RevertLoopDec(LoopDec, TII); RevertLoopEnd(LoopEnd, TII); return true; } } } // Remove any copies from the loop, to ensure the phi that remains is both // simpler and contains no extra uses. Because t2LoopEndDec is a terminator // that cannot spill, we need to be careful what remains in the loop. Register PhiReg = LoopPhi->getOperand(0).getReg(); Register DecReg = LoopDec->getOperand(0).getReg(); Register StartReg = LoopStart->getOperand(0).getReg(); // Ensure the uses are expected, and collect any copies we want to remove. SmallVector Copies; auto CheckUsers = [&Copies](Register BaseReg, ArrayRef ExpectedUsers, MachineRegisterInfo *MRI) { SmallVector Worklist; Worklist.push_back(BaseReg); while (!Worklist.empty()) { Register Reg = Worklist.pop_back_val(); for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { if (count(ExpectedUsers, &MI)) continue; if (MI.getOpcode() != TargetOpcode::COPY || !MI.getOperand(0).getReg().isVirtual()) { LLVM_DEBUG(dbgs() << "Extra users of register found: " << MI); return false; } Worklist.push_back(MI.getOperand(0).getReg()); Copies.push_back(&MI); } } return true; }; if (!CheckUsers(PhiReg, {LoopDec}, MRI) || !CheckUsers(DecReg, {LoopPhi, LoopEnd}, MRI) || !CheckUsers(StartReg, {LoopPhi}, MRI)) return false; MRI->constrainRegClass(StartReg, &ARM::GPRlrRegClass); MRI->constrainRegClass(PhiReg, &ARM::GPRlrRegClass); MRI->constrainRegClass(DecReg, &ARM::GPRlrRegClass); if (LoopPhi->getOperand(2).getMBB() == ML->getLoopLatch()) { LoopPhi->getOperand(3).setReg(StartReg); LoopPhi->getOperand(1).setReg(DecReg); } else { LoopPhi->getOperand(1).setReg(StartReg); LoopPhi->getOperand(3).setReg(DecReg); } // Replace the loop dec and loop end as a single instruction. MachineInstrBuilder MI = BuildMI(*LoopEnd->getParent(), *LoopEnd, LoopEnd->getDebugLoc(), TII->get(ARM::t2LoopEndDec), DecReg) .addReg(PhiReg) .add(LoopEnd->getOperand(1)); (void)MI; LLVM_DEBUG(dbgs() << "Merged LoopDec and End into: " << *MI.getInstr()); LoopDec->eraseFromParent(); LoopEnd->eraseFromParent(); for (auto *MI : Copies) MI->eraseFromParent(); return true; } // Convert t2DoLoopStart to t2DoLoopStartTP if the loop contains VCTP // instructions. This keeps the VCTP count reg operand on the t2DoLoopStartTP // instruction, making the backend ARMLowOverheadLoops passes job of finding the // VCTP operand much simpler. bool MVEVPTOptimisations::ConvertTailPredLoop(MachineLoop *ML, MachineDominatorTree *DT) { LLVM_DEBUG(dbgs() << "ConvertTailPredLoop on loop " << ML->getHeader()->getName() << "\n"); // Find some loop components including the LoopEnd/Dec/Start, and any VCTP's // in the loop. MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec; if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd)) return false; if (LoopDec != LoopEnd) return false; SmallVector VCTPs; for (MachineBasicBlock *BB : ML->blocks()) for (MachineInstr &MI : *BB) if (isVCTP(&MI)) VCTPs.push_back(&MI); if (VCTPs.empty()) { LLVM_DEBUG(dbgs() << " no VCTPs\n"); return false; } // Check all VCTPs are the same. MachineInstr *FirstVCTP = *VCTPs.begin(); for (MachineInstr *VCTP : VCTPs) { LLVM_DEBUG(dbgs() << " with VCTP " << *VCTP); if (VCTP->getOpcode() != FirstVCTP->getOpcode() || VCTP->getOperand(0).getReg() != FirstVCTP->getOperand(0).getReg()) { LLVM_DEBUG(dbgs() << " VCTP's are not identical\n"); return false; } } // Check for the register being used can be setup before the loop. We expect // this to be: // $vx = ... // loop: // $vp = PHI [ $vx ], [ $vd ] // .. // $vpr = VCTP $vp // .. // $vd = t2SUBri $vp, #n // .. Register CountReg = FirstVCTP->getOperand(1).getReg(); if (!CountReg.isVirtual()) { LLVM_DEBUG(dbgs() << " cannot determine VCTP PHI\n"); return false; } MachineInstr *Phi = LookThroughCOPY(MRI->getVRegDef(CountReg), MRI); if (!Phi || Phi->getOpcode() != TargetOpcode::PHI || Phi->getNumOperands() != 5 || (Phi->getOperand(2).getMBB() != ML->getLoopLatch() && Phi->getOperand(4).getMBB() != ML->getLoopLatch())) { LLVM_DEBUG(dbgs() << " cannot determine VCTP Count\n"); return false; } CountReg = Phi->getOperand(2).getMBB() == ML->getLoopLatch() ? Phi->getOperand(3).getReg() : Phi->getOperand(1).getReg(); // Replace the t2DoLoopStart with the t2DoLoopStartTP, move it to the end of // the preheader and add the new CountReg to it. We attempt to place it late // in the preheader, but may need to move that earlier based on uses. MachineBasicBlock *MBB = LoopStart->getParent(); MachineBasicBlock::iterator InsertPt = MBB->getFirstTerminator(); for (MachineInstr &Use : MRI->use_instructions(LoopStart->getOperand(0).getReg())) if ((InsertPt != MBB->end() && !DT->dominates(&*InsertPt, &Use)) || !DT->dominates(ML->getHeader(), Use.getParent())) { LLVM_DEBUG(dbgs() << " InsertPt could not be a terminator!\n"); return false; } MachineInstrBuilder MI = BuildMI(*MBB, InsertPt, LoopStart->getDebugLoc(), TII->get(ARM::t2DoLoopStartTP)) .add(LoopStart->getOperand(0)) .add(LoopStart->getOperand(1)) .addReg(CountReg); (void)MI; LLVM_DEBUG(dbgs() << "Replacing " << *LoopStart << " with " << *MI.getInstr()); MRI->constrainRegClass(CountReg, &ARM::rGPRRegClass); LoopStart->eraseFromParent(); return true; } // Returns true if Opcode is any VCMP Opcode. static bool IsVCMP(unsigned Opcode) { return VCMPOpcodeToVPT(Opcode) != 0; } // Returns true if a VCMP with this Opcode can have its operands swapped. // There is 2 kind of VCMP that can't have their operands swapped: Float VCMPs, // and VCMPr instructions (since the r is always on the right). static bool CanHaveSwappedOperands(unsigned Opcode) { switch (Opcode) { default: return true; case ARM::MVE_VCMPf32: case ARM::MVE_VCMPf16: case ARM::MVE_VCMPf32r: case ARM::MVE_VCMPf16r: case ARM::MVE_VCMPi8r: case ARM::MVE_VCMPi16r: case ARM::MVE_VCMPi32r: case ARM::MVE_VCMPu8r: case ARM::MVE_VCMPu16r: case ARM::MVE_VCMPu32r: case ARM::MVE_VCMPs8r: case ARM::MVE_VCMPs16r: case ARM::MVE_VCMPs32r: return false; } } // Returns the CondCode of a VCMP Instruction. static ARMCC::CondCodes GetCondCode(MachineInstr &Instr) { assert(IsVCMP(Instr.getOpcode()) && "Inst must be a VCMP"); return ARMCC::CondCodes(Instr.getOperand(3).getImm()); } // Returns true if Cond is equivalent to a VPNOT instruction on the result of // Prev. Cond and Prev must be VCMPs. static bool IsVPNOTEquivalent(MachineInstr &Cond, MachineInstr &Prev) { assert(IsVCMP(Cond.getOpcode()) && IsVCMP(Prev.getOpcode())); // Opcodes must match. if (Cond.getOpcode() != Prev.getOpcode()) return false; MachineOperand &CondOP1 = Cond.getOperand(1), &CondOP2 = Cond.getOperand(2); MachineOperand &PrevOP1 = Prev.getOperand(1), &PrevOP2 = Prev.getOperand(2); // If the VCMP has the opposite condition with the same operands, we can // replace it with a VPNOT ARMCC::CondCodes ExpectedCode = GetCondCode(Cond); ExpectedCode = ARMCC::getOppositeCondition(ExpectedCode); if (ExpectedCode == GetCondCode(Prev)) if (CondOP1.isIdenticalTo(PrevOP1) && CondOP2.isIdenticalTo(PrevOP2)) return true; // Check again with operands swapped if possible if (!CanHaveSwappedOperands(Cond.getOpcode())) return false; ExpectedCode = ARMCC::getSwappedCondition(ExpectedCode); return ExpectedCode == GetCondCode(Prev) && CondOP1.isIdenticalTo(PrevOP2) && CondOP2.isIdenticalTo(PrevOP1); } // Returns true if Instr writes to VCCR. static bool IsWritingToVCCR(MachineInstr &Instr) { if (Instr.getNumOperands() == 0) return false; MachineOperand &Dst = Instr.getOperand(0); if (!Dst.isReg()) return false; Register DstReg = Dst.getReg(); if (!DstReg.isVirtual()) return false; MachineRegisterInfo &RegInfo = Instr.getMF()->getRegInfo(); const TargetRegisterClass *RegClass = RegInfo.getRegClassOrNull(DstReg); return RegClass && (RegClass->getID() == ARM::VCCRRegClassID); } // Transforms // // Into // %K = VPNOT %Target // // And returns the newly inserted VPNOT. // This optimization is done in the hopes of preventing spills/reloads of VPR by // reducing the number of VCCR values with overlapping lifetimes. MachineInstr &MVEVPTOptimisations::ReplaceRegisterUseWithVPNOT( MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User, Register Target) { Register NewResult = MRI->createVirtualRegister(MRI->getRegClass(Target)); MachineInstrBuilder MIBuilder = BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT)) .addDef(NewResult) .addReg(Target); addUnpredicatedMveVpredNOp(MIBuilder); // Make the user use NewResult instead, and clear its kill flag. User.setReg(NewResult); User.setIsKill(false); LLVM_DEBUG(dbgs() << " Inserting VPNOT (for spill prevention): "; MIBuilder.getInstr()->dump()); return *MIBuilder.getInstr(); } // Moves a VPNOT before its first user if an instruction that uses Reg is found // in-between the VPNOT and its user. // Returns true if there is at least one user of the VPNOT in the block. static bool MoveVPNOTBeforeFirstUser(MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, Register Reg) { assert(Iter->getOpcode() == ARM::MVE_VPNOT && "Not a VPNOT!"); assert(getVPTInstrPredicate(*Iter) == ARMVCC::None && "The VPNOT cannot be predicated"); MachineInstr &VPNOT = *Iter; Register VPNOTResult = VPNOT.getOperand(0).getReg(); Register VPNOTOperand = VPNOT.getOperand(1).getReg(); // Whether the VPNOT will need to be moved, and whether we found a user of the // VPNOT. bool MustMove = false, HasUser = false; MachineOperand *VPNOTOperandKiller = nullptr; for (; Iter != MBB.end(); ++Iter) { if (MachineOperand *MO = Iter->findRegisterUseOperand(VPNOTOperand, /*isKill*/ true)) { // If we find the operand that kills the VPNOTOperand's result, save it. VPNOTOperandKiller = MO; } if (Iter->findRegisterUseOperandIdx(Reg) != -1) { MustMove = true; continue; } if (Iter->findRegisterUseOperandIdx(VPNOTResult) == -1) continue; HasUser = true; if (!MustMove) break; // Move the VPNOT right before Iter LLVM_DEBUG(dbgs() << "Moving: "; VPNOT.dump(); dbgs() << " Before: "; Iter->dump()); MBB.splice(Iter, &MBB, VPNOT.getIterator()); // If we move the instr, and its operand was killed earlier, remove the kill // flag. if (VPNOTOperandKiller) VPNOTOperandKiller->setIsKill(false); break; } return HasUser; } // This optimisation attempts to reduce the number of overlapping lifetimes of // VCCR values by replacing uses of old VCCR values with VPNOTs. For example, // this replaces // %A:vccr = (something) // %B:vccr = VPNOT %A // %Foo = (some op that uses %B) // %Bar = (some op that uses %A) // With // %A:vccr = (something) // %B:vccr = VPNOT %A // %Foo = (some op that uses %B) // %TMP2:vccr = VPNOT %B // %Bar = (some op that uses %A) bool MVEVPTOptimisations::ReduceOldVCCRValueUses(MachineBasicBlock &MBB) { MachineBasicBlock::iterator Iter = MBB.begin(), End = MBB.end(); SmallVector DeadInstructions; bool Modified = false; while (Iter != End) { Register VCCRValue, OppositeVCCRValue; // The first loop looks for 2 unpredicated instructions: // %A:vccr = (instr) ; A is stored in VCCRValue // %B:vccr = VPNOT %A ; B is stored in OppositeVCCRValue for (; Iter != End; ++Iter) { // We're only interested in unpredicated instructions that write to VCCR. if (!IsWritingToVCCR(*Iter) || getVPTInstrPredicate(*Iter) != ARMVCC::None) continue; Register Dst = Iter->getOperand(0).getReg(); // If we already have a VCCRValue, and this is a VPNOT on VCCRValue, we've // found what we were looking for. if (VCCRValue && Iter->getOpcode() == ARM::MVE_VPNOT && Iter->findRegisterUseOperandIdx(VCCRValue) != -1) { // Move the VPNOT closer to its first user if needed, and ignore if it // has no users. if (!MoveVPNOTBeforeFirstUser(MBB, Iter, VCCRValue)) continue; OppositeVCCRValue = Dst; ++Iter; break; } // Else, just set VCCRValue. VCCRValue = Dst; } // If the first inner loop didn't find anything, stop here. if (Iter == End) break; assert(VCCRValue && OppositeVCCRValue && "VCCRValue and OppositeVCCRValue shouldn't be empty if the loop " "stopped before the end of the block!"); assert(VCCRValue != OppositeVCCRValue && "VCCRValue should not be equal to OppositeVCCRValue!"); // LastVPNOTResult always contains the same value as OppositeVCCRValue. Register LastVPNOTResult = OppositeVCCRValue; // This second loop tries to optimize the remaining instructions. for (; Iter != End; ++Iter) { bool IsInteresting = false; if (MachineOperand *MO = Iter->findRegisterUseOperand(VCCRValue)) { IsInteresting = true; // - If the instruction is a VPNOT, it can be removed, and we can just // replace its uses with LastVPNOTResult. // - Else, insert a new VPNOT on LastVPNOTResult to recompute VCCRValue. if (Iter->getOpcode() == ARM::MVE_VPNOT) { Register Result = Iter->getOperand(0).getReg(); MRI->replaceRegWith(Result, LastVPNOTResult); DeadInstructions.push_back(&*Iter); Modified = true; LLVM_DEBUG(dbgs() << "Replacing all uses of '" << printReg(Result) << "' with '" << printReg(LastVPNOTResult) << "'\n"); } else { MachineInstr &VPNOT = ReplaceRegisterUseWithVPNOT(MBB, *Iter, *MO, LastVPNOTResult); Modified = true; LastVPNOTResult = VPNOT.getOperand(0).getReg(); std::swap(VCCRValue, OppositeVCCRValue); LLVM_DEBUG(dbgs() << "Replacing use of '" << printReg(VCCRValue) << "' with '" << printReg(LastVPNOTResult) << "' in instr: " << *Iter); } } else { // If the instr uses OppositeVCCRValue, make it use LastVPNOTResult // instead as they contain the same value. if (MachineOperand *MO = Iter->findRegisterUseOperand(OppositeVCCRValue)) { IsInteresting = true; // This is pointless if LastVPNOTResult == OppositeVCCRValue. if (LastVPNOTResult != OppositeVCCRValue) { LLVM_DEBUG(dbgs() << "Replacing usage of '" << printReg(OppositeVCCRValue) << "' with '" << printReg(LastVPNOTResult) << " for instr: "; Iter->dump()); MO->setReg(LastVPNOTResult); Modified = true; } MO->setIsKill(false); } // If this is an unpredicated VPNOT on // LastVPNOTResult/OppositeVCCRValue, we can act like we inserted it. if (Iter->getOpcode() == ARM::MVE_VPNOT && getVPTInstrPredicate(*Iter) == ARMVCC::None) { Register VPNOTOperand = Iter->getOperand(1).getReg(); if (VPNOTOperand == LastVPNOTResult || VPNOTOperand == OppositeVCCRValue) { IsInteresting = true; std::swap(VCCRValue, OppositeVCCRValue); LastVPNOTResult = Iter->getOperand(0).getReg(); } } } // If this instruction was not interesting, and it writes to VCCR, stop. if (!IsInteresting && IsWritingToVCCR(*Iter)) break; } } for (MachineInstr *DeadInstruction : DeadInstructions) DeadInstruction->eraseFromParent(); return Modified; } // This optimisation replaces VCMPs with VPNOTs when they are equivalent. bool MVEVPTOptimisations::ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB) { SmallVector DeadInstructions; // The last VCMP that we have seen and that couldn't be replaced. // This is reset when an instruction that writes to VCCR/VPR is found, or when // a VCMP is replaced with a VPNOT. // We'll only replace VCMPs with VPNOTs when this is not null, and when the // current VCMP is the opposite of PrevVCMP. MachineInstr *PrevVCMP = nullptr; // If we find an instruction that kills the result of PrevVCMP, we save the // operand here to remove the kill flag in case we need to use PrevVCMP's // result. MachineOperand *PrevVCMPResultKiller = nullptr; for (MachineInstr &Instr : MBB.instrs()) { if (PrevVCMP) { if (MachineOperand *MO = Instr.findRegisterUseOperand( PrevVCMP->getOperand(0).getReg(), /*isKill*/ true)) { // If we come accross the instr that kills PrevVCMP's result, record it // so we can remove the kill flag later if we need to. PrevVCMPResultKiller = MO; } } // Ignore predicated instructions. if (getVPTInstrPredicate(Instr) != ARMVCC::None) continue; // Only look at VCMPs if (!IsVCMP(Instr.getOpcode())) { // If the instruction writes to VCCR, forget the previous VCMP. if (IsWritingToVCCR(Instr)) PrevVCMP = nullptr; continue; } if (!PrevVCMP || !IsVPNOTEquivalent(Instr, *PrevVCMP)) { PrevVCMP = &Instr; continue; } // The register containing the result of the VCMP that we're going to // replace. Register PrevVCMPResultReg = PrevVCMP->getOperand(0).getReg(); // Build a VPNOT to replace the VCMP, reusing its operands. MachineInstrBuilder MIBuilder = BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT)) .add(Instr.getOperand(0)) .addReg(PrevVCMPResultReg); addUnpredicatedMveVpredNOp(MIBuilder); LLVM_DEBUG(dbgs() << "Inserting VPNOT (to replace VCMP): "; MIBuilder.getInstr()->dump(); dbgs() << " Removed VCMP: "; Instr.dump()); // If we found an instruction that uses, and kills PrevVCMP's result, // remove the kill flag. if (PrevVCMPResultKiller) PrevVCMPResultKiller->setIsKill(false); // Finally, mark the old VCMP for removal and reset // PrevVCMP/PrevVCMPResultKiller. DeadInstructions.push_back(&Instr); PrevVCMP = nullptr; PrevVCMPResultKiller = nullptr; } for (MachineInstr *DeadInstruction : DeadInstructions) DeadInstruction->eraseFromParent(); return !DeadInstructions.empty(); } bool MVEVPTOptimisations::ReplaceConstByVPNOTs(MachineBasicBlock &MBB, MachineDominatorTree *DT) { // Scan through the block, looking for instructions that use constants moves // into VPR that are the negative of one another. These are expected to be // COPY's to VCCRRegClass, from a t2MOVi or t2MOVi16. The last seen constant // mask is kept it or and VPNOT's of it are added or reused as we scan through // the function. unsigned LastVPTImm = 0; Register LastVPTReg = 0; SmallSet DeadInstructions; for (MachineInstr &Instr : MBB.instrs()) { // Look for predicated MVE instructions. int PIdx = llvm::findFirstVPTPredOperandIdx(Instr); if (PIdx == -1) continue; Register VPR = Instr.getOperand(PIdx + 1).getReg(); if (!VPR.isVirtual()) continue; // From that we are looking for an instruction like %11:vccr = COPY %9:rgpr. MachineInstr *Copy = MRI->getVRegDef(VPR); if (!Copy || Copy->getOpcode() != TargetOpcode::COPY || !Copy->getOperand(1).getReg().isVirtual() || MRI->getRegClass(Copy->getOperand(1).getReg()) == &ARM::VCCRRegClass) { LastVPTReg = 0; continue; } Register GPR = Copy->getOperand(1).getReg(); // Find the Immediate used by the copy. auto getImm = [&](Register GPR) -> unsigned { MachineInstr *Def = MRI->getVRegDef(GPR); if (Def && (Def->getOpcode() == ARM::t2MOVi || Def->getOpcode() == ARM::t2MOVi16)) return Def->getOperand(1).getImm(); return -1U; }; unsigned Imm = getImm(GPR); if (Imm == -1U) { LastVPTReg = 0; continue; } unsigned NotImm = ~Imm & 0xffff; if (LastVPTReg != 0 && LastVPTReg != VPR && LastVPTImm == Imm) { Instr.getOperand(PIdx + 1).setReg(LastVPTReg); if (MRI->use_empty(VPR)) { DeadInstructions.insert(Copy); if (MRI->hasOneUse(GPR)) DeadInstructions.insert(MRI->getVRegDef(GPR)); } LLVM_DEBUG(dbgs() << "Reusing predicate: in " << Instr); } else if (LastVPTReg != 0 && LastVPTImm == NotImm) { // We have found the not of a previous constant. Create a VPNot of the // earlier predicate reg and use it instead of the copy. Register NewVPR = MRI->createVirtualRegister(&ARM::VCCRRegClass); auto VPNot = BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT), NewVPR) .addReg(LastVPTReg); addUnpredicatedMveVpredNOp(VPNot); // Use the new register and check if the def is now dead. Instr.getOperand(PIdx + 1).setReg(NewVPR); if (MRI->use_empty(VPR)) { DeadInstructions.insert(Copy); if (MRI->hasOneUse(GPR)) DeadInstructions.insert(MRI->getVRegDef(GPR)); } LLVM_DEBUG(dbgs() << "Adding VPNot: " << *VPNot << " to replace use at " << Instr); VPR = NewVPR; } LastVPTImm = Imm; LastVPTReg = VPR; } for (MachineInstr *DI : DeadInstructions) DI->eraseFromParent(); return !DeadInstructions.empty(); } // Replace VPSEL with a predicated VMOV in blocks with a VCTP. This is a // somewhat blunt approximation to allow tail predicated with vpsel // instructions. We turn a vselect into a VPSEL in ISEL, but they have slightly // different semantics under tail predication. Until that is modelled we just // convert to a VMOVT (via a predicated VORR) instead. bool MVEVPTOptimisations::ConvertVPSEL(MachineBasicBlock &MBB) { bool HasVCTP = false; SmallVector DeadInstructions; for (MachineInstr &MI : MBB.instrs()) { if (isVCTP(&MI)) { HasVCTP = true; continue; } if (!HasVCTP || MI.getOpcode() != ARM::MVE_VPSEL) continue; MachineInstrBuilder MIBuilder = BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(ARM::MVE_VORR)) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .add(MI.getOperand(1)) .addImm(ARMVCC::Then) .add(MI.getOperand(4)) .add(MI.getOperand(2)); // Silence unused variable warning in release builds. (void)MIBuilder; LLVM_DEBUG(dbgs() << "Replacing VPSEL: "; MI.dump(); dbgs() << " with VMOVT: "; MIBuilder.getInstr()->dump()); DeadInstructions.push_back(&MI); } for (MachineInstr *DeadInstruction : DeadInstructions) DeadInstruction->eraseFromParent(); return !DeadInstructions.empty(); } bool MVEVPTOptimisations::runOnMachineFunction(MachineFunction &Fn) { const ARMSubtarget &STI = static_cast(Fn.getSubtarget()); if (!STI.isThumb2() || !STI.hasLOB()) return false; TII = static_cast(STI.getInstrInfo()); MRI = &Fn.getRegInfo(); MachineLoopInfo *MLI = &getAnalysis(); MachineDominatorTree *DT = &getAnalysis(); LLVM_DEBUG(dbgs() << "********** ARM MVE VPT Optimisations **********\n" << "********** Function: " << Fn.getName() << '\n'); bool Modified = false; for (MachineLoop *ML : MLI->getBase().getLoopsInPreorder()) { Modified |= MergeLoopEnd(ML); Modified |= ConvertTailPredLoop(ML, DT); } for (MachineBasicBlock &MBB : Fn) { Modified |= ReplaceConstByVPNOTs(MBB, DT); Modified |= ReplaceVCMPsByVPNOTs(MBB); Modified |= ReduceOldVCCRValueUses(MBB); Modified |= ConvertVPSEL(MBB); } LLVM_DEBUG(dbgs() << "**************************************\n"); return Modified; } /// createMVEVPTOptimisationsPass FunctionPass *llvm::createMVEVPTOptimisationsPass() { return new MVEVPTOptimisations(); }