; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s declare void @use8(i8) declare void @use32(i32) ; There should be no 'and' instructions left in any test. define i32 @test1(i32 %A) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: ret i32 0 ; %B = and i32 %A, 0 ret i32 %B } define i32 @test2(i32 %A) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: ret i32 [[A:%.*]] ; %B = and i32 %A, -1 ret i32 %B } define i1 @test3(i1 %A) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: ret i1 false ; %B = and i1 %A, false ret i1 %B } define i1 @test3_logical(i1 %A) { ; CHECK-LABEL: @test3_logical( ; CHECK-NEXT: ret i1 false ; %B = select i1 %A, i1 false, i1 false ret i1 %B } define i1 @test4(i1 %A) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: ret i1 [[A:%.*]] ; %B = and i1 %A, true ret i1 %B } define i1 @test4_logical(i1 %A) { ; CHECK-LABEL: @test4_logical( ; CHECK-NEXT: ret i1 [[A:%.*]] ; %B = select i1 %A, i1 true, i1 false ret i1 %B } define i32 @test5(i32 %A) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: ret i32 [[A:%.*]] ; %B = and i32 %A, %A ret i32 %B } define i1 @test6(i1 %A) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: ret i1 [[A:%.*]] ; %B = and i1 %A, %A ret i1 %B } define i1 @test6_logical(i1 %A) { ; CHECK-LABEL: @test6_logical( ; CHECK-NEXT: ret i1 [[A:%.*]] ; %B = select i1 %A, i1 %A, i1 false ret i1 %B } ; A & ~A == 0 define i32 @test7(i32 %A) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: ret i32 0 ; %NotA = xor i32 %A, -1 %B = and i32 %A, %NotA ret i32 %B } ; AND associates define i8 @test8(i8 %A) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: ret i8 0 ; %B = and i8 %A, 3 %C = and i8 %B, 4 ret i8 %C } ; Test of sign bit, convert to setle %A, 0 define i1 @test9(i32 %A) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -2147483648 %C = icmp ne i32 %B, 0 ret i1 %C } ; Test of sign bit, convert to setle %A, 0 define i1 @test9a(i32 %A) { ; CHECK-LABEL: @test9a( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -2147483648 %C = icmp ne i32 %B, 0 ret i1 %C } define i32 @test10(i32 %A) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: ret i32 1 ; %B = and i32 %A, 12 %C = xor i32 %B, 15 ; (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) %D = and i32 %C, 1 ret i32 %D } define i32 @test11(i32 %A, i32* %P) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[B:%.*]] = or i32 [[A:%.*]], 3 ; CHECK-NEXT: [[C:%.*]] = xor i32 [[B]], 12 ; CHECK-NEXT: store i32 [[C]], i32* [[P:%.*]], align 4 ; CHECK-NEXT: ret i32 3 ; %B = or i32 %A, 3 %C = xor i32 %B, 12 ; additional use of C store i32 %C, i32* %P ; %C = and uint %B, 3 --> 3 %D = and i32 %C, 3 ret i32 %D } define i1 @test12(i32 %A, i32 %B) { ; CHECK-LABEL: @test12( ; CHECK-NEXT: [[C1:%.*]] = icmp ult i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i1 [[C1]] ; %C1 = icmp ult i32 %A, %B %C2 = icmp ule i32 %A, %B ; (A < B) & (A <= B) === (A < B) %D = and i1 %C1, %C2 ret i1 %D } define i1 @test12_logical(i32 %A, i32 %B) { ; CHECK-LABEL: @test12_logical( ; CHECK-NEXT: [[C1:%.*]] = icmp ult i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i1 [[C1]] ; %C1 = icmp ult i32 %A, %B %C2 = icmp ule i32 %A, %B ; (A < B) & (A <= B) === (A < B) %D = select i1 %C1, i1 %C2, i1 false ret i1 %D } define i1 @test13(i32 %A, i32 %B) { ; CHECK-LABEL: @test13( ; CHECK-NEXT: ret i1 false ; %C1 = icmp ult i32 %A, %B %C2 = icmp ugt i32 %A, %B ; (A < B) & (A > B) === false %D = and i1 %C1, %C2 ret i1 %D } define i1 @test13_logical(i32 %A, i32 %B) { ; CHECK-LABEL: @test13_logical( ; CHECK-NEXT: ret i1 false ; %C1 = icmp ult i32 %A, %B %C2 = icmp ugt i32 %A, %B ; (A < B) & (A > B) === false %D = select i1 %C1, i1 %C2, i1 false ret i1 %D } define i1 @test14(i8 %A) { ; CHECK-LABEL: @test14( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 [[A:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i8 %A, -128 %C = icmp ne i8 %B, 0 ret i1 %C } define i8 @test15(i8 %A) { ; CHECK-LABEL: @test15( ; CHECK-NEXT: ret i8 0 ; %B = lshr i8 %A, 7 ; Always equals zero %C = and i8 %B, 2 ret i8 %C } define i8 @test16(i8 %A) { ; CHECK-LABEL: @test16( ; CHECK-NEXT: ret i8 0 ; %B = shl i8 %A, 2 %C = and i8 %B, 3 ret i8 %C } define i1 @test18(i32 %A) { ; CHECK-LABEL: @test18( ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[A:%.*]], 127 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -128 ;; C >= 128 %C = icmp ne i32 %B, 0 ret i1 %C } define <2 x i1> @test18_vec(<2 x i32> %A) { ; CHECK-LABEL: @test18_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %B = and <2 x i32> %A, %C = icmp ne <2 x i32> %B, zeroinitializer ret <2 x i1> %C } define i1 @test18a(i8 %A) { ; CHECK-LABEL: @test18a( ; CHECK-NEXT: [[C:%.*]] = icmp ult i8 [[A:%.*]], 2 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i8 %A, -2 %C = icmp eq i8 %B, 0 ret i1 %C } define <2 x i1> @test18a_vec(<2 x i8> %A) { ; CHECK-LABEL: @test18a_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ult <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %B = and <2 x i8> %A, %C = icmp eq <2 x i8> %B, zeroinitializer ret <2 x i1> %C } define i32 @test19(i32 %A) { ; CHECK-LABEL: @test19( ; CHECK-NEXT: [[B:%.*]] = shl i32 [[A:%.*]], 3 ; CHECK-NEXT: ret i32 [[B]] ; %B = shl i32 %A, 3 ;; Clearing a zero bit %C = and i32 %B, -2 ret i32 %C } define i8 @test20(i8 %A) { ; CHECK-LABEL: @test20( ; CHECK-NEXT: [[C:%.*]] = lshr i8 [[A:%.*]], 7 ; CHECK-NEXT: ret i8 [[C]] ; %C = lshr i8 %A, 7 ;; Unneeded %D = and i8 %C, 1 ret i8 %D } define i1 @test23(i32 %A) { ; CHECK-LABEL: @test23( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[A:%.*]], 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp sle i32 %A, 2 %D = and i1 %B, %C ret i1 %D } define i1 @test23_logical(i32 %A) { ; CHECK-LABEL: @test23_logical( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[A:%.*]], 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp sle i32 %A, 2 %D = select i1 %B, i1 %C, i1 false ret i1 %D } ; FIXME: Vectors should fold too. define <2 x i1> @test23vec(<2 x i32> %A) { ; CHECK-LABEL: @test23vec( ; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> [[A:%.*]], ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> [[A]], ; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]] ; CHECK-NEXT: ret <2 x i1> [[D]] ; %B = icmp sgt <2 x i32> %A, %C = icmp sle <2 x i32> %A, %D = and <2 x i1> %B, %C ret <2 x i1> %D } define i1 @test24(i32 %A) { ; CHECK-LABEL: @test24( ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i32 [[A:%.*]], 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp ne i32 %A, 2 ;; A > 2 %D = and i1 %B, %C ret i1 %D } define i1 @test24_logical(i32 %A) { ; CHECK-LABEL: @test24_logical( ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i32 [[A:%.*]], 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp ne i32 %A, 2 ;; A > 2 %D = select i1 %B, i1 %C, i1 false ret i1 %D } define i1 @test25(i32 %A) { ; CHECK-LABEL: @test25( ; CHECK-NEXT: [[A_OFF:%.*]] = add i32 [[A:%.*]], -50 ; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 [[A_OFF]], 50 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sge i32 %A, 50 %C = icmp slt i32 %A, 100 %D = and i1 %B, %C ret i1 %D } define i1 @test25_logical(i32 %A) { ; CHECK-LABEL: @test25_logical( ; CHECK-NEXT: [[A_OFF:%.*]] = add i32 [[A:%.*]], -50 ; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 [[A_OFF]], 50 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sge i32 %A, 50 %C = icmp slt i32 %A, 100 %D = select i1 %B, i1 %C, i1 false ret i1 %D } ; FIXME: Vectors should fold too. define <2 x i1> @test25vec(<2 x i32> %A) { ; CHECK-LABEL: @test25vec( ; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> [[A:%.*]], ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> [[A]], ; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]] ; CHECK-NEXT: ret <2 x i1> [[D]] ; %B = icmp sge <2 x i32> %A, %C = icmp slt <2 x i32> %A, %D = and <2 x i1> %B, %C ret <2 x i1> %D } define i8 @test27(i8 %A) { ; CHECK-LABEL: @test27( ; CHECK-NEXT: ret i8 0 ; %B = and i8 %A, 4 %C = sub i8 %B, 16 ;; 0xF0 %D = and i8 %C, -16 %E = add i8 %D, 16 ret i8 %E } ;; This is just a zero-extending shr. define i32 @test28(i32 %X) { ; CHECK-LABEL: @test28( ; CHECK-NEXT: [[TMP1:%.*]] = lshr i32 [[X:%.*]], 24 ; CHECK-NEXT: ret i32 [[TMP1]] ; ;; Sign extend %Y = ashr i32 %X, 24 ;; Mask out sign bits %Z = and i32 %Y, 255 ret i32 %Z } define i32 @test29(i8 %X) { ; CHECK-LABEL: @test29( ; CHECK-NEXT: [[Y:%.*]] = zext i8 [[X:%.*]] to i32 ; CHECK-NEXT: ret i32 [[Y]] ; %Y = zext i8 %X to i32 ;; Zero extend makes this unneeded. %Z = and i32 %Y, 255 ret i32 %Z } define i32 @test30(i1 %X) { ; CHECK-LABEL: @test30( ; CHECK-NEXT: [[Y:%.*]] = zext i1 [[X:%.*]] to i32 ; CHECK-NEXT: ret i32 [[Y]] ; %Y = zext i1 %X to i32 %Z = and i32 %Y, 1 ret i32 %Z } define i32 @test31(i1 %X) { ; CHECK-LABEL: @test31( ; CHECK-NEXT: [[Z:%.*]] = select i1 [[X:%.*]], i32 16, i32 0 ; CHECK-NEXT: ret i32 [[Z]] ; %Y = zext i1 %X to i32 %Z = shl i32 %Y, 4 %A = and i32 %Z, 16 ret i32 %A } ; Demanded bit analysis allows us to eliminate the add. define <2 x i32> @and_demanded_bits_splat_vec(<2 x i32> %x) { ; CHECK-LABEL: @and_demanded_bits_splat_vec( ; CHECK-NEXT: [[Z:%.*]] = and <2 x i32> [[X:%.*]], ; CHECK-NEXT: ret <2 x i32> [[Z]] ; %y = add <2 x i32> %x, %z = and <2 x i32> %y, ret <2 x i32> %z } ; zext (x >> 8) has all zeros in the high 24-bits: 0x000000xx ; (y | 255) has all ones in the low 8-bits: 0xyyyyyyff ; 'and' of those is all known bits - it's just 'z'. define i32 @and_zext_demanded(i16 %x, i32 %y) { ; CHECK-LABEL: @and_zext_demanded( ; CHECK-NEXT: [[S:%.*]] = lshr i16 [[X:%.*]], 8 ; CHECK-NEXT: [[Z:%.*]] = zext i16 [[S]] to i32 ; CHECK-NEXT: ret i32 [[Z]] ; %s = lshr i16 %x, 8 %z = zext i16 %s to i32 %o = or i32 %y, 255 %a = and i32 %o, %z ret i32 %a } define i32 @test32(i32 %In) { ; CHECK-LABEL: @test32( ; CHECK-NEXT: ret i32 0 ; %Y = and i32 %In, 16 %Z = lshr i32 %Y, 2 %A = and i32 %Z, 1 ret i32 %A } ;; Code corresponding to one-bit bitfield ^1. define i32 @test33(i32 %b) { ; CHECK-LABEL: @test33( ; CHECK-NEXT: [[T13:%.*]] = xor i32 [[B:%.*]], 1 ; CHECK-NEXT: ret i32 [[T13]] ; %t4.mask = and i32 %b, 1 %t10 = xor i32 %t4.mask, 1 %t12 = and i32 %b, -2 %t13 = or i32 %t12, %t10 ret i32 %t13 } define i32 @test33b(i32 %b) { ; CHECK-LABEL: @test33b( ; CHECK-NEXT: [[T13:%.*]] = xor i32 [[B:%.*]], 1 ; CHECK-NEXT: ret i32 [[T13]] ; %t4.mask = and i32 %b, 1 %t10 = xor i32 %t4.mask, 1 %t12 = and i32 %b, -2 %t13 = or i32 %t10, %t12 ret i32 %t13 } define <2 x i32> @test33vec(<2 x i32> %b) { ; CHECK-LABEL: @test33vec( ; CHECK-NEXT: [[T13:%.*]] = xor <2 x i32> [[B:%.*]], ; CHECK-NEXT: ret <2 x i32> [[T13]] ; %t4.mask = and <2 x i32> %b, %t10 = xor <2 x i32> %t4.mask, %t12 = and <2 x i32> %b, %t13 = or <2 x i32> %t12, %t10 ret <2 x i32> %t13 } define <2 x i32> @test33vecb(<2 x i32> %b) { ; CHECK-LABEL: @test33vecb( ; CHECK-NEXT: [[T13:%.*]] = xor <2 x i32> [[B:%.*]], ; CHECK-NEXT: ret <2 x i32> [[T13]] ; %t4.mask = and <2 x i32> %b, %t10 = xor <2 x i32> %t4.mask, %t12 = and <2 x i32> %b, %t13 = or <2 x i32> %t10, %t12 ret <2 x i32> %t13 } define i32 @test34(i32 %A, i32 %B) { ; CHECK-LABEL: @test34( ; CHECK-NEXT: ret i32 [[B:%.*]] ; %t2 = or i32 %B, %A %t4 = and i32 %t2, %B ret i32 %t4 } ; FIXME: This test should only need -instsimplify (ValueTracking / computeKnownBits), not -instcombine. define <2 x i32> @PR24942(<2 x i32> %x) { ; CHECK-LABEL: @PR24942( ; CHECK-NEXT: ret <2 x i32> zeroinitializer ; %lshr = lshr <2 x i32> %x, %and = and <2 x i32> %lshr, ret <2 x i32> %and } define i64 @test35(i32 %X) { ; CHECK-LABEL: @test35( ; CHECK-NEXT: [[TMP1:%.*]] = sub i32 0, [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 240 ; CHECK-NEXT: [[RES:%.*]] = zext i32 [[TMP2]] to i64 ; CHECK-NEXT: ret i64 [[RES]] ; %zext = zext i32 %X to i64 %zsub = sub i64 0, %zext %res = and i64 %zsub, 240 ret i64 %res } define <2 x i64> @test35_uniform(<2 x i32> %X) { ; CHECK-LABEL: @test35_uniform( ; CHECK-NEXT: [[ZEXT:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64> ; CHECK-NEXT: [[ZSUB:%.*]] = sub nsw <2 x i64> zeroinitializer, [[ZEXT]] ; CHECK-NEXT: [[RES:%.*]] = and <2 x i64> [[ZSUB]], ; CHECK-NEXT: ret <2 x i64> [[RES]] ; %zext = zext <2 x i32> %X to <2 x i64> %zsub = sub <2 x i64> zeroinitializer, %zext %res = and <2 x i64> %zsub, ret <2 x i64> %res } define i64 @test36(i32 %X) { ; CHECK-LABEL: @test36( ; CHECK-NEXT: [[TMP1:%.*]] = add i32 [[X:%.*]], 7 ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 240 ; CHECK-NEXT: [[RES:%.*]] = zext i32 [[TMP2]] to i64 ; CHECK-NEXT: ret i64 [[RES]] ; %zext = zext i32 %X to i64 %zsub = add i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define <2 x i64> @test36_undef(<2 x i32> %X) { ; CHECK-LABEL: @test36_undef( ; CHECK-NEXT: [[ZEXT:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64> ; CHECK-NEXT: [[ZSUB:%.*]] = add <2 x i64> [[ZEXT]], ; CHECK-NEXT: [[RES:%.*]] = and <2 x i64> [[ZSUB]], ; CHECK-NEXT: ret <2 x i64> [[RES]] ; %zext = zext <2 x i32> %X to <2 x i64> %zsub = add <2 x i64> %zext, %res = and <2 x i64> %zsub, ret <2 x i64> %res } define i64 @test37(i32 %X) { ; CHECK-LABEL: @test37( ; CHECK-NEXT: [[TMP1:%.*]] = mul i32 [[X:%.*]], 7 ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], 240 ; CHECK-NEXT: [[RES:%.*]] = zext i32 [[TMP2]] to i64 ; CHECK-NEXT: ret i64 [[RES]] ; %zext = zext i32 %X to i64 %zsub = mul i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define <2 x i64> @test37_nonuniform(<2 x i32> %X) { ; CHECK-LABEL: @test37_nonuniform( ; CHECK-NEXT: [[ZEXT:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64> ; CHECK-NEXT: [[ZSUB:%.*]] = mul nuw nsw <2 x i64> [[ZEXT]], ; CHECK-NEXT: [[RES:%.*]] = and <2 x i64> [[ZSUB]], ; CHECK-NEXT: ret <2 x i64> [[RES]] ; %zext = zext <2 x i32> %X to <2 x i64> %zsub = mul <2 x i64> %zext, %res = and <2 x i64> %zsub, ret <2 x i64> %res } define i64 @test38(i32 %X) { ; CHECK-LABEL: @test38( ; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[X:%.*]], 240 ; CHECK-NEXT: [[RES:%.*]] = zext i32 [[TMP1]] to i64 ; CHECK-NEXT: ret i64 [[RES]] ; %zext = zext i32 %X to i64 %zsub = xor i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i64 @test39(i32 %X) { ; CHECK-LABEL: @test39( ; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[X:%.*]], 240 ; CHECK-NEXT: [[RES:%.*]] = zext i32 [[TMP1]] to i64 ; CHECK-NEXT: ret i64 [[RES]] ; %zext = zext i32 %X to i64 %zsub = or i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i32 @test40(i1 %C) { ; CHECK-LABEL: @test40( ; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], i32 104, i32 10 ; CHECK-NEXT: ret i32 [[A]] ; %A = select i1 %C, i32 1000, i32 10 %V = and i32 %A, 123 ret i32 %V } define <2 x i32> @test40vec(i1 %C) { ; CHECK-LABEL: @test40vec( ; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[A]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = and <2 x i32> %A, ret <2 x i32> %V } define <2 x i32> @test40vec2(i1 %C) { ; CHECK-LABEL: @test40vec2( ; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[V]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = and <2 x i32> %A, ret <2 x i32> %V } define i32 @test41(i1 %which) { ; CHECK-LABEL: @test41( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ 104, [[ENTRY:%.*]] ], [ 10, [[DELAY]] ] ; CHECK-NEXT: ret i32 [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi i32 [ 1000, %entry ], [ 10, %delay ] %value = and i32 %A, 123 ret i32 %value } define <2 x i32> @test41vec(i1 %which) { ; CHECK-LABEL: @test41vec( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = and <2 x i32> %A, ret <2 x i32> %value } define <2 x i32> @test41vec2(i1 %which) { ; CHECK-LABEL: @test41vec2( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = and <2 x i32> %A, ret <2 x i32> %value } define i32 @test42(i32 %a, i32 %c, i32 %d) { ; CHECK-LABEL: @test42( ; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[AND]] ; %force = mul i32 %c, %d ; forces the complexity sorting %or = or i32 %a, %force %nota = xor i32 %a, -1 %xor = xor i32 %nota, %force %and = and i32 %xor, %or ret i32 %and } define i32 @test43(i32 %a, i32 %c, i32 %d) { ; CHECK-LABEL: @test43( ; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[AND]] ; %force = mul i32 %c, %d ; forces the complexity sorting %or = or i32 %a, %force %nota = xor i32 %a, -1 %xor = xor i32 %nota, %force %and = and i32 %or, %xor ret i32 %and } ; (~y | x) & y -> x & y define i32 @test44(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test44( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %n, %x %a = and i32 %o, %y ret i32 %a } ; (x | ~y) & y -> x & y define i32 @test45(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test45( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %x, %n %a = and i32 %o, %y ret i32 %a } ; y & (~y | x) -> y | x define i32 @test46(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test46( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %n, %x %a = and i32 %y, %o ret i32 %a } ; y & (x | ~y) -> y | x define i32 @test47(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test47( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %x, %n %a = and i32 %y, %o ret i32 %a } ; In the next 4 tests, vary the types and predicates for extra coverage. ; (X & (Y | ~X)) -> (X & Y), where 'not' is an inverted cmp define i1 @and_orn_cmp_1(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @and_orn_cmp_1( ; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i32 %a, %b %x_inv = icmp sle i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x_inv %and = and i1 %x, %or ret i1 %and } define i1 @and_orn_cmp_1_logical(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @and_orn_cmp_1_logical( ; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i32 %a, %b %x_inv = icmp sle i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = select i1 %y, i1 true, i1 %x_inv %and = select i1 %x, i1 %or, i1 false ret i1 %and } ; Commute the 'and': ; ((Y | ~X) & X) -> (X & Y), where 'not' is an inverted cmp define <2 x i1> @and_orn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) { ; CHECK-LABEL: @and_orn_cmp_2( ; CHECK-NEXT: [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <2 x i1> [[Y]], [[X]] ; CHECK-NEXT: ret <2 x i1> [[AND]] ; %x = icmp sge <2 x i32> %a, %b %x_inv = icmp slt <2 x i32> %a, %b %y = icmp ugt <2 x i32> %c, ; thwart complexity-based ordering %or = or <2 x i1> %y, %x_inv %and = and <2 x i1> %or, %x ret <2 x i1> %and } ; Commute the 'or': ; (X & (~X | Y)) -> (X & Y), where 'not' is an inverted cmp define i1 @and_orn_cmp_3(i72 %a, i72 %b, i72 %c) { ; CHECK-LABEL: @and_orn_cmp_3( ; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp ugt i72 %a, %b %x_inv = icmp ule i72 %a, %b %y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering %or = or i1 %x_inv, %y %and = and i1 %x, %or ret i1 %and } define i1 @and_orn_cmp_3_logical(i72 %a, i72 %b, i72 %c) { ; CHECK-LABEL: @and_orn_cmp_3_logical( ; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp ugt i72 %a, %b %x_inv = icmp ule i72 %a, %b %y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering %or = select i1 %x_inv, i1 true, i1 %y %and = select i1 %x, i1 %or, i1 false ret i1 %and } ; Commute the 'and': ; ((~X | Y) & X) -> (X & Y), where 'not' is an inverted cmp define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) { ; CHECK-LABEL: @or_andn_cmp_4( ; CHECK-NEXT: [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <3 x i1> [[Y]], [[X]] ; CHECK-NEXT: ret <3 x i1> [[AND]] ; %x = icmp eq <3 x i32> %a, %b %x_inv = icmp ne <3 x i32> %a, %b %y = icmp ugt <3 x i32> %c, ; thwart complexity-based ordering %or = or <3 x i1> %x_inv, %y %and = and <3 x i1> %or, %x ret <3 x i1> %and } ; In the next 4 tests, vary the types and predicates for extra coverage. ; (~X & (Y | X)) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_1(i37 %a, i37 %b, i37 %c) { ; CHECK-LABEL: @andn_or_cmp_1( ; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i37 %a, %b %x_inv = icmp sle i37 %a, %b %y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x %and = and i1 %x_inv, %or ret i1 %and } define i1 @andn_or_cmp_1_logical(i37 %a, i37 %b, i37 %c) { ; CHECK-LABEL: @andn_or_cmp_1_logical( ; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i37 %a, %b %x_inv = icmp sle i37 %a, %b %y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering %or = select i1 %y, i1 true, i1 %x %and = select i1 %x_inv, i1 %or, i1 false ret i1 %and } ; Commute the 'and': ; ((Y | X) & ~X) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_2(i16 %a, i16 %b, i16 %c) { ; CHECK-LABEL: @andn_or_cmp_2( ; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sge i16 %a, %b %x_inv = icmp slt i16 %a, %b %y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x %and = and i1 %or, %x_inv ret i1 %and } define i1 @andn_or_cmp_2_logical(i16 %a, i16 %b, i16 %c) { ; CHECK-LABEL: @andn_or_cmp_2_logical( ; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sge i16 %a, %b %x_inv = icmp slt i16 %a, %b %y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering %or = select i1 %y, i1 true, i1 %x %and = select i1 %or, i1 %x_inv, i1 false ret i1 %and } ; Commute the 'or': ; (~X & (X | Y)) -> (~X & Y), where 'not' is an inverted cmp define <4 x i1> @andn_or_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) { ; CHECK-LABEL: @andn_or_cmp_3( ; CHECK-NEXT: [[X_INV:%.*]] = icmp ule <4 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <4 x i1> [[X_INV]], [[Y]] ; CHECK-NEXT: ret <4 x i1> [[AND]] ; %x = icmp ugt <4 x i32> %a, %b %x_inv = icmp ule <4 x i32> %a, %b %y = icmp ugt <4 x i32> %c, ; thwart complexity-based ordering %or = or <4 x i1> %x, %y %and = and <4 x i1> %x_inv, %or ret <4 x i1> %and } ; Commute the 'and': ; ((X | Y) & ~X) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_4(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @andn_or_cmp_4( ; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp eq i32 %a, %b %x_inv = icmp ne i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = or i1 %x, %y %and = and i1 %or, %x_inv ret i1 %and } define i1 @andn_or_cmp_4_logical(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @andn_or_cmp_4_logical( ; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp eq i32 %a, %b %x_inv = icmp ne i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = select i1 %x, i1 true, i1 %y %and = select i1 %or, i1 %x_inv, i1 false ret i1 %and } define i32 @lowbitmask_casted_shift(i8 %x) { ; CHECK-LABEL: @lowbitmask_casted_shift( ; CHECK-NEXT: [[TMP1:%.*]] = sext i8 [[X:%.*]] to i32 ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[TMP1]], 1 ; CHECK-NEXT: ret i32 [[R]] ; %a = ashr i8 %x, 1 %s = sext i8 %a to i32 %r = and i32 %s, 2147483647 ret i32 %r } ; Negative test - mask constant is too big. define i32 @lowbitmask_casted_shift_wrong_mask1(i8 %x) { ; CHECK-LABEL: @lowbitmask_casted_shift_wrong_mask1( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 2 ; CHECK-NEXT: [[S:%.*]] = sext i8 [[A]] to i32 ; CHECK-NEXT: [[R:%.*]] = and i32 [[S]], 2147483647 ; CHECK-NEXT: ret i32 [[R]] ; %a = ashr i8 %x, 2 %s = sext i8 %a to i32 %r = and i32 %s, 2147483647 ; 0x7fffffff ret i32 %r } ; Negative test - mask constant is too small. define i32 @lowbitmask_casted_shift_wrong_mask2(i8 %x) { ; CHECK-LABEL: @lowbitmask_casted_shift_wrong_mask2( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 2 ; CHECK-NEXT: [[S:%.*]] = sext i8 [[A]] to i32 ; CHECK-NEXT: [[R:%.*]] = and i32 [[S]], 536870911 ; CHECK-NEXT: ret i32 [[R]] ; %a = ashr i8 %x, 2 %s = sext i8 %a to i32 %r = and i32 %s, 536870911 ; 0x1fffffff ret i32 %r } ; Extra use of shift is ok. define i32 @lowbitmask_casted_shift_use1(i8 %x) { ; CHECK-LABEL: @lowbitmask_casted_shift_use1( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 3 ; CHECK-NEXT: call void @use8(i8 [[A]]) ; CHECK-NEXT: [[TMP1:%.*]] = sext i8 [[X]] to i32 ; CHECK-NEXT: [[R:%.*]] = lshr i32 [[TMP1]], 3 ; CHECK-NEXT: ret i32 [[R]] ; %a = ashr i8 %x, 3 call void @use8(i8 %a) %s = sext i8 %a to i32 %r = and i32 %s, 536870911 ret i32 %r } ; Negative test - extra use of sext requires more instructions. define i32 @lowbitmask_casted_shift_use2(i8 %x) { ; CHECK-LABEL: @lowbitmask_casted_shift_use2( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 3 ; CHECK-NEXT: [[S:%.*]] = sext i8 [[A]] to i32 ; CHECK-NEXT: call void @use32(i32 [[S]]) ; CHECK-NEXT: [[R:%.*]] = and i32 [[S]], 536870911 ; CHECK-NEXT: ret i32 [[R]] ; %a = ashr i8 %x, 3 %s = sext i8 %a to i32 call void @use32(i32 %s) %r = and i32 %s, 536870911 ret i32 %r } ; Vectors/weird types are ok. define <2 x i59> @lowbitmask_casted_shift_vec_splat(<2 x i47> %x) { ; CHECK-LABEL: @lowbitmask_casted_shift_vec_splat( ; CHECK-NEXT: [[TMP1:%.*]] = sext <2 x i47> [[X:%.*]] to <2 x i59> ; CHECK-NEXT: [[R:%.*]] = lshr <2 x i59> [[TMP1]], ; CHECK-NEXT: ret <2 x i59> [[R]] ; %a = ashr <2 x i47> %x, %s = sext <2 x i47> %a to <2 x i59> %r = and <2 x i59> %s, ; -1 u>> 5 == 0x3f_ffff_ffff_ffff ret <2 x i59> %r } define i32 @lowmask_sext_in_reg(i32 %x) { ; CHECK-LABEL: @lowmask_sext_in_reg( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 20 ; CHECK-NEXT: [[R:%.*]] = ashr exact i32 [[L]], 20 ; CHECK-NEXT: call void @use32(i32 [[R]]) ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X]], 4095 ; CHECK-NEXT: ret i32 [[AND]] ; %l = shl i32 %x, 20 %r = ashr i32 %l, 20 call void @use32(i32 %r) %and = and i32 %r, 4095 ret i32 %and } ; Negative test - mismatched shift amounts define i32 @lowmask_not_sext_in_reg(i32 %x) { ; CHECK-LABEL: @lowmask_not_sext_in_reg( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 19 ; CHECK-NEXT: [[R:%.*]] = ashr i32 [[L]], 20 ; CHECK-NEXT: call void @use32(i32 [[R]]) ; CHECK-NEXT: [[AND:%.*]] = and i32 [[R]], 4095 ; CHECK-NEXT: ret i32 [[AND]] ; %l = shl i32 %x, 19 %r = ashr i32 %l, 20 call void @use32(i32 %r) %and = and i32 %r, 4095 ret i32 %and } ; Negative test - too much shift for mask define i32 @not_lowmask_sext_in_reg(i32 %x) { ; CHECK-LABEL: @not_lowmask_sext_in_reg( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 20 ; CHECK-NEXT: [[R:%.*]] = ashr exact i32 [[L]], 20 ; CHECK-NEXT: call void @use32(i32 [[R]]) ; CHECK-NEXT: [[AND:%.*]] = and i32 [[R]], 4096 ; CHECK-NEXT: ret i32 [[AND]] ; %l = shl i32 %x, 20 %r = ashr i32 %l, 20 call void @use32(i32 %r) %and = and i32 %r, 4096 ret i32 %and } ; Negative test - too much shift for mask define i32 @not_lowmask_sext_in_reg2(i32 %x) { ; CHECK-LABEL: @not_lowmask_sext_in_reg2( ; CHECK-NEXT: [[L:%.*]] = shl i32 [[X:%.*]], 21 ; CHECK-NEXT: [[R:%.*]] = ashr exact i32 [[L]], 21 ; CHECK-NEXT: call void @use32(i32 [[R]]) ; CHECK-NEXT: [[AND:%.*]] = and i32 [[R]], 4095 ; CHECK-NEXT: ret i32 [[AND]] ; %l = shl i32 %x, 21 %r = ashr i32 %l, 21 call void @use32(i32 %r) %and = and i32 %r, 4095 ret i32 %and } define <2 x i32> @lowmask_sext_in_reg_splat(<2 x i32> %x, <2 x i32>* %p) { ; CHECK-LABEL: @lowmask_sext_in_reg_splat( ; CHECK-NEXT: [[L:%.*]] = shl <2 x i32> [[X:%.*]], ; CHECK-NEXT: [[R:%.*]] = ashr exact <2 x i32> [[L]], ; CHECK-NEXT: store <2 x i32> [[R]], <2 x i32>* [[P:%.*]], align 8 ; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> [[X]], ; CHECK-NEXT: ret <2 x i32> [[AND]] ; %l = shl <2 x i32> %x, %r = ashr <2 x i32> %l, store <2 x i32> %r, <2 x i32>* %p %and = and <2 x i32> %r, ret <2 x i32> %and } define i8 @lowmask_add(i8 %x) { ; CHECK-LABEL: @lowmask_add( ; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -64 ; CHECK-NEXT: call void @use8(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = and i8 [[X]], 32 ; CHECK-NEXT: ret i8 [[R]] ; %a = add i8 %x, -64 ; 0xc0 call void @use8(i8 %a) %r = and i8 %a, 32 ; 0x20 ret i8 %r } define i8 @lowmask_add_2(i8 %x) { ; CHECK-LABEL: @lowmask_add_2( ; CHECK-NEXT: [[R:%.*]] = and i8 [[X:%.*]], 63 ; CHECK-NEXT: ret i8 [[R]] ; %a = add i8 %x, -64 ; 0xc0 %r = and i8 %a, 63 ; 0x3f ret i8 %r } define i8 @lowmask_add_2_uses(i8 %x) { ; CHECK-LABEL: @lowmask_add_2_uses( ; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -64 ; CHECK-NEXT: call void @use8(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = and i8 [[X]], 63 ; CHECK-NEXT: ret i8 [[R]] ; %a = add i8 %x, -64 ; 0xc0 call void @use8(i8 %a) %r = and i8 %a, 63 ; 0x3f ret i8 %r } define <2 x i8> @lowmask_add_2_splat(<2 x i8> %x, <2 x i8>* %p) { ; CHECK-LABEL: @lowmask_add_2_splat( ; CHECK-NEXT: [[A:%.*]] = add <2 x i8> [[X:%.*]], ; CHECK-NEXT: store <2 x i8> [[A]], <2 x i8>* [[P:%.*]], align 2 ; CHECK-NEXT: [[R:%.*]] = and <2 x i8> [[X]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = add <2 x i8> %x, ; 0xc0 store <2 x i8> %a, <2 x i8>* %p %r = and <2 x i8> %a, ; 0x3f ret <2 x i8> %r } ; Negative test - mask overlaps low bit of add define i8 @not_lowmask_add(i8 %x) { ; CHECK-LABEL: @not_lowmask_add( ; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -64 ; CHECK-NEXT: call void @use8(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = and i8 [[A]], 64 ; CHECK-NEXT: ret i8 [[R]] ; %a = add i8 %x, -64 ; 0xc0 call void @use8(i8 %a) %r = and i8 %a, 64 ; 0x40 ret i8 %r } ; Negative test - mask overlaps low bit of add define i8 @not_lowmask_add2(i8 %x) { ; CHECK-LABEL: @not_lowmask_add2( ; CHECK-NEXT: [[A:%.*]] = add i8 [[X:%.*]], -96 ; CHECK-NEXT: call void @use8(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = and i8 [[A]], 63 ; CHECK-NEXT: ret i8 [[R]] ; %a = add i8 %x, -96 ; 0xe0 call void @use8(i8 %a) %r = and i8 %a, 63 ; 0x3f ret i8 %r } define <2 x i8> @lowmask_add_splat(<2 x i8> %x, <2 x i8>* %p) { ; CHECK-LABEL: @lowmask_add_splat( ; CHECK-NEXT: [[A:%.*]] = add <2 x i8> [[X:%.*]], ; CHECK-NEXT: store <2 x i8> [[A]], <2 x i8>* [[P:%.*]], align 2 ; CHECK-NEXT: [[R:%.*]] = and <2 x i8> [[X]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = add <2 x i8> %x, ; 0xc0 store <2 x i8> %a, <2 x i8>* %p %r = and <2 x i8> %a, ; 0x20 ret <2 x i8> %r } define <2 x i8> @lowmask_add_splat_undef(<2 x i8> %x, <2 x i8>* %p) { ; CHECK-LABEL: @lowmask_add_splat_undef( ; CHECK-NEXT: [[A:%.*]] = add <2 x i8> [[X:%.*]], ; CHECK-NEXT: store <2 x i8> [[A]], <2 x i8>* [[P:%.*]], align 2 ; CHECK-NEXT: [[R:%.*]] = and <2 x i8> [[A]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = add <2 x i8> %x, ; 0xc0 store <2 x i8> %a, <2 x i8>* %p %r = and <2 x i8> %a, ; 0x20 ret <2 x i8> %r } define <2 x i8> @lowmask_add_vec(<2 x i8> %x, <2 x i8>* %p) { ; CHECK-LABEL: @lowmask_add_vec( ; CHECK-NEXT: [[A:%.*]] = add <2 x i8> [[X:%.*]], ; CHECK-NEXT: store <2 x i8> [[A]], <2 x i8>* [[P:%.*]], align 2 ; CHECK-NEXT: [[R:%.*]] = and <2 x i8> [[A]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = add <2 x i8> %x, ; 0xe0, 0xc0 store <2 x i8> %a, <2 x i8>* %p %r = and <2 x i8> %a, ; 0x10, 0x20 ret <2 x i8> %r } ; Only one bit set define i8 @flip_masked_bit(i8 %A) { ; CHECK-LABEL: @flip_masked_bit( ; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[A:%.*]], 16 ; CHECK-NEXT: [[C:%.*]] = xor i8 [[TMP1]], 16 ; CHECK-NEXT: ret i8 [[C]] ; %B = add i8 %A, 16 %C = and i8 %B, 16 ret i8 %C } define <2 x i8> @flip_masked_bit_uniform(<2 x i8> %A) { ; CHECK-LABEL: @flip_masked_bit_uniform( ; CHECK-NEXT: [[TMP1:%.*]] = and <2 x i8> [[A:%.*]], ; CHECK-NEXT: [[C:%.*]] = xor <2 x i8> [[TMP1]], ; CHECK-NEXT: ret <2 x i8> [[C]] ; %B = add <2 x i8> %A, %C = and <2 x i8> %B, ret <2 x i8> %C } define <2 x i8> @flip_masked_bit_undef(<2 x i8> %A) { ; CHECK-LABEL: @flip_masked_bit_undef( ; CHECK-NEXT: [[B:%.*]] = add <2 x i8> [[A:%.*]], ; CHECK-NEXT: [[C:%.*]] = and <2 x i8> [[B]], ; CHECK-NEXT: ret <2 x i8> [[C]] ; %B = add <2 x i8> %A, %C = and <2 x i8> %B, ret <2 x i8> %C } define <2 x i8> @flip_masked_bit_nonuniform(<2 x i8> %A) { ; CHECK-LABEL: @flip_masked_bit_nonuniform( ; CHECK-NEXT: [[B:%.*]] = add <2 x i8> [[A:%.*]], ; CHECK-NEXT: [[C:%.*]] = and <2 x i8> [[B]], ; CHECK-NEXT: ret <2 x i8> [[C]] ; %B = add <2 x i8> %A, %C = and <2 x i8> %B, ret <2 x i8> %C }