; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s @G1 = global i32 0 @G2 = global i32 0 declare void @use(i8) define i1 @test0(i1 %A) { ; CHECK-LABEL: @test0( ; CHECK-NEXT: ret i1 [[A:%.*]] ; %B = xor i1 %A, false ret i1 %B } define i32 @test1(i32 %A) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: ret i32 [[A:%.*]] ; %B = xor i32 %A, 0 ret i32 %B } define i1 @test2(i1 %A) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: ret i1 false ; %B = xor i1 %A, %A ret i1 %B } define i32 @test3(i32 %A) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: ret i32 0 ; %B = xor i32 %A, %A ret i32 %B } define i32 @test4(i32 %A) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: ret i32 -1 ; %NotA = xor i32 -1, %A %B = xor i32 %A, %NotA ret i32 %B } define i32 @test5(i32 %A) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], -124 ; CHECK-NEXT: ret i32 [[TMP1]] ; %t1 = or i32 %A, 123 %r = xor i32 %t1, 123 ret i32 %r } define i8 @test6(i8 %A) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: ret i8 [[A:%.*]] ; %B = xor i8 %A, 17 %C = xor i8 %B, 17 ret i8 %C } define i32 @test7(i32 %A, i32 %B) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: [[A1:%.*]] = and i32 [[A:%.*]], 7 ; CHECK-NEXT: [[B1:%.*]] = and i32 [[B:%.*]], 128 ; CHECK-NEXT: [[C11:%.*]] = or i32 [[A1]], [[B1]] ; CHECK-NEXT: ret i32 [[C11]] ; %A1 = and i32 %A, 7 %B1 = and i32 %B, 128 %C1 = xor i32 %A1, %B1 ret i32 %C1 } define i8 @test8(i1 %c) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: br i1 [[C:%.*]], label [[FALSE:%.*]], label [[TRUE:%.*]] ; CHECK: True: ; CHECK-NEXT: ret i8 1 ; CHECK: False: ; CHECK-NEXT: ret i8 3 ; %d = xor i1 %c, true br i1 %d, label %True, label %False True: ret i8 1 False: ret i8 3 } define i1 @test9(i8 %A) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], 89 ; CHECK-NEXT: ret i1 [[C]] ; %B = xor i8 %A, 123 %C = icmp eq i8 %B, 34 ret i1 %C } define <2 x i1> @test9vec(<2 x i8> %a) { ; CHECK-LABEL: @test9vec( ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = xor <2 x i8> %a, %c = icmp eq <2 x i8> %b, ret <2 x i1> %c } define i8 @test10(i8 %A) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: [[B:%.*]] = and i8 [[A:%.*]], 3 ; CHECK-NEXT: [[C1:%.*]] = or i8 [[B]], 4 ; CHECK-NEXT: ret i8 [[C1]] ; %B = and i8 %A, 3 %C = xor i8 %B, 4 ret i8 %C } define i8 @test11(i8 %A) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[B:%.*]] = and i8 [[A:%.*]], -13 ; CHECK-NEXT: [[TMP1:%.*]] = or i8 [[B]], 8 ; CHECK-NEXT: ret i8 [[TMP1]] ; %B = or i8 %A, 12 %C = xor i8 %B, 4 ret i8 %C } define i1 @test12(i8 %A) { ; CHECK-LABEL: @test12( ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[A:%.*]], 4 ; CHECK-NEXT: ret i1 [[C]] ; %B = xor i8 %A, 4 %c = icmp ne i8 %B, 0 ret i1 %c } define <2 x i1> @test12vec(<2 x i8> %a) { ; CHECK-LABEL: @test12vec( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = xor <2 x i8> %a, %c = icmp ne <2 x i8> %b, zeroinitializer ret <2 x i1> %c } define i32 @test18(i32 %A) { ; CHECK-LABEL: @test18( ; CHECK-NEXT: [[C:%.*]] = add i32 [[A:%.*]], 124 ; CHECK-NEXT: ret i32 [[C]] ; %B = xor i32 %A, -1 %C = sub i32 123, %B ret i32 %C } define i32 @test19(i32 %A, i32 %B) { ; CHECK-LABEL: @test19( ; CHECK-NEXT: ret i32 [[B:%.*]] ; %C = xor i32 %A, %B %D = xor i32 %C, %A ret i32 %D } define void @test20(i32 %A, i32 %B) { ; CHECK-LABEL: @test20( ; CHECK-NEXT: store i32 [[B:%.*]], i32* @G1, align 4 ; CHECK-NEXT: store i32 [[A:%.*]], i32* @G2, align 4 ; CHECK-NEXT: ret void ; %t2 = xor i32 %B, %A %t5 = xor i32 %t2, %B %t8 = xor i32 %t5, %t2 store i32 %t8, i32* @G1 store i32 %t5, i32* @G2 ret void } define i32 @test22(i1 %X) { ; CHECK-LABEL: @test22( ; CHECK-NEXT: [[Z:%.*]] = zext i1 [[X:%.*]] to i32 ; CHECK-NEXT: ret i32 [[Z]] ; %Y = xor i1 %X, true %Z = zext i1 %Y to i32 %Q = xor i32 %Z, 1 ret i32 %Q } ; Look through a zext between xors. define i32 @fold_zext_xor_sandwich(i1 %X) { ; CHECK-LABEL: @fold_zext_xor_sandwich( ; CHECK-NEXT: [[Z:%.*]] = zext i1 [[X:%.*]] to i32 ; CHECK-NEXT: [[Q:%.*]] = xor i32 [[Z]], 3 ; CHECK-NEXT: ret i32 [[Q]] ; %Y = xor i1 %X, true %Z = zext i1 %Y to i32 %Q = xor i32 %Z, 2 ret i32 %Q } define <2 x i32> @fold_zext_xor_sandwich_vec(<2 x i1> %X) { ; CHECK-LABEL: @fold_zext_xor_sandwich_vec( ; CHECK-NEXT: [[Z:%.*]] = zext <2 x i1> [[X:%.*]] to <2 x i32> ; CHECK-NEXT: [[Q:%.*]] = xor <2 x i32> [[Z]], ; CHECK-NEXT: ret <2 x i32> [[Q]] ; %Y = xor <2 x i1> %X, %Z = zext <2 x i1> %Y to <2 x i32> %Q = xor <2 x i32> %Z, ret <2 x i32> %Q } define i1 @test23(i32 %a, i32 %b) { ; CHECK-LABEL: @test23( ; CHECK-NEXT: [[T4:%.*]] = icmp eq i32 [[B:%.*]], 0 ; CHECK-NEXT: ret i1 [[T4]] ; %t2 = xor i32 %b, %a %t4 = icmp eq i32 %t2, %a ret i1 %t4 } define i1 @test24(i32 %c, i32 %d) { ; CHECK-LABEL: @test24( ; CHECK-NEXT: [[T4:%.*]] = icmp ne i32 [[D:%.*]], 0 ; CHECK-NEXT: ret i1 [[T4]] ; %t2 = xor i32 %d, %c %t4 = icmp ne i32 %t2, %c ret i1 %t4 } define i32 @test25(i32 %g, i32 %h) { ; CHECK-LABEL: @test25( ; CHECK-NEXT: [[T4:%.*]] = and i32 [[H:%.*]], [[G:%.*]] ; CHECK-NEXT: ret i32 [[T4]] ; %h2 = xor i32 %h, -1 %t2 = and i32 %h2, %g %t4 = xor i32 %t2, %g ret i32 %t4 } define i32 @test27(i32 %b, i32 %c, i32 %d) { ; CHECK-LABEL: @test27( ; CHECK-NEXT: [[T6:%.*]] = icmp eq i32 [[B:%.*]], [[C:%.*]] ; CHECK-NEXT: [[T7:%.*]] = zext i1 [[T6]] to i32 ; CHECK-NEXT: ret i32 [[T7]] ; %t2 = xor i32 %d, %b %t5 = xor i32 %d, %c %t6 = icmp eq i32 %t2, %t5 %t7 = zext i1 %t6 to i32 ret i32 %t7 } define i32 @test28(i32 %indvar) { ; CHECK-LABEL: @test28( ; CHECK-NEXT: [[T214:%.*]] = add i32 [[INDVAR:%.*]], 1 ; CHECK-NEXT: ret i32 [[T214]] ; %t7 = add i32 %indvar, -2147483647 %t214 = xor i32 %t7, -2147483648 ret i32 %t214 } define <2 x i32> @test28vec(<2 x i32> %indvar) { ; CHECK-LABEL: @test28vec( ; CHECK-NEXT: [[T214:%.*]] = add <2 x i32> [[INDVAR:%.*]], ; CHECK-NEXT: ret <2 x i32> [[T214]] ; %t7 = add <2 x i32> %indvar, %t214 = xor <2 x i32> %t7, ret <2 x i32> %t214 } define i32 @test28_sub(i32 %indvar) { ; CHECK-LABEL: @test28_sub( ; CHECK-NEXT: [[T214:%.*]] = sub i32 1, [[INDVAR:%.*]] ; CHECK-NEXT: ret i32 [[T214]] ; %t7 = sub i32 -2147483647, %indvar %t214 = xor i32 %t7, -2147483648 ret i32 %t214 } define <2 x i32> @test28_subvec(<2 x i32> %indvar) { ; CHECK-LABEL: @test28_subvec( ; CHECK-NEXT: [[T214:%.*]] = sub <2 x i32> , [[INDVAR:%.*]] ; CHECK-NEXT: ret <2 x i32> [[T214]] ; %t7 = sub <2 x i32> , %indvar %t214 = xor <2 x i32> %t7, ret <2 x i32> %t214 } define i32 @test29(i1 %C) { ; CHECK-LABEL: @test29( ; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], i32 915, i32 113 ; CHECK-NEXT: ret i32 [[V]] ; %A = select i1 %C, i32 1000, i32 10 %V = xor i32 %A, 123 ret i32 %V } define <2 x i32> @test29vec(i1 %C) { ; CHECK-LABEL: @test29vec( ; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[V]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = xor <2 x i32> %A, ret <2 x i32> %V } define <2 x i32> @test29vec2(i1 %C) { ; CHECK-LABEL: @test29vec2( ; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[V]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = xor <2 x i32> %A, ret <2 x i32> %V } define i32 @test30(i1 %which) { ; CHECK-LABEL: @test30( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ 915, [[ENTRY:%.*]] ], [ 113, [[DELAY]] ] ; CHECK-NEXT: ret i32 [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi i32 [ 1000, %entry ], [ 10, %delay ] %value = xor i32 %A, 123 ret i32 %value } define <2 x i32> @test30vec(i1 %which) { ; CHECK-LABEL: @test30vec( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = xor <2 x i32> %A, ret <2 x i32> %value } define <2 x i32> @test30vec2(i1 %which) { ; CHECK-LABEL: @test30vec2( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = xor <2 x i32> %A, ret <2 x i32> %value } ; B ^ (B | A) --> A & ~B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @or_xor_commute1(i32 %p1, i32 %p2) { ; CHECK-LABEL: @or_xor_commute1( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = or i32 %b, %a %r = xor i32 %b, %o ret i32 %r } ; B ^ (B | A) --> A & ~B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @or_xor_commute2(i32 %p1, i32 %p2) { ; CHECK-LABEL: @or_xor_commute2( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = or i32 %a, %b %r = xor i32 %o, %b ret i32 %r } ; B ^ (B | A) --> A & ~B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @or_xor_commute3(i32 %p1, i32 %p2) { ; CHECK-LABEL: @or_xor_commute3( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = or i32 %b, %a %r = xor i32 %o, %b ret i32 %r } ; B ^ (B | A) --> A & ~B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @or_xor_commute4(i32 %p1, i32 %p2) { ; CHECK-LABEL: @or_xor_commute4( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[A]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = or i32 %a, %b %r = xor i32 %b, %o ret i32 %r } define i32 @or_xor_extra_use(i32 %a, i32 %b, i32* %p) { ; CHECK-LABEL: @or_xor_extra_use( ; CHECK-NEXT: [[O:%.*]] = or i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i32 [[O]], i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[R:%.*]] = xor i32 [[O]], [[B]] ; CHECK-NEXT: ret i32 [[R]] ; %o = or i32 %a, %b store i32 %o, i32* %p %r = xor i32 %b, %o ret i32 %r } ; B ^ (B & A) --> ~A & B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @and_xor_commute1(i32 %p1, i32 %p2) { ; CHECK-LABEL: @and_xor_commute1( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = and i32 %b, %a %r = xor i32 %b, %o ret i32 %r } ; B ^ (B & A) --> ~A & B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @and_xor_commute2(i32 %p1, i32 %p2) { ; CHECK-LABEL: @and_xor_commute2( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = and i32 %a, %b %r = xor i32 %o, %b ret i32 %r } ; B ^ (B & A) --> ~A & B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @and_xor_commute3(i32 %p1, i32 %p2) { ; CHECK-LABEL: @and_xor_commute3( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = and i32 %b, %a %r = xor i32 %o, %b ret i32 %r } ; B ^ (B & A) --> ~A & B ; The division ops are here to thwart complexity-based canonicalization: all ops are binops. define i32 @and_xor_commute4(i32 %p1, i32 %p2) { ; CHECK-LABEL: @and_xor_commute4( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[P1:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], -1 ; CHECK-NEXT: [[R:%.*]] = and i32 [[B]], [[TMP1]] ; CHECK-NEXT: ret i32 [[R]] ; %a = udiv i32 42, %p1 %b = udiv i32 42, %p2 %o = and i32 %a, %b %r = xor i32 %b, %o ret i32 %r } define i32 @and_xor_extra_use(i32 %a, i32 %b, i32* %p) { ; CHECK-LABEL: @and_xor_extra_use( ; CHECK-NEXT: [[O:%.*]] = and i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: store i32 [[O]], i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[R:%.*]] = xor i32 [[O]], [[B]] ; CHECK-NEXT: ret i32 [[R]] ; %o = and i32 %a, %b store i32 %o, i32* %p %r = xor i32 %b, %o ret i32 %r } ; (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 ; The extra use (store) is here because the simpler case ; may be transformed using demanded bits. define i8 @xor_or_not(i8 %x, i8* %p) { ; CHECK-LABEL: @xor_or_not( ; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1 ; CHECK-NEXT: store i8 [[NX]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[TMP1:%.*]] = and i8 [[X]], -8 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[TMP1]], -13 ; CHECK-NEXT: ret i8 [[R]] ; %nx = xor i8 %x, -1 store i8 %nx, i8* %p %or = or i8 %nx, 7 %r = xor i8 %or, 12 ret i8 %r } ; Don't do this if the 'or' has extra uses. define i8 @xor_or_not_uses(i8 %x, i8* %p) { ; CHECK-LABEL: @xor_or_not_uses( ; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1 ; CHECK-NEXT: [[OR:%.*]] = or i8 [[NX]], 7 ; CHECK-NEXT: store i8 [[OR]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[OR]], 12 ; CHECK-NEXT: ret i8 [[R]] ; %nx = xor i8 %x, -1 %or = or i8 %nx, 7 store i8 %or, i8* %p %r = xor i8 %or, 12 ret i8 %r } ; (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 ; The extra use (store) is here because the simpler case ; may be transformed using demanded bits. define i8 @xor_and_not(i8 %x, i8* %p) { ; CHECK-LABEL: @xor_and_not( ; CHECK-NEXT: [[NX:%.*]] = xor i8 [[X:%.*]], -1 ; CHECK-NEXT: store i8 [[NX]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[TMP1:%.*]] = or i8 [[X]], -43 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[TMP1]], -32 ; CHECK-NEXT: ret i8 [[R]] ; %nx = xor i8 %x, -1 store i8 %nx, i8* %p %and = and i8 %nx, 42 %r = xor i8 %and, 31 ret i8 %r } ; Don't do this if the 'and' has extra uses. define i8 @xor_and_not_uses(i8 %x, i8* %p) { ; CHECK-LABEL: @xor_and_not_uses( ; CHECK-NEXT: [[NX:%.*]] = and i8 [[X:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = xor i8 [[NX]], 42 ; CHECK-NEXT: store i8 [[AND]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[NX]], 53 ; CHECK-NEXT: ret i8 [[R]] ; %nx = xor i8 %x, -1 %and = and i8 %nx, 42 store i8 %and, i8* %p %r = xor i8 %and, 31 ret i8 %r } ; The tests 39-47 are related to the canonicalization: ; %notx = xor i32 %x, -1 ; %cmp = icmp sgt i32 %notx, %y ; %smax = select i1 %cmp, i32 %notx, i32 %y ; %res = xor i32 %smax, -1 ; => ; %noty = xor i32 %y, -1 ; %cmp2 = icmp slt %x, %noty ; %res = select i1 %cmp2, i32 %x, i32 %noty ; ; Same transformations is valid for smin/umax/umin. define i32 @test39(i32 %x) { ; CHECK-LABEL: @test39( ; CHECK-NEXT: [[TMP1:%.*]] = icmp slt i32 [[X:%.*]], 255 ; CHECK-NEXT: [[TMP2:%.*]] = select i1 [[TMP1]], i32 [[X]], i32 255 ; CHECK-NEXT: ret i32 [[TMP2]] ; %1 = xor i32 %x, -1 %2 = icmp sgt i32 %1, -256 %3 = select i1 %2, i32 %1, i32 -256 %res = xor i32 %3, -1 ret i32 %res } define i32 @test40(i32 %x, i32 %y) { ; CHECK-LABEL: @test40( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = icmp sgt i32 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[RES:%.*]] = select i1 [[TMP2]], i32 [[X]], i32 [[TMP1]] ; CHECK-NEXT: ret i32 [[RES]] ; %notx = xor i32 %x, -1 %cmp1 = icmp sgt i32 %notx, %y %smax = select i1 %cmp1, i32 %notx, i32 %y %res = xor i32 %smax, -1 ret i32 %res } define i32 @test41(i32 %x, i32 %y) { ; CHECK-LABEL: @test41( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = icmp slt i32 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[RES:%.*]] = select i1 [[TMP2]], i32 [[X]], i32 [[TMP1]] ; CHECK-NEXT: ret i32 [[RES]] ; %notx = xor i32 %x, -1 %cmp1 = icmp slt i32 %notx, %y %smin = select i1 %cmp1, i32 %notx, i32 %y %res = xor i32 %smin, -1 ret i32 %res } define i32 @test42(i32 %x, i32 %y) { ; CHECK-LABEL: @test42( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = icmp ugt i32 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[RES:%.*]] = select i1 [[TMP2]], i32 [[X]], i32 [[TMP1]] ; CHECK-NEXT: ret i32 [[RES]] ; %notx = xor i32 %x, -1 %cmp1 = icmp ugt i32 %notx, %y %umax = select i1 %cmp1, i32 %notx, i32 %y %res = xor i32 %umax, -1 ret i32 %res } define i32 @test43(i32 %x, i32 %y) { ; CHECK-LABEL: @test43( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[Y:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = icmp ult i32 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[RES:%.*]] = select i1 [[TMP2]], i32 [[X]], i32 [[TMP1]] ; CHECK-NEXT: ret i32 [[RES]] ; %notx = xor i32 %x, -1 %cmp1 = icmp ult i32 %notx, %y %umin = select i1 %cmp1, i32 %notx, i32 %y %res = xor i32 %umin, -1 ret i32 %res } define i32 @test44(i32 %x, i32 %y) { ; CHECK-LABEL: @test44( ; CHECK-NEXT: [[TMP1:%.*]] = sub i32 -4, [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = icmp ugt i32 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[RES:%.*]] = select i1 [[TMP2]], i32 [[TMP1]], i32 [[X]] ; CHECK-NEXT: ret i32 [[RES]] ; %z = add i32 %y, 3 ; thwart complexity-based canonicalization %notx = xor i32 %x, -1 %cmp1 = icmp ult i32 %z, %notx %umin = select i1 %cmp1, i32 %z, i32 %notx %res = xor i32 %umin, -1 ret i32 %res } define i32 @test45(i32 %x, i32 %y) { ; CHECK-LABEL: @test45( ; CHECK-NEXT: [[TMP1:%.*]] = icmp ugt i32 [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = select i1 [[TMP1]], i32 [[Y]], i32 [[X]] ; CHECK-NEXT: ret i32 [[TMP2]] ; %z = xor i32 %y, -1 %notx = xor i32 %x, -1 %cmp1 = icmp ult i32 %z, %notx %umin = select i1 %cmp1, i32 %z, i32 %notx %res = xor i32 %umin, -1 ret i32 %res } ; Check that we work with splat vectors also. define <4 x i32> @test46(<4 x i32> %x) { ; CHECK-LABEL: @test46( ; CHECK-NEXT: [[TMP1:%.*]] = icmp slt <4 x i32> [[X:%.*]], ; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[X]], <4 x i32> ; CHECK-NEXT: ret <4 x i32> [[TMP2]] ; %1 = xor <4 x i32> %x, %2 = icmp sgt <4 x i32> %1, %3 = select <4 x i1> %2, <4 x i32> %1, <4 x i32> %4 = xor <4 x i32> %3, ret <4 x i32> %4 } ; Test case when select pattern has more than one use. define i32 @test47(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @test47( ; CHECK-NEXT: [[NOTX:%.*]] = xor i32 [[X:%.*]], -1 ; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[NOTX]], [[Y:%.*]] ; CHECK-NEXT: [[UMAX:%.*]] = select i1 [[CMP1]], i32 [[NOTX]], i32 [[Y]] ; CHECK-NEXT: [[UMIN:%.*]] = xor i32 [[UMAX]], -1 ; CHECK-NEXT: [[ADD:%.*]] = add i32 [[UMAX]], [[Z:%.*]] ; CHECK-NEXT: [[RES:%.*]] = mul i32 [[ADD]], [[UMIN]] ; CHECK-NEXT: ret i32 [[RES]] ; %notx = xor i32 %x, -1 %cmp1 = icmp ugt i32 %notx, %y %umax = select i1 %cmp1, i32 %notx, i32 %y %umin = xor i32 %umax, -1 %add = add i32 %umax, %z %res = mul i32 %umin, %add ret i32 %res } define i32 @test48(i32 %x) { ; CHECK-LABEL: @test48( ; CHECK-NEXT: [[TMP1:%.*]] = add i32 [[X:%.*]], 1 ; CHECK-NEXT: [[TMP2:%.*]] = icmp slt i32 [[TMP1]], -1 ; CHECK-NEXT: [[D:%.*]] = select i1 [[TMP2]], i32 [[TMP1]], i32 -1 ; CHECK-NEXT: ret i32 [[D]] ; %a = sub i32 -2, %x %b = icmp sgt i32 %a, 0 %c = select i1 %b, i32 %a, i32 0 %d = xor i32 %c, -1 ret i32 %d } define <2 x i32> @test48vec(<2 x i32> %x) { ; CHECK-LABEL: @test48vec( ; CHECK-NEXT: [[TMP1:%.*]] = add <2 x i32> [[X:%.*]], ; CHECK-NEXT: [[TMP2:%.*]] = icmp slt <2 x i32> [[TMP1]], ; CHECK-NEXT: [[D:%.*]] = select <2 x i1> [[TMP2]], <2 x i32> [[TMP1]], <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[D]] ; %a = sub <2 x i32> , %x %b = icmp sgt <2 x i32> %a, zeroinitializer %c = select <2 x i1> %b, <2 x i32> %a, <2 x i32> zeroinitializer %d = xor <2 x i32> %c, ret <2 x i32> %d } define i32 @test49(i32 %x) { ; CHECK-LABEL: @test49( ; CHECK-NEXT: [[TMP1:%.*]] = sub i32 1, [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = icmp sgt i32 [[TMP1]], 0 ; CHECK-NEXT: [[D:%.*]] = select i1 [[TMP2]], i32 [[TMP1]], i32 0 ; CHECK-NEXT: ret i32 [[D]] ; %a = add i32 %x, -2 %b = icmp slt i32 %a, -1 %c = select i1 %b, i32 %a, i32 -1 %d = xor i32 %c, -1 ret i32 %d } define <2 x i32> @test49vec(<2 x i32> %x) { ; CHECK-LABEL: @test49vec( ; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> , [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = icmp sgt <2 x i32> [[TMP1]], zeroinitializer ; CHECK-NEXT: [[D:%.*]] = select <2 x i1> [[TMP2]], <2 x i32> [[TMP1]], <2 x i32> zeroinitializer ; CHECK-NEXT: ret <2 x i32> [[D]] ; %a = add <2 x i32> %x, %b = icmp slt <2 x i32> %a, %c = select <2 x i1> %b, <2 x i32> %a, <2 x i32> %d = xor <2 x i32> %c, ret <2 x i32> %d } define i32 @test50(i32 %x, i32 %y) { ; CHECK-LABEL: @test50( ; CHECK-NEXT: [[TMP1:%.*]] = sub i32 1, [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[Y:%.*]], 1 ; CHECK-NEXT: [[TMP3:%.*]] = icmp sgt i32 [[TMP1]], [[TMP2]] ; CHECK-NEXT: [[E:%.*]] = select i1 [[TMP3]], i32 [[TMP1]], i32 [[TMP2]] ; CHECK-NEXT: ret i32 [[E]] ; %a = add i32 %x, -2 %b = sub i32 -2, %y %c = icmp slt i32 %a, %b %d = select i1 %c, i32 %a, i32 %b %e = xor i32 %d, -1 ret i32 %e } define <2 x i32> @test50vec(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @test50vec( ; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> , [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = add <2 x i32> [[Y:%.*]], ; CHECK-NEXT: [[TMP3:%.*]] = icmp sgt <2 x i32> [[TMP1]], [[TMP2]] ; CHECK-NEXT: [[E:%.*]] = select <2 x i1> [[TMP3]], <2 x i32> [[TMP1]], <2 x i32> [[TMP2]] ; CHECK-NEXT: ret <2 x i32> [[E]] ; %a = add <2 x i32> %x, %b = sub <2 x i32> , %y %c = icmp slt <2 x i32> %a, %b %d = select <2 x i1> %c, <2 x i32> %a, <2 x i32> %b %e = xor <2 x i32> %d, ret <2 x i32> %e } define i32 @test51(i32 %x, i32 %y) { ; CHECK-LABEL: @test51( ; CHECK-NEXT: [[TMP1:%.*]] = sub i32 -3, [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = add i32 [[Y:%.*]], -3 ; CHECK-NEXT: [[TMP3:%.*]] = icmp slt i32 [[TMP1]], [[TMP2]] ; CHECK-NEXT: [[E:%.*]] = select i1 [[TMP3]], i32 [[TMP1]], i32 [[TMP2]] ; CHECK-NEXT: ret i32 [[E]] ; %a = add i32 %x, 2 %b = sub i32 2, %y %c = icmp sgt i32 %a, %b %d = select i1 %c, i32 %a, i32 %b %e = xor i32 %d, -1 ret i32 %e } define <2 x i32> @test51vec(<2 x i32> %x, <2 x i32> %y) { ; CHECK-LABEL: @test51vec( ; CHECK-NEXT: [[TMP1:%.*]] = sub <2 x i32> , [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = add <2 x i32> [[Y:%.*]], ; CHECK-NEXT: [[TMP3:%.*]] = icmp slt <2 x i32> [[TMP1]], [[TMP2]] ; CHECK-NEXT: [[E:%.*]] = select <2 x i1> [[TMP3]], <2 x i32> [[TMP1]], <2 x i32> [[TMP2]] ; CHECK-NEXT: ret <2 x i32> [[E]] ; %a = add <2 x i32> %x, %b = sub <2 x i32> , %y %c = icmp sgt <2 x i32> %a, %b %d = select <2 x i1> %c, <2 x i32> %a, <2 x i32> %b %e = xor <2 x i32> %d, ret <2 x i32> %e } define i4 @or_or_xor(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @or_or_xor( ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret i4 [[R]] ; %o1 = or i4 %z, %x %o2 = or i4 %z, %y %r = xor i4 %o1, %o2 ret i4 %r } define i4 @or_or_xor_commute1(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @or_or_xor_commute1( ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret i4 [[R]] ; %o1 = or i4 %x, %z %o2 = or i4 %z, %y %r = xor i4 %o1, %o2 ret i4 %r } define i4 @or_or_xor_commute2(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @or_or_xor_commute2( ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z:%.*]], -1 ; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = and i4 [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret i4 [[R]] ; %o1 = or i4 %z, %x %o2 = or i4 %y, %z %r = xor i4 %o1, %o2 ret i4 %r } define <2 x i4> @or_or_xor_commute3(<2 x i4> %x, <2 x i4> %y, <2 x i4> %z) { ; CHECK-LABEL: @or_or_xor_commute3( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i4> [[Z:%.*]], ; CHECK-NEXT: [[TMP2:%.*]] = xor <2 x i4> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = and <2 x i4> [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret <2 x i4> [[R]] ; %o1 = or <2 x i4> %x, %z %o2 = or <2 x i4> %y, %z %r = xor <2 x i4> %o1, %o2 ret <2 x i4> %r } define i4 @or_or_xor_use1(i4 %x, i4 %y, i4 %z, i4* %p) { ; CHECK-LABEL: @or_or_xor_use1( ; CHECK-NEXT: [[O1:%.*]] = or i4 [[Z:%.*]], [[X:%.*]] ; CHECK-NEXT: store i4 [[O1]], i4* [[P:%.*]], align 1 ; CHECK-NEXT: [[O2:%.*]] = or i4 [[Z]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = xor i4 [[O1]], [[O2]] ; CHECK-NEXT: ret i4 [[R]] ; %o1 = or i4 %z, %x store i4 %o1, i4* %p %o2 = or i4 %z, %y %r = xor i4 %o1, %o2 ret i4 %r } define i4 @or_or_xor_use2(i4 %x, i4 %y, i4 %z, i4* %p) { ; CHECK-LABEL: @or_or_xor_use2( ; CHECK-NEXT: [[O1:%.*]] = or i4 [[Z:%.*]], [[X:%.*]] ; CHECK-NEXT: [[O2:%.*]] = or i4 [[Z]], [[Y:%.*]] ; CHECK-NEXT: store i4 [[O2]], i4* [[P:%.*]], align 1 ; CHECK-NEXT: [[R:%.*]] = xor i4 [[O1]], [[O2]] ; CHECK-NEXT: ret i4 [[R]] ; %o1 = or i4 %z, %x %o2 = or i4 %z, %y store i4 %o2, i4* %p %r = xor i4 %o1, %o2 ret i4 %r } ; PR32706 - https://bugs.llvm.org/show_bug.cgi?id=32706 ; Pin an xor constant operand to -1 if possible because 'not' is better for SCEV and codegen. define i32 @not_is_canonical(i32 %x, i32 %y) { ; CHECK-LABEL: @not_is_canonical( ; CHECK-NEXT: [[SUB:%.*]] = xor i32 [[X:%.*]], -1 ; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SUB]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = shl i32 [[ADD]], 2 ; CHECK-NEXT: ret i32 [[MUL]] ; %sub = xor i32 %x, 1073741823 %add = add i32 %sub, %y %mul = shl i32 %add, 2 ret i32 %mul } define i8 @not_shl(i8 %x) { ; CHECK-LABEL: @not_shl( ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X:%.*]], -1 ; CHECK-NEXT: [[R:%.*]] = shl i8 [[TMP1]], 7 ; CHECK-NEXT: ret i8 [[R]] ; %a = shl i8 %x, 7 %r = xor i8 %a, 128 ret i8 %r } define <2 x i8> @not_shl_vec(<2 x i8> %x) { ; CHECK-LABEL: @not_shl_vec( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X:%.*]], ; CHECK-NEXT: [[R:%.*]] = shl <2 x i8> [[TMP1]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = shl <2 x i8> %x, %r = xor <2 x i8> %a, ret <2 x i8> %r } ; negative test define i8 @not_shl_extra_use(i8 %x) { ; CHECK-LABEL: @not_shl_extra_use( ; CHECK-NEXT: [[A:%.*]] = shl i8 [[X:%.*]], 7 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -128 ; CHECK-NEXT: ret i8 [[R]] ; %a = shl i8 %x, 7 call void @use(i8 %a) %r = xor i8 %a, 128 ret i8 %r } ; negative test define i8 @not_shl_wrong_const(i8 %x) { ; CHECK-LABEL: @not_shl_wrong_const( ; CHECK-NEXT: [[A:%.*]] = shl i8 [[X:%.*]], 6 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -128 ; CHECK-NEXT: ret i8 [[R]] ; %a = shl i8 %x, 6 %r = xor i8 %a, 128 ret i8 %r } define i8 @not_lshr(i8 %x) { ; CHECK-LABEL: @not_lshr( ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X:%.*]], -1 ; CHECK-NEXT: [[R:%.*]] = lshr i8 [[TMP1]], 5 ; CHECK-NEXT: ret i8 [[R]] ; %a = lshr i8 %x, 5 %r = xor i8 %a, 7 ret i8 %r } define <2 x i8> @not_lshr_vec(<2 x i8> %x) { ; CHECK-LABEL: @not_lshr_vec( ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X:%.*]], ; CHECK-NEXT: [[R:%.*]] = lshr <2 x i8> [[TMP1]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = lshr <2 x i8> %x, %r = xor <2 x i8> %a, ret <2 x i8> %r } ; negative test define i8 @not_lshr_extra_use(i8 %x) { ; CHECK-LABEL: @not_lshr_extra_use( ; CHECK-NEXT: [[A:%.*]] = lshr i8 [[X:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], 7 ; CHECK-NEXT: ret i8 [[R]] ; %a = lshr i8 %x, 5 call void @use(i8 %a) %r = xor i8 %a, 7 ret i8 %r } ; negative test define i8 @not_lshr_wrong_const(i8 %x) { ; CHECK-LABEL: @not_lshr_wrong_const( ; CHECK-NEXT: [[A:%.*]] = lshr i8 [[X:%.*]], 5 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], 3 ; CHECK-NEXT: ret i8 [[R]] ; %a = lshr i8 %x, 5 %r = xor i8 %a, 3 ret i8 %r } define i8 @ashr_not(i8 %x) { ; CHECK-LABEL: @ashr_not( ; CHECK-NEXT: [[N:%.*]] = ashr i8 [[X:%.*]], 5 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[N]], -1 ; CHECK-NEXT: ret i8 [[R]] ; %n = xor i8 %x, -1 %r = ashr i8 %n, 5 ret i8 %r } ; Unlike the logicial shifts, 'not' is canonicalized after ashr. define i8 @not_ashr(i8 %x) { ; CHECK-LABEL: @not_ashr( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -1 ; CHECK-NEXT: ret i8 [[R]] ; %a = ashr i8 %x, 5 %r = xor i8 %a, -1 ret i8 %r } define <2 x i8> @not_ashr_vec(<2 x i8> %x) { ; CHECK-LABEL: @not_ashr_vec( ; CHECK-NEXT: [[A:%.*]] = ashr <2 x i8> [[X:%.*]], ; CHECK-NEXT: [[R:%.*]] = xor <2 x i8> [[A]], ; CHECK-NEXT: ret <2 x i8> [[R]] ; %a = ashr <2 x i8> %x, %r = xor <2 x i8> %a, ret <2 x i8> %r } define i8 @not_ashr_extra_use(i8 %x) { ; CHECK-LABEL: @not_ashr_extra_use( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5 ; CHECK-NEXT: call void @use(i8 [[A]]) ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -1 ; CHECK-NEXT: ret i8 [[R]] ; %a = ashr i8 %x, 5 call void @use(i8 %a) %r = xor i8 %a, -1 ret i8 %r } define i8 @not_ashr_wrong_const(i8 %x) { ; CHECK-LABEL: @not_ashr_wrong_const( ; CHECK-NEXT: [[A:%.*]] = ashr i8 [[X:%.*]], 5 ; CHECK-NEXT: [[R:%.*]] = xor i8 [[A]], -2 ; CHECK-NEXT: ret i8 [[R]] ; %a = ashr i8 %x, 5 %r = xor i8 %a, -2 ret i8 %r } ; (~A & B) ^ A --> A | B define <2 x i32> @xor_andn_commute1(<2 x i32> %a, <2 x i32> %b) { ; CHECK-LABEL: @xor_andn_commute1( ; CHECK-NEXT: [[Z:%.*]] = or <2 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret <2 x i32> [[Z]] ; %nota = xor <2 x i32> %a, %r = and <2 x i32> %nota, %b %z = xor <2 x i32> %r, %a ret <2 x i32> %z } ; (B & ~A) ^ A --> A | B define i33 @xor_andn_commute2(i33 %a, i33 %pb) { ; CHECK-LABEL: @xor_andn_commute2( ; CHECK-NEXT: [[B:%.*]] = udiv i33 42, [[PB:%.*]] ; CHECK-NEXT: [[Z:%.*]] = or i33 [[B]], [[A:%.*]] ; CHECK-NEXT: ret i33 [[Z]] ; %b = udiv i33 42, %pb ; thwart complexity-based canonicalization %nota = xor i33 %a, -1 %r = and i33 %b, %nota %z = xor i33 %r, %a ret i33 %z } ; A ^ (~A & B) --> A | B define i32 @xor_andn_commute3(i32 %pa, i32 %b) { ; CHECK-LABEL: @xor_andn_commute3( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[PA:%.*]] ; CHECK-NEXT: [[Z:%.*]] = or i32 [[A]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[Z]] ; %a = udiv i32 42, %pa ; thwart complexity-based canonicalization %nota = xor i32 %a, -1 %r = and i32 %nota, %b %z = xor i32 %a, %r ret i32 %z } ; A ^ (B & ~A) --> A | B define i32 @xor_andn_commute4(i32 %pa, i32 %pb) { ; CHECK-LABEL: @xor_andn_commute4( ; CHECK-NEXT: [[A:%.*]] = udiv i32 42, [[PA:%.*]] ; CHECK-NEXT: [[B:%.*]] = udiv i32 42, [[PB:%.*]] ; CHECK-NEXT: [[Z:%.*]] = or i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[Z]] ; %a = udiv i32 42, %pa ; thwart complexity-based canonicalization %b = udiv i32 42, %pb ; thwart complexity-based canonicalization %nota = xor i32 %a, -1 %r = and i32 %b, %nota %z = xor i32 %a, %r ret i32 %z }