; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=i386-unknown-linux-gnu -mattr=sse2 | FileCheck %s ; Source file looks something like this: ; ; typedef int AAA[100][100]; ; ; void testCombineMultiplies(AAA a,int lll) ; { ; int LOC = lll + 5; ; ; a[LOC][LOC] = 11; ; ; a[LOC][20] = 22; ; a[LOC+20][20] = 33; ; } ; ; We want to make sure we don't generate 2 multiply instructions, ; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp ; should combine the instructions in such a way to avoid the extra ; multiply. ; ; Output looks roughly like this: ; ; movl 8(%esp), %eax ; movl 12(%esp), %ecx ; imull $400, %ecx, %edx # imm = 0x190 ; leal (%edx,%eax), %esi ; movl $11, 2020(%esi,%ecx,4) ; movl $22, 2080(%edx,%eax) ; movl $33, 10080(%edx,%eax) ; Function Attrs: nounwind define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) nounwind { ; CHECK-LABEL: testCombineMultiplies: ; CHECK: # %bb.0: # %entry ; CHECK-NEXT: pushl %esi ; CHECK-NEXT: movl {{[0-9]+}}(%esp), %eax ; CHECK-NEXT: movl {{[0-9]+}}(%esp), %ecx ; CHECK-NEXT: imull $400, %ecx, %edx # imm = 0x190 ; CHECK-NEXT: leal (%edx,%eax), %esi ; CHECK-NEXT: movl $11, 2020(%esi,%ecx,4) ; CHECK-NEXT: movl $22, 2080(%edx,%eax) ; CHECK-NEXT: movl $33, 10080(%edx,%eax) ; CHECK-NEXT: popl %esi ; CHECK-NEXT: retl entry: %add = add nsw i32 %lll, 5 %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add store i32 11, i32* %arrayidx1, align 4 %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20 store i32 22, i32* %arrayidx3, align 4 %add4 = add nsw i32 %lll, 25 %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20 store i32 33, i32* %arrayidx6, align 4 ret void } ; Test for the same optimization on vector multiplies. ; ; Source looks something like this: ; ; typedef int v4int __attribute__((__vector_size__(16))); ; ; v4int x; ; v4int v2, v3; ; void testCombineMultiplies_splat(v4int v1) { ; v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22}; ; v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22}; ; x = (v1 + (v4int){ 11, 11, 11, 11 }); ; } ; ; Output looks something like this: ; ; testCombineMultiplies_splat: # @testCombineMultiplies_splat ; # %bb.0: # %entry ; movdqa .LCPI1_0, %xmm1 # xmm1 = [11,11,11,11] ; paddd %xmm0, %xmm1 ; movdqa .LCPI1_1, %xmm2 # xmm2 = [22,22,22,22] ; pshufd $245, %xmm0, %xmm3 # xmm3 = xmm0[1,1,3,3] ; pmuludq %xmm2, %xmm0 ; pshufd $232, %xmm0, %xmm0 # xmm0 = xmm0[0,2,2,3] ; pmuludq %xmm2, %xmm3 ; pshufd $232, %xmm3, %xmm2 # xmm2 = xmm3[0,2,2,3] ; punpckldq %xmm2, %xmm0 # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1] ; movdqa .LCPI1_2, %xmm2 # xmm2 = [242,242,242,242] ; paddd %xmm0, %xmm2 ; paddd .LCPI1_3, %xmm0 ; movdqa %xmm2, v2 ; movdqa %xmm0, v3 ; movdqa %xmm1, x ; retl ; ; Again, we want to make sure we don't generate two different multiplies. ; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two ; pmuludq instructions), followed by two adds. Without this optimization, we'd ; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions). @v2 = common global <4 x i32> zeroinitializer, align 16 @v3 = common global <4 x i32> zeroinitializer, align 16 @x = common global <4 x i32> zeroinitializer, align 16 ; Function Attrs: nounwind define void @testCombineMultiplies_splat(<4 x i32> %v1) nounwind { ; CHECK-LABEL: testCombineMultiplies_splat: ; CHECK: # %bb.0: # %entry ; CHECK-NEXT: movdqa {{.*#+}} xmm1 = [11,11,11,11] ; CHECK-NEXT: paddd %xmm0, %xmm1 ; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [22,22,22,22] ; CHECK-NEXT: pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3] ; CHECK-NEXT: pmuludq %xmm2, %xmm0 ; CHECK-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3] ; CHECK-NEXT: pmuludq %xmm2, %xmm3 ; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm3[0,2,2,3] ; CHECK-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1] ; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [242,242,242,242] ; CHECK-NEXT: paddd %xmm0, %xmm2 ; CHECK-NEXT: paddd {{\.LCPI.*}}, %xmm0 ; CHECK-NEXT: movdqa %xmm2, v2 ; CHECK-NEXT: movdqa %xmm0, v3 ; CHECK-NEXT: movdqa %xmm1, x ; CHECK-NEXT: retl entry: %add1 = add <4 x i32> %v1, %mul1 = mul <4 x i32> %add1, %add2 = add <4 x i32> %v1, %mul2 = mul <4 x i32> %add2, store <4 x i32> %mul1, <4 x i32>* @v2, align 16 store <4 x i32> %mul2, <4 x i32>* @v3, align 16 store <4 x i32> %add1, <4 x i32>* @x, align 16 ret void } ; Finally, check the non-splatted vector case. This is very similar ; to the previous test case, except for the vector values. ; Function Attrs: nounwind define void @testCombineMultiplies_non_splat(<4 x i32> %v1) nounwind { ; CHECK-LABEL: testCombineMultiplies_non_splat: ; CHECK: # %bb.0: # %entry ; CHECK-NEXT: movdqa {{.*#+}} xmm1 = [11,22,33,44] ; CHECK-NEXT: paddd %xmm0, %xmm1 ; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [22,33,44,55] ; CHECK-NEXT: pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3] ; CHECK-NEXT: pmuludq %xmm2, %xmm0 ; CHECK-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3] ; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm2[1,1,3,3] ; CHECK-NEXT: pmuludq %xmm3, %xmm2 ; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm2[0,2,2,3] ; CHECK-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1] ; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [242,726,1452,2420] ; CHECK-NEXT: paddd %xmm0, %xmm2 ; CHECK-NEXT: paddd {{\.LCPI.*}}, %xmm0 ; CHECK-NEXT: movdqa %xmm2, v2 ; CHECK-NEXT: movdqa %xmm0, v3 ; CHECK-NEXT: movdqa %xmm1, x ; CHECK-NEXT: retl entry: %add1 = add <4 x i32> %v1, %mul1 = mul <4 x i32> %add1, %add2 = add <4 x i32> %v1, %mul2 = mul <4 x i32> %add2, store <4 x i32> %mul1, <4 x i32>* @v2, align 16 store <4 x i32> %mul2, <4 x i32>* @v3, align 16 store <4 x i32> %add1, <4 x i32>* @x, align 16 ret void }