; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=riscv32 -mattr=+f -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32IF %s ; RUN: llc -mtriple=riscv32 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32IF %s ; RUN: llc -mtriple=riscv64 -mattr=+f -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64IF %s ; RUN: llc -mtriple=riscv64 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64IF %s declare float @llvm.sqrt.f32(float) define float @sqrt_f32(float %a) nounwind { ; RV32IF-LABEL: sqrt_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a0 ; RV32IF-NEXT: fsqrt.s ft0, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: sqrt_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a0 ; RV64IF-NEXT: fsqrt.s ft0, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.sqrt.f32(float %a) ret float %1 } declare float @llvm.powi.f32(float, i32) define float @powi_f32(float %a, i32 %b) nounwind { ; RV32IF-LABEL: powi_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call __powisf2@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: powi_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: sext.w a1, a1 ; RV64IF-NEXT: call __powisf2@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.powi.f32(float %a, i32 %b) ret float %1 } declare float @llvm.sin.f32(float) define float @sin_f32(float %a) nounwind { ; RV32IF-LABEL: sin_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call sinf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: sin_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call sinf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.sin.f32(float %a) ret float %1 } declare float @llvm.cos.f32(float) define float @cos_f32(float %a) nounwind { ; RV32IF-LABEL: cos_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call cosf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: cos_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call cosf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.cos.f32(float %a) ret float %1 } ; The sin+cos combination results in an FSINCOS SelectionDAG node. define float @sincos_f32(float %a) nounwind { ; RV32IF-LABEL: sincos_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: sw s0, 8(sp) # 4-byte Folded Spill ; RV32IF-NEXT: mv s0, a0 ; RV32IF-NEXT: call sinf@plt ; RV32IF-NEXT: fmv.w.x ft0, a0 ; RV32IF-NEXT: fsw ft0, 4(sp) # 4-byte Folded Spill ; RV32IF-NEXT: mv a0, s0 ; RV32IF-NEXT: call cosf@plt ; RV32IF-NEXT: fmv.w.x ft0, a0 ; RV32IF-NEXT: flw ft1, 4(sp) # 4-byte Folded Reload ; RV32IF-NEXT: fadd.s ft0, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: lw s0, 8(sp) # 4-byte Folded Reload ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: sincos_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -32 ; RV64IF-NEXT: sd ra, 24(sp) # 8-byte Folded Spill ; RV64IF-NEXT: sd s0, 16(sp) # 8-byte Folded Spill ; RV64IF-NEXT: mv s0, a0 ; RV64IF-NEXT: call sinf@plt ; RV64IF-NEXT: fmv.w.x ft0, a0 ; RV64IF-NEXT: fsw ft0, 12(sp) # 4-byte Folded Spill ; RV64IF-NEXT: mv a0, s0 ; RV64IF-NEXT: call cosf@plt ; RV64IF-NEXT: fmv.w.x ft0, a0 ; RV64IF-NEXT: flw ft1, 12(sp) # 4-byte Folded Reload ; RV64IF-NEXT: fadd.s ft0, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ld s0, 16(sp) # 8-byte Folded Reload ; RV64IF-NEXT: ld ra, 24(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 32 ; RV64IF-NEXT: ret %1 = call float @llvm.sin.f32(float %a) %2 = call float @llvm.cos.f32(float %a) %3 = fadd float %1, %2 ret float %3 } declare float @llvm.pow.f32(float, float) define float @pow_f32(float %a, float %b) nounwind { ; RV32IF-LABEL: pow_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call powf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: pow_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call powf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.pow.f32(float %a, float %b) ret float %1 } declare float @llvm.exp.f32(float) define float @exp_f32(float %a) nounwind { ; RV32IF-LABEL: exp_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call expf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: exp_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call expf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.exp.f32(float %a) ret float %1 } declare float @llvm.exp2.f32(float) define float @exp2_f32(float %a) nounwind { ; RV32IF-LABEL: exp2_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call exp2f@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: exp2_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call exp2f@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.exp2.f32(float %a) ret float %1 } declare float @llvm.log.f32(float) define float @log_f32(float %a) nounwind { ; RV32IF-LABEL: log_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call logf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: log_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call logf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.log.f32(float %a) ret float %1 } declare float @llvm.log10.f32(float) define float @log10_f32(float %a) nounwind { ; RV32IF-LABEL: log10_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call log10f@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: log10_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call log10f@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.log10.f32(float %a) ret float %1 } declare float @llvm.log2.f32(float) define float @log2_f32(float %a) nounwind { ; RV32IF-LABEL: log2_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call log2f@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: log2_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call log2f@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.log2.f32(float %a) ret float %1 } declare float @llvm.fma.f32(float, float, float) define float @fma_f32(float %a, float %b, float %c) nounwind { ; RV32IF-LABEL: fma_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a2 ; RV32IF-NEXT: fmv.w.x ft1, a1 ; RV32IF-NEXT: fmv.w.x ft2, a0 ; RV32IF-NEXT: fmadd.s ft0, ft2, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: fma_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a2 ; RV64IF-NEXT: fmv.w.x ft1, a1 ; RV64IF-NEXT: fmv.w.x ft2, a0 ; RV64IF-NEXT: fmadd.s ft0, ft2, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.fma.f32(float %a, float %b, float %c) ret float %1 } declare float @llvm.fmuladd.f32(float, float, float) define float @fmuladd_f32(float %a, float %b, float %c) nounwind { ; RV32IF-LABEL: fmuladd_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a2 ; RV32IF-NEXT: fmv.w.x ft1, a1 ; RV32IF-NEXT: fmv.w.x ft2, a0 ; RV32IF-NEXT: fmadd.s ft0, ft2, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: fmuladd_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a2 ; RV64IF-NEXT: fmv.w.x ft1, a1 ; RV64IF-NEXT: fmv.w.x ft2, a0 ; RV64IF-NEXT: fmadd.s ft0, ft2, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ret float %1 } declare float @llvm.fabs.f32(float) define float @fabs_f32(float %a) nounwind { ; RV32IF-LABEL: fabs_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: lui a1, 524288 ; RV32IF-NEXT: addi a1, a1, -1 ; RV32IF-NEXT: and a0, a0, a1 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: fabs_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: lui a1, 524288 ; RV64IF-NEXT: addiw a1, a1, -1 ; RV64IF-NEXT: and a0, a0, a1 ; RV64IF-NEXT: ret %1 = call float @llvm.fabs.f32(float %a) ret float %1 } declare float @llvm.minnum.f32(float, float) define float @minnum_f32(float %a, float %b) nounwind { ; RV32IF-LABEL: minnum_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a1 ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fmin.s ft0, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: minnum_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a1 ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fmin.s ft0, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.minnum.f32(float %a, float %b) ret float %1 } declare float @llvm.maxnum.f32(float, float) define float @maxnum_f32(float %a, float %b) nounwind { ; RV32IF-LABEL: maxnum_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a1 ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fmax.s ft0, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: maxnum_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a1 ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fmax.s ft0, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.maxnum.f32(float %a, float %b) ret float %1 } ; TODO: FMINNAN and FMAXNAN aren't handled in ; SelectionDAGLegalize::ExpandNode. ; declare float @llvm.minimum.f32(float, float) ; define float @fminimum_f32(float %a, float %b) nounwind { ; %1 = call float @llvm.minimum.f32(float %a, float %b) ; ret float %1 ; } ; declare float @llvm.maximum.f32(float, float) ; define float @fmaximum_f32(float %a, float %b) nounwind { ; %1 = call float @llvm.maximum.f32(float %a, float %b) ; ret float %1 ; } declare float @llvm.copysign.f32(float, float) define float @copysign_f32(float %a, float %b) nounwind { ; RV32IF-LABEL: copysign_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: fmv.w.x ft0, a1 ; RV32IF-NEXT: fmv.w.x ft1, a0 ; RV32IF-NEXT: fsgnj.s ft0, ft1, ft0 ; RV32IF-NEXT: fmv.x.w a0, ft0 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: copysign_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: fmv.w.x ft0, a1 ; RV64IF-NEXT: fmv.w.x ft1, a0 ; RV64IF-NEXT: fsgnj.s ft0, ft1, ft0 ; RV64IF-NEXT: fmv.x.w a0, ft0 ; RV64IF-NEXT: ret %1 = call float @llvm.copysign.f32(float %a, float %b) ret float %1 } declare float @llvm.floor.f32(float) define float @floor_f32(float %a) nounwind { ; RV32IF-LABEL: floor_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call floorf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: floor_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call floorf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.floor.f32(float %a) ret float %1 } declare float @llvm.ceil.f32(float) define float @ceil_f32(float %a) nounwind { ; RV32IF-LABEL: ceil_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call ceilf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: ceil_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call ceilf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.ceil.f32(float %a) ret float %1 } declare float @llvm.trunc.f32(float) define float @trunc_f32(float %a) nounwind { ; RV32IF-LABEL: trunc_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call truncf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: trunc_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call truncf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.trunc.f32(float %a) ret float %1 } declare float @llvm.rint.f32(float) define float @rint_f32(float %a) nounwind { ; RV32IF-LABEL: rint_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call rintf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: rint_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call rintf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.rint.f32(float %a) ret float %1 } declare float @llvm.nearbyint.f32(float) define float @nearbyint_f32(float %a) nounwind { ; RV32IF-LABEL: nearbyint_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call nearbyintf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: nearbyint_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call nearbyintf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.nearbyint.f32(float %a) ret float %1 } declare float @llvm.round.f32(float) define float @round_f32(float %a) nounwind { ; RV32IF-LABEL: round_f32: ; RV32IF: # %bb.0: ; RV32IF-NEXT: addi sp, sp, -16 ; RV32IF-NEXT: sw ra, 12(sp) # 4-byte Folded Spill ; RV32IF-NEXT: call roundf@plt ; RV32IF-NEXT: lw ra, 12(sp) # 4-byte Folded Reload ; RV32IF-NEXT: addi sp, sp, 16 ; RV32IF-NEXT: ret ; ; RV64IF-LABEL: round_f32: ; RV64IF: # %bb.0: ; RV64IF-NEXT: addi sp, sp, -16 ; RV64IF-NEXT: sd ra, 8(sp) # 8-byte Folded Spill ; RV64IF-NEXT: call roundf@plt ; RV64IF-NEXT: ld ra, 8(sp) # 8-byte Folded Reload ; RV64IF-NEXT: addi sp, sp, 16 ; RV64IF-NEXT: ret %1 = call float @llvm.round.f32(float %a) ret float %1 }