; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s ; First licm pass is to hoist/sink invariant stores if possible. Today LICM does ; not hoist/sink the invariant stores. Even if that changes, we should still ; vectorize this loop in case licm is not run. ; The next licm pass after vectorization is to hoist/sink loop invariant ; instructions. target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" ; all tests check that it is legal to vectorize the stores to invariant ; address. ; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction( ; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b) ; CHECK: vector.memcheck: ; CHECK: found.conflict ; CHECK-LABEL: vector.body: ; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ] ; CHECK: %wide.load = load <4 x i32> ; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load ; CHECK-NEXT: store i32 %ntrunc, i32* %a ; CHECK-NEXT: %index.next = add i64 %index, 4 ; CHECK-NEXT: icmp eq i64 %index.next, %n.vec ; CHECK-NEXT: br i1 ; CHECK-LABEL: middle.block: ; CHECK: %rdx.shuf = shufflevector <4 x i32> define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) { entry: %ntrunc = trunc i64 %n to i32 br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 %tmp3 = add i32 %tmp0, %tmp2 store i32 %ntrunc, i32* %a %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body %tmp4 = phi i32 [ %tmp3, %for.body ] ret i32 %tmp4 } ; CHECK-LABEL: inv_val_store_to_inv_address( ; CHECK-LABEL: vector.body: ; CHECK: store i32 %ntrunc, i32* %a ; CHECK: store <4 x i32> ; CHECK-NEXT: %index.next = add i64 %index, 4 ; CHECK-NEXT: icmp eq i64 %index.next, %n.vec ; CHECK-NEXT: br i1 define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) { entry: %ntrunc = trunc i64 %n to i32 br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 store i32 %ntrunc, i32* %a store i32 %ntrunc, i32* %tmp1 %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; Both of these tests below are handled as predicated stores. ; Conditional store ; if (b[i] == k) a = ntrunc ; TODO: We can be better with the code gen for the first test and we can have ; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1. ; CHECK-LABEL:inv_val_store_to_inv_address_conditional( ; CHECK-LABEL: vector.body: ; CHECK: %wide.load = load <4 x i32>, <4 x i32>* ; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}} ; CHECK: store <4 x i32> ; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0 ; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue ; CHECK-LABEL: pred.store.if: ; CHECK-NEXT: store i32 %ntrunc, i32* %a ; CHECK-NEXT: br label %pred.store.continue ; CHECK-LABEL: pred.store.continue: ; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1 define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) { entry: %ntrunc = trunc i64 %n to i32 br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %latch ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 %cmp = icmp eq i32 %tmp2, %k store i32 %ntrunc, i32* %tmp1 br i1 %cmp, label %cond_store, label %latch cond_store: store i32 %ntrunc, i32* %a br label %latch latch: %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; if (b[i] == k) ; a = ntrunc ; else a = k; ; TODO: We could vectorize this once we support multiple uniform stores to the ; same address. ; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values( ; CHECK-NOT: load <4 x i32> define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) { entry: %ntrunc = trunc i64 %n to i32 br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %latch ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 %cmp = icmp eq i32 %tmp2, %k store i32 %ntrunc, i32* %tmp1 br i1 %cmp, label %cond_store, label %cond_store_k cond_store: store i32 %ntrunc, i32* %a br label %latch cond_store_k: store i32 %k, i32 * %a br label %latch latch: %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; Instcombine'd version of above test. Now the store is no longer of invariant ; value. ; scalar store the value extracted from the last element of the vector value. ; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic ; CHECK-NEXT: entry: ; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32 ; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1 ; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1 ; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4 ; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]] ; CHECK: vector.memcheck: ; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8* ; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8* ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1 ; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1 ; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]] ; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1 ; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]] ; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]] ; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]] ; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]] ; CHECK: vector.ph: ; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804 ; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> poison, i32 [[K:%.*]], i32 0 ; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> poison, <4 x i32> zeroinitializer ; CHECK-NEXT: [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <4 x i32> poison, i32 [[NTRUNC]], i32 0 ; CHECK-NEXT: [[BROADCAST_SPLAT8:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT7]], <4 x i32> poison, <4 x i32> zeroinitializer ; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]] ; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>* ; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = icmp eq <4 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]] ; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>* ; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32>* [[TMP5]], align 4 ; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP4]], <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32> [[BROADCAST_SPLAT6]] ; CHECK-NEXT: [[TMP6:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3 ; CHECK-NEXT: store i32 [[TMP6]], i32* [[A]], align 4 ; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4 ; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]] ; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]] ; CHECK: middle.block: ; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]] ; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]] ; CHECK: scalar.ph: ; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ] ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ] ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]] ; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]] ; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4 ; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]] ; CHECK: cond_store: ; CHECK-NEXT: br label [[LATCH]] ; CHECK: cond_store_k: ; CHECK-NEXT: br label [[LATCH]] ; CHECK: latch: ; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ] ; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4 ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1 ; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]] ; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) { entry: %ntrunc = trunc i64 %n to i32 br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %latch ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 %cmp = icmp eq i32 %tmp2, %k store i32 %ntrunc, i32* %tmp1 br i1 %cmp, label %cond_store, label %cond_store_k cond_store: br label %latch cond_store_k: br label %latch latch: %storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ] store i32 %storeval, i32* %a %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; invariant val stored to invariant address predicated on invariant condition ; This is not treated as a predicated store since the block the store belongs to ; is the latch block (which doesn't need to be predicated). ; variant/invariant values being stored to invariant address. ; test checks that the last element of the phi is extracted and scalar stored ; into the uniform address within the loop. ; Since the condition and the phi is loop invariant, they are LICM'ed after ; vectorization. ; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv ; CHECK-NEXT: entry: ; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[NTRUNC]], [[K:%.*]] ; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1 ; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1 ; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4 ; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]] ; CHECK: vector.memcheck: ; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8* ; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8* ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1 ; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1 ; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]] ; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1 ; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]] ; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]] ; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]] ; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]] ; CHECK: vector.ph: ; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804 ; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> poison, i32 [[NTRUNC]], i32 0 ; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> poison, <4 x i32> zeroinitializer ; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i1> undef, i1 [[CMP]], i32 3 ; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i32> poison, i32 [[K]], i32 3 ; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32> [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3 ; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]] ; CHECK-NEXT: [[TMP7:%.*]] = bitcast i32* [[TMP6]] to <4 x i32>* ; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32>* [[TMP7]], align 4 ; CHECK-NEXT: store i32 [[TMP5]], i32* [[A]], align 4 ; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4 ; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]] ; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]] ; CHECK: middle.block: ; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]] ; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]] ; CHECK: scalar.ph: ; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ] ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ] ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]] ; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4 ; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]] ; CHECK: cond_store: ; CHECK-NEXT: br label [[LATCH]] ; CHECK: cond_store_k: ; CHECK-NEXT: br label [[LATCH]] ; CHECK: latch: ; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ] ; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4 ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1 ; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]] ; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) { entry: %ntrunc = trunc i64 %n to i32 %cmp = icmp eq i32 %ntrunc, %k br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %latch ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 store i32 %ntrunc, i32* %tmp1 br i1 %cmp, label %cond_store, label %cond_store_k cond_store: br label %latch cond_store_k: br label %latch latch: %storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ] store i32 %storeval, i32* %a %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body ret void } ; variant value stored to uniform address tests that the code gen extracts the ; last element from the variant vector and scalar stores it into the uniform ; address. ; CHECK-LABEL: variant_val_store_to_inv_address ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N:%.*]], 1 ; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1 ; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4 ; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]] ; CHECK: vector.memcheck: ; CHECK-NEXT: [[B2:%.*]] = bitcast i32* [[B:%.*]] to i8* ; CHECK-NEXT: [[A1:%.*]] = bitcast i32* [[A:%.*]] to i8* ; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A1]], i64 1 ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1 ; CHECK-NEXT: [[SMAX3:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1 ; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX3]] ; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]] ; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B2]] ; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]] ; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]] ; CHECK: vector.ph: ; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804 ; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]] ; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>* ; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8 ; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x i32> [[WIDE_LOAD]], i32 3 ; CHECK-NEXT: store i32 [[TMP4]], i32* [[A]], align 4 ; CHECK-NEXT: [[TMP5]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]] ; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4 ; CHECK-NEXT: [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]] ; CHECK-NEXT: br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]] ; CHECK: middle.block: ; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi <4 x i32> [ [[TMP5]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[RDX_SHUF:%.*]] = shufflevector <4 x i32> [[DOTLCSSA]], <4 x i32> poison, <4 x i32> ; CHECK-NEXT: [[BIN_RDX:%.*]] = add <4 x i32> [[DOTLCSSA]], [[RDX_SHUF]] ; CHECK-NEXT: [[RDX_SHUF5:%.*]] = shufflevector <4 x i32> [[BIN_RDX]], <4 x i32> poison, <4 x i32> ; CHECK-NEXT: [[BIN_RDX6:%.*]] = add <4 x i32> [[BIN_RDX]], [[RDX_SHUF5]] ; CHECK-NEXT: [[TMP7:%.*]] = extractelement <4 x i32> [[BIN_RDX6]], i32 0 ; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]] ; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]] ; CHECK: scalar.ph: ; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ] ; CHECK-NEXT: [[BC_MERGE_RDX:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY]] ], [ 0, [[VECTOR_MEMCHECK]] ] ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[FOR_BODY]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ] ; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ [[TMP3:%.*]], [[FOR_BODY]] ], [ [[BC_MERGE_RDX]], [[SCALAR_PH]] ] ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]] ; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8 ; CHECK-NEXT: store i32 [[TMP2]], i32* [[A]], align 4 ; CHECK-NEXT: [[TMP3]] = add i32 [[TMP0]], [[TMP2]] ; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1 ; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]] ; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: [[TMP3_LCSSA:%.*]] = phi i32 [ [[TMP3]], [[FOR_BODY]] ] ; CHECK-NEXT: br label [[FOR_END]] define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) { entry: %ntrunc = trunc i64 %n to i32 %cmp = icmp eq i32 %ntrunc, %k br label %for.body for.body: ; preds = %for.body, %entry %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ] %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp1, align 8 store i32 %tmp2, i32* %a %tmp3 = add i32 %tmp0, %tmp2 %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ; preds = %for.body %rdx.lcssa = phi i32 [ %tmp3, %for.body ] ret i32 %rdx.lcssa } ; Multiple variant stores to the same uniform address ; We do not vectorize such loops currently. ; for(; i < itr; i++) { ; for(; j < itr; j++) { ; var1[i] = var2[j] + var1[i]; ; var1[i]++; ; } ; } ; CHECK-LABEL: multiple_uniform_stores ; CHECK-NOT: <4 x i32> define i32 @multiple_uniform_stores(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 { entry: %cmp20 = icmp eq i32 %itr, 0 br i1 %cmp20, label %for.end10, label %for.cond1.preheader for.cond1.preheader: ; preds = %entry, %for.inc8 %indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ] %j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ] %cmp218 = icmp ult i32 %j.022, %itr br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8 for.body3.lr.ph: ; preds = %for.cond1.preheader %arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23 %0 = zext i32 %j.022 to i64 br label %for.body3 for.body3: ; preds = %for.body3, %for.body3.lr.ph %indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %for.body3 ] %arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv %1 = load i32, i32* %arrayidx, align 4 %2 = load i32, i32* %arrayidx5, align 4 %add = add nsw i32 %2, %1 store i32 %add, i32* %arrayidx5, align 4 %3 = load i32, i32* %arrayidx5, align 4 %4 = add nsw i32 %3, 1 store i32 %4, i32* %arrayidx5, align 4 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 %exitcond = icmp eq i32 %lftr.wideiv, %itr br i1 %exitcond, label %for.inc8, label %for.body3 for.inc8: ; preds = %for.body3, %for.cond1.preheader %j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %for.body3 ] %indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1 %lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32 %exitcond26 = icmp eq i32 %lftr.wideiv25, %itr br i1 %exitcond26, label %for.end10, label %for.cond1.preheader for.end10: ; preds = %for.inc8, %entry ret i32 undef } ; second uniform store to the same address is conditional. ; we do not vectorize this. ; CHECK-LABEL: multiple_uniform_stores_conditional ; CHECK-NOT: <4 x i32> define i32 @multiple_uniform_stores_conditional(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 { entry: %cmp20 = icmp eq i32 %itr, 0 br i1 %cmp20, label %for.end10, label %for.cond1.preheader for.cond1.preheader: ; preds = %entry, %for.inc8 %indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ] %j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ] %cmp218 = icmp ult i32 %j.022, %itr br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8 for.body3.lr.ph: ; preds = %for.cond1.preheader %arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23 %0 = zext i32 %j.022 to i64 br label %for.body3 for.body3: ; preds = %for.body3, %for.body3.lr.ph %indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %latch ] %arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv %1 = load i32, i32* %arrayidx, align 4 %2 = load i32, i32* %arrayidx5, align 4 %add = add nsw i32 %2, %1 store i32 %add, i32* %arrayidx5, align 4 %3 = load i32, i32* %arrayidx5, align 4 %4 = add nsw i32 %3, 1 %5 = icmp ugt i32 %3, 42 br i1 %5, label %cond_store, label %latch cond_store: store i32 %4, i32* %arrayidx5, align 4 br label %latch latch: %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 %exitcond = icmp eq i32 %lftr.wideiv, %itr br i1 %exitcond, label %for.inc8, label %for.body3 for.inc8: ; preds = %for.body3, %for.cond1.preheader %j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %latch ] %indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1 %lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32 %exitcond26 = icmp eq i32 %lftr.wideiv25, %itr br i1 %exitcond26, label %for.end10, label %for.cond1.preheader for.end10: ; preds = %for.inc8, %entry ret i32 undef } ; cannot vectorize loop with unsafe dependency between uniform load (%tmp10) and store ; (%tmp12) to the same address ; PR39653 ; Note: %tmp10 could be replaced by phi(%arg4, %tmp12), a potentially vectorizable ; 1st-order-recurrence define void @unsafe_dep_uniform_load_store(i32 %arg, i32 %arg1, i64 %arg2, i16* %arg3, i32 %arg4, i64 %arg5) { ; CHECK-LABEL: unsafe_dep_uniform_load_store ; CHECK-NOT: <4 x i32> bb: %tmp = alloca i32 store i32 %arg4, i32* %tmp %tmp6 = getelementptr inbounds i16, i16* %arg3, i64 %arg5 br label %bb7 bb7: %tmp8 = phi i64 [ 0, %bb ], [ %tmp24, %bb7 ] %tmp9 = phi i32 [ %arg1, %bb ], [ %tmp23, %bb7 ] %tmp10 = load i32, i32* %tmp %tmp11 = mul nsw i32 %tmp9, %tmp10 %tmp12 = srem i32 %tmp11, 65536 %tmp13 = add nsw i32 %tmp12, %tmp9 %tmp14 = trunc i32 %tmp13 to i16 %tmp15 = trunc i64 %tmp8 to i32 %tmp16 = add i32 %arg, %tmp15 %tmp17 = zext i32 %tmp16 to i64 %tmp18 = getelementptr inbounds i16, i16* %tmp6, i64 %tmp17 store i16 %tmp14, i16* %tmp18, align 2 %tmp19 = add i32 %tmp13, %tmp9 %tmp20 = trunc i32 %tmp19 to i16 %tmp21 = and i16 %tmp20, 255 %tmp22 = getelementptr inbounds i16, i16* %arg3, i64 %tmp17 store i16 %tmp21, i16* %tmp22, align 2 %tmp23 = add nsw i32 %tmp9, 1 %tmp24 = add nuw nsw i64 %tmp8, 1 %tmp25 = icmp eq i64 %tmp24, %arg2 store i32 %tmp12, i32* %tmp br i1 %tmp25, label %bb26, label %bb7 bb26: ret void }