1871 lines
75 KiB
C++
1871 lines
75 KiB
C++
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the MachineInstr class, which is the
|
|
// basic representation for all target dependent machine instructions used by
|
|
// the back end.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
|
|
#define LLVM_CODEGEN_MACHINEINSTR_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/PointerSumType.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/ArrayRecycler.h"
|
|
#include "llvm/Support/TrailingObjects.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class AAResults;
|
|
template <typename T> class ArrayRef;
|
|
class DIExpression;
|
|
class DILocalVariable;
|
|
class MachineBasicBlock;
|
|
class MachineFunction;
|
|
class MachineRegisterInfo;
|
|
class ModuleSlotTracker;
|
|
class raw_ostream;
|
|
template <typename T> class SmallVectorImpl;
|
|
class SmallBitVector;
|
|
class StringRef;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Representation of each machine instruction.
|
|
///
|
|
/// This class isn't a POD type, but it must have a trivial destructor. When a
|
|
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
|
|
/// without having their destructor called.
|
|
///
|
|
class MachineInstr
|
|
: public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
|
|
ilist_sentinel_tracking<true>> {
|
|
public:
|
|
using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
|
|
|
|
/// Flags to specify different kinds of comments to output in
|
|
/// assembly code. These flags carry semantic information not
|
|
/// otherwise easily derivable from the IR text.
|
|
///
|
|
enum CommentFlag {
|
|
ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
|
|
NoSchedComment = 0x2,
|
|
TAsmComments = 0x4 // Target Asm comments should start from this value.
|
|
};
|
|
|
|
enum MIFlag {
|
|
NoFlags = 0,
|
|
FrameSetup = 1 << 0, // Instruction is used as a part of
|
|
// function frame setup code.
|
|
FrameDestroy = 1 << 1, // Instruction is used as a part of
|
|
// function frame destruction code.
|
|
BundledPred = 1 << 2, // Instruction has bundled predecessors.
|
|
BundledSucc = 1 << 3, // Instruction has bundled successors.
|
|
FmNoNans = 1 << 4, // Instruction does not support Fast
|
|
// math nan values.
|
|
FmNoInfs = 1 << 5, // Instruction does not support Fast
|
|
// math infinity values.
|
|
FmNsz = 1 << 6, // Instruction is not required to retain
|
|
// signed zero values.
|
|
FmArcp = 1 << 7, // Instruction supports Fast math
|
|
// reciprocal approximations.
|
|
FmContract = 1 << 8, // Instruction supports Fast math
|
|
// contraction operations like fma.
|
|
FmAfn = 1 << 9, // Instruction may map to Fast math
|
|
// instrinsic approximation.
|
|
FmReassoc = 1 << 10, // Instruction supports Fast math
|
|
// reassociation of operand order.
|
|
NoUWrap = 1 << 11, // Instruction supports binary operator
|
|
// no unsigned wrap.
|
|
NoSWrap = 1 << 12, // Instruction supports binary operator
|
|
// no signed wrap.
|
|
IsExact = 1 << 13, // Instruction supports division is
|
|
// known to be exact.
|
|
NoFPExcept = 1 << 14, // Instruction does not raise
|
|
// floatint-point exceptions.
|
|
NoMerge = 1 << 15, // Passes that drop source location info
|
|
// (e.g. branch folding) should skip
|
|
// this instruction.
|
|
};
|
|
|
|
private:
|
|
const MCInstrDesc *MCID; // Instruction descriptor.
|
|
MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
|
|
|
|
// Operands are allocated by an ArrayRecycler.
|
|
MachineOperand *Operands = nullptr; // Pointer to the first operand.
|
|
unsigned NumOperands = 0; // Number of operands on instruction.
|
|
|
|
uint16_t Flags = 0; // Various bits of additional
|
|
// information about machine
|
|
// instruction.
|
|
|
|
uint8_t AsmPrinterFlags = 0; // Various bits of information used by
|
|
// the AsmPrinter to emit helpful
|
|
// comments. This is *not* semantic
|
|
// information. Do not use this for
|
|
// anything other than to convey comment
|
|
// information to AsmPrinter.
|
|
|
|
// OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
|
|
// to properly pack.
|
|
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
|
|
OperandCapacity CapOperands; // Capacity of the Operands array.
|
|
|
|
/// Internal implementation detail class that provides out-of-line storage for
|
|
/// extra info used by the machine instruction when this info cannot be stored
|
|
/// in-line within the instruction itself.
|
|
///
|
|
/// This has to be defined eagerly due to the implementation constraints of
|
|
/// `PointerSumType` where it is used.
|
|
class ExtraInfo final
|
|
: TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
|
|
public:
|
|
static ExtraInfo *create(BumpPtrAllocator &Allocator,
|
|
ArrayRef<MachineMemOperand *> MMOs,
|
|
MCSymbol *PreInstrSymbol = nullptr,
|
|
MCSymbol *PostInstrSymbol = nullptr,
|
|
MDNode *HeapAllocMarker = nullptr) {
|
|
bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
|
|
bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
|
|
bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
|
|
auto *Result = new (Allocator.Allocate(
|
|
totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
|
|
MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
|
|
HasHeapAllocMarker),
|
|
alignof(ExtraInfo)))
|
|
ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
|
|
HasHeapAllocMarker);
|
|
|
|
// Copy the actual data into the trailing objects.
|
|
std::copy(MMOs.begin(), MMOs.end(),
|
|
Result->getTrailingObjects<MachineMemOperand *>());
|
|
|
|
if (HasPreInstrSymbol)
|
|
Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
|
|
if (HasPostInstrSymbol)
|
|
Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
|
|
PostInstrSymbol;
|
|
if (HasHeapAllocMarker)
|
|
Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
|
|
|
|
return Result;
|
|
}
|
|
|
|
ArrayRef<MachineMemOperand *> getMMOs() const {
|
|
return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
|
|
}
|
|
|
|
MCSymbol *getPreInstrSymbol() const {
|
|
return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
|
|
}
|
|
|
|
MCSymbol *getPostInstrSymbol() const {
|
|
return HasPostInstrSymbol
|
|
? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
|
|
: nullptr;
|
|
}
|
|
|
|
MDNode *getHeapAllocMarker() const {
|
|
return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
|
|
}
|
|
|
|
private:
|
|
friend TrailingObjects;
|
|
|
|
// Description of the extra info, used to interpret the actual optional
|
|
// data appended.
|
|
//
|
|
// Note that this is not terribly space optimized. This leaves a great deal
|
|
// of flexibility to fit more in here later.
|
|
const int NumMMOs;
|
|
const bool HasPreInstrSymbol;
|
|
const bool HasPostInstrSymbol;
|
|
const bool HasHeapAllocMarker;
|
|
|
|
// Implement the `TrailingObjects` internal API.
|
|
size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
|
|
return NumMMOs;
|
|
}
|
|
size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
|
|
return HasPreInstrSymbol + HasPostInstrSymbol;
|
|
}
|
|
size_t numTrailingObjects(OverloadToken<MDNode *>) const {
|
|
return HasHeapAllocMarker;
|
|
}
|
|
|
|
// Just a boring constructor to allow us to initialize the sizes. Always use
|
|
// the `create` routine above.
|
|
ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
|
|
bool HasHeapAllocMarker)
|
|
: NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
|
|
HasPostInstrSymbol(HasPostInstrSymbol),
|
|
HasHeapAllocMarker(HasHeapAllocMarker) {}
|
|
};
|
|
|
|
/// Enumeration of the kinds of inline extra info available. It is important
|
|
/// that the `MachineMemOperand` inline kind has a tag value of zero to make
|
|
/// it accessible as an `ArrayRef`.
|
|
enum ExtraInfoInlineKinds {
|
|
EIIK_MMO = 0,
|
|
EIIK_PreInstrSymbol,
|
|
EIIK_PostInstrSymbol,
|
|
EIIK_OutOfLine
|
|
};
|
|
|
|
// We store extra information about the instruction here. The common case is
|
|
// expected to be nothing or a single pointer (typically a MMO or a symbol).
|
|
// We work to optimize this common case by storing it inline here rather than
|
|
// requiring a separate allocation, but we fall back to an allocation when
|
|
// multiple pointers are needed.
|
|
PointerSumType<ExtraInfoInlineKinds,
|
|
PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
|
|
PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
|
|
PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
|
|
PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
|
|
Info;
|
|
|
|
DebugLoc debugLoc; // Source line information.
|
|
|
|
/// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
|
|
/// defined by this instruction.
|
|
unsigned DebugInstrNum;
|
|
|
|
// Intrusive list support
|
|
friend struct ilist_traits<MachineInstr>;
|
|
friend struct ilist_callback_traits<MachineBasicBlock>;
|
|
void setParent(MachineBasicBlock *P) { Parent = P; }
|
|
|
|
/// This constructor creates a copy of the given
|
|
/// MachineInstr in the given MachineFunction.
|
|
MachineInstr(MachineFunction &, const MachineInstr &);
|
|
|
|
/// This constructor create a MachineInstr and add the implicit operands.
|
|
/// It reserves space for number of operands specified by
|
|
/// MCInstrDesc. An explicit DebugLoc is supplied.
|
|
MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
|
|
bool NoImp = false);
|
|
|
|
// MachineInstrs are pool-allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
void
|
|
dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
|
|
SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
|
|
|
|
public:
|
|
MachineInstr(const MachineInstr &) = delete;
|
|
MachineInstr &operator=(const MachineInstr &) = delete;
|
|
// Use MachineFunction::DeleteMachineInstr() instead.
|
|
~MachineInstr() = delete;
|
|
|
|
const MachineBasicBlock* getParent() const { return Parent; }
|
|
MachineBasicBlock* getParent() { return Parent; }
|
|
|
|
/// Move the instruction before \p MovePos.
|
|
void moveBefore(MachineInstr *MovePos);
|
|
|
|
/// Return the function that contains the basic block that this instruction
|
|
/// belongs to.
|
|
///
|
|
/// Note: this is undefined behaviour if the instruction does not have a
|
|
/// parent.
|
|
const MachineFunction *getMF() const;
|
|
MachineFunction *getMF() {
|
|
return const_cast<MachineFunction *>(
|
|
static_cast<const MachineInstr *>(this)->getMF());
|
|
}
|
|
|
|
/// Return the asm printer flags bitvector.
|
|
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
|
|
|
|
/// Clear the AsmPrinter bitvector.
|
|
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
|
|
|
|
/// Return whether an AsmPrinter flag is set.
|
|
bool getAsmPrinterFlag(CommentFlag Flag) const {
|
|
return AsmPrinterFlags & Flag;
|
|
}
|
|
|
|
/// Set a flag for the AsmPrinter.
|
|
void setAsmPrinterFlag(uint8_t Flag) {
|
|
AsmPrinterFlags |= Flag;
|
|
}
|
|
|
|
/// Clear specific AsmPrinter flags.
|
|
void clearAsmPrinterFlag(CommentFlag Flag) {
|
|
AsmPrinterFlags &= ~Flag;
|
|
}
|
|
|
|
/// Return the MI flags bitvector.
|
|
uint16_t getFlags() const {
|
|
return Flags;
|
|
}
|
|
|
|
/// Return whether an MI flag is set.
|
|
bool getFlag(MIFlag Flag) const {
|
|
return Flags & Flag;
|
|
}
|
|
|
|
/// Set a MI flag.
|
|
void setFlag(MIFlag Flag) {
|
|
Flags |= (uint16_t)Flag;
|
|
}
|
|
|
|
void setFlags(unsigned flags) {
|
|
// Filter out the automatically maintained flags.
|
|
unsigned Mask = BundledPred | BundledSucc;
|
|
Flags = (Flags & Mask) | (flags & ~Mask);
|
|
}
|
|
|
|
/// clearFlag - Clear a MI flag.
|
|
void clearFlag(MIFlag Flag) {
|
|
Flags &= ~((uint16_t)Flag);
|
|
}
|
|
|
|
/// Return true if MI is in a bundle (but not the first MI in a bundle).
|
|
///
|
|
/// A bundle looks like this before it's finalized:
|
|
/// ----------------
|
|
/// | MI |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// In this case, the first MI starts a bundle but is not inside a bundle, the
|
|
/// next 2 MIs are considered "inside" the bundle.
|
|
///
|
|
/// After a bundle is finalized, it looks like this:
|
|
/// ----------------
|
|
/// | Bundle |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
|
|
/// a bundle, but the next three MIs are.
|
|
bool isInsideBundle() const {
|
|
return getFlag(BundledPred);
|
|
}
|
|
|
|
/// Return true if this instruction part of a bundle. This is true
|
|
/// if either itself or its following instruction is marked "InsideBundle".
|
|
bool isBundled() const {
|
|
return isBundledWithPred() || isBundledWithSucc();
|
|
}
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// first instruction in the bundle.
|
|
bool isBundledWithPred() const { return getFlag(BundledPred); }
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// last instruction in the bundle.
|
|
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
|
|
|
|
/// Bundle this instruction with its predecessor. This can be an unbundled
|
|
/// instruction, or it can be the first instruction in a bundle.
|
|
void bundleWithPred();
|
|
|
|
/// Bundle this instruction with its successor. This can be an unbundled
|
|
/// instruction, or it can be the last instruction in a bundle.
|
|
void bundleWithSucc();
|
|
|
|
/// Break bundle above this instruction.
|
|
void unbundleFromPred();
|
|
|
|
/// Break bundle below this instruction.
|
|
void unbundleFromSucc();
|
|
|
|
/// Returns the debug location id of this MachineInstr.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Return the operand containing the offset to be used if this DBG_VALUE
|
|
/// instruction is indirect; will be an invalid register if this value is
|
|
/// not indirect, and an immediate with value 0 otherwise.
|
|
const MachineOperand &getDebugOffset() const {
|
|
assert(isDebugValue() && "not a DBG_VALUE");
|
|
return getOperand(1);
|
|
}
|
|
MachineOperand &getDebugOffset() {
|
|
assert(isDebugValue() && "not a DBG_VALUE");
|
|
return getOperand(1);
|
|
}
|
|
|
|
/// Return the operand for the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const MachineOperand &getDebugVariableOp() const;
|
|
MachineOperand &getDebugVariableOp();
|
|
|
|
/// Return the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DILocalVariable *getDebugVariable() const;
|
|
|
|
/// Return the operand for the complex address expression referenced by
|
|
/// this DBG_VALUE instruction.
|
|
MachineOperand &getDebugExpressionOp();
|
|
|
|
/// Return the complex address expression referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DIExpression *getDebugExpression() const;
|
|
|
|
/// Return the debug label referenced by
|
|
/// this DBG_LABEL instruction.
|
|
const DILabel *getDebugLabel() const;
|
|
|
|
/// Fetch the instruction number of this MachineInstr. If it does not have
|
|
/// one already, a new and unique number will be assigned.
|
|
unsigned getDebugInstrNum();
|
|
|
|
/// Examine the instruction number of this MachineInstr. May be zero if
|
|
/// it hasn't been assigned a number yet.
|
|
unsigned peekDebugInstrNum() const { return DebugInstrNum; }
|
|
|
|
/// Set instruction number of this MachineInstr. Avoid using unless you're
|
|
/// deserializing this information.
|
|
void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
|
|
|
|
/// Emit an error referring to the source location of this instruction.
|
|
/// This should only be used for inline assembly that is somehow
|
|
/// impossible to compile. Other errors should have been handled much
|
|
/// earlier.
|
|
///
|
|
/// If this method returns, the caller should try to recover from the error.
|
|
void emitError(StringRef Msg) const;
|
|
|
|
/// Returns the target instruction descriptor of this MachineInstr.
|
|
const MCInstrDesc &getDesc() const { return *MCID; }
|
|
|
|
/// Returns the opcode of this MachineInstr.
|
|
unsigned getOpcode() const { return MCID->Opcode; }
|
|
|
|
/// Retuns the total number of operands.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Returns the total number of operands which are debug locations.
|
|
unsigned getNumDebugOperands() const {
|
|
return std::distance(debug_operands().begin(), debug_operands().end());
|
|
}
|
|
|
|
const MachineOperand& getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
MachineOperand& getOperand(unsigned i) {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
|
|
MachineOperand &getDebugOperand(unsigned Index) {
|
|
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
|
|
return *(debug_operands().begin() + Index);
|
|
}
|
|
const MachineOperand &getDebugOperand(unsigned Index) const {
|
|
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
|
|
return *(debug_operands().begin() + Index);
|
|
}
|
|
|
|
/// Returns a pointer to the operand corresponding to a debug use of Reg, or
|
|
/// nullptr if Reg is not used in any debug operand.
|
|
const MachineOperand *getDebugOperandForReg(Register Reg) const {
|
|
const MachineOperand *RegOp =
|
|
find_if(debug_operands(), [Reg](const MachineOperand &Op) {
|
|
return Op.isReg() && Op.getReg() == Reg;
|
|
});
|
|
return RegOp == adl_end(debug_operands()) ? nullptr : RegOp;
|
|
}
|
|
MachineOperand *getDebugOperandForReg(Register Reg) {
|
|
MachineOperand *RegOp =
|
|
find_if(debug_operands(), [Reg](const MachineOperand &Op) {
|
|
return Op.isReg() && Op.getReg() == Reg;
|
|
});
|
|
return RegOp == adl_end(debug_operands()) ? nullptr : RegOp;
|
|
}
|
|
|
|
unsigned getDebugOperandIndex(const MachineOperand *Op) const {
|
|
assert(Op >= adl_begin(debug_operands()) &&
|
|
Op <= adl_end(debug_operands()) && "Expected a debug operand.");
|
|
return std::distance(adl_begin(debug_operands()), Op);
|
|
}
|
|
|
|
/// Returns the total number of definitions.
|
|
unsigned getNumDefs() const {
|
|
return getNumExplicitDefs() + MCID->getNumImplicitDefs();
|
|
}
|
|
|
|
/// Returns true if the instruction has implicit definition.
|
|
bool hasImplicitDef() const {
|
|
for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
|
|
I != E; ++I) {
|
|
const MachineOperand &MO = getOperand(I);
|
|
if (MO.isDef() && MO.isImplicit())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns the implicit operands number.
|
|
unsigned getNumImplicitOperands() const {
|
|
return getNumOperands() - getNumExplicitOperands();
|
|
}
|
|
|
|
/// Return true if operand \p OpIdx is a subregister index.
|
|
bool isOperandSubregIdx(unsigned OpIdx) const {
|
|
assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
|
|
"Expected MO_Immediate operand type.");
|
|
if (isExtractSubreg() && OpIdx == 2)
|
|
return true;
|
|
if (isInsertSubreg() && OpIdx == 3)
|
|
return true;
|
|
if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
|
|
return true;
|
|
if (isSubregToReg() && OpIdx == 3)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns the number of non-implicit operands.
|
|
unsigned getNumExplicitOperands() const;
|
|
|
|
/// Returns the number of non-implicit definitions.
|
|
unsigned getNumExplicitDefs() const;
|
|
|
|
/// iterator/begin/end - Iterate over all operands of a machine instruction.
|
|
using mop_iterator = MachineOperand *;
|
|
using const_mop_iterator = const MachineOperand *;
|
|
|
|
mop_iterator operands_begin() { return Operands; }
|
|
mop_iterator operands_end() { return Operands + NumOperands; }
|
|
|
|
const_mop_iterator operands_begin() const { return Operands; }
|
|
const_mop_iterator operands_end() const { return Operands + NumOperands; }
|
|
|
|
iterator_range<mop_iterator> operands() {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> operands() const {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_operands() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_operands() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<mop_iterator> implicit_operands() {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> implicit_operands() const {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
/// Returns a range over all operands that are used to determine the variable
|
|
/// location for this DBG_VALUE instruction.
|
|
iterator_range<mop_iterator> debug_operands() {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
return make_range(operands_begin(), operands_begin() + 1);
|
|
}
|
|
/// \copydoc debug_operands()
|
|
iterator_range<const_mop_iterator> debug_operands() const {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
return make_range(operands_begin(), operands_begin() + 1);
|
|
}
|
|
/// Returns a range over all explicit operands that are register definitions.
|
|
/// Implicit definition are not included!
|
|
iterator_range<mop_iterator> defs() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitDefs());
|
|
}
|
|
/// \copydoc defs()
|
|
iterator_range<const_mop_iterator> defs() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitDefs());
|
|
}
|
|
/// Returns a range that includes all operands that are register uses.
|
|
/// This may include unrelated operands which are not register uses.
|
|
iterator_range<mop_iterator> uses() {
|
|
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
|
|
}
|
|
/// \copydoc uses()
|
|
iterator_range<const_mop_iterator> uses() const {
|
|
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_uses() {
|
|
return make_range(operands_begin() + getNumExplicitDefs(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_uses() const {
|
|
return make_range(operands_begin() + getNumExplicitDefs(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
|
|
/// Returns the number of the operand iterator \p I points to.
|
|
unsigned getOperandNo(const_mop_iterator I) const {
|
|
return I - operands_begin();
|
|
}
|
|
|
|
/// Access to memory operands of the instruction. If there are none, that does
|
|
/// not imply anything about whether the function accesses memory. Instead,
|
|
/// the caller must behave conservatively.
|
|
ArrayRef<MachineMemOperand *> memoperands() const {
|
|
if (!Info)
|
|
return {};
|
|
|
|
if (Info.is<EIIK_MMO>())
|
|
return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
|
|
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getMMOs();
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Access to memory operands of the instruction.
|
|
///
|
|
/// If `memoperands_begin() == memoperands_end()`, that does not imply
|
|
/// anything about whether the function accesses memory. Instead, the caller
|
|
/// must behave conservatively.
|
|
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
|
|
|
|
/// Access to memory operands of the instruction.
|
|
///
|
|
/// If `memoperands_begin() == memoperands_end()`, that does not imply
|
|
/// anything about whether the function accesses memory. Instead, the caller
|
|
/// must behave conservatively.
|
|
mmo_iterator memoperands_end() const { return memoperands().end(); }
|
|
|
|
/// Return true if we don't have any memory operands which described the
|
|
/// memory access done by this instruction. If this is true, calling code
|
|
/// must be conservative.
|
|
bool memoperands_empty() const { return memoperands().empty(); }
|
|
|
|
/// Return true if this instruction has exactly one MachineMemOperand.
|
|
bool hasOneMemOperand() const { return memoperands().size() == 1; }
|
|
|
|
/// Return the number of memory operands.
|
|
unsigned getNumMemOperands() const { return memoperands().size(); }
|
|
|
|
/// Helper to extract a pre-instruction symbol if one has been added.
|
|
MCSymbol *getPreInstrSymbol() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
|
|
return S;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getPreInstrSymbol();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Helper to extract a post-instruction symbol if one has been added.
|
|
MCSymbol *getPostInstrSymbol() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
|
|
return S;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getPostInstrSymbol();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Helper to extract a heap alloc marker if one has been added.
|
|
MDNode *getHeapAllocMarker() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getHeapAllocMarker();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
|
|
/// queries but they are bundle aware.
|
|
|
|
enum QueryType {
|
|
IgnoreBundle, // Ignore bundles
|
|
AnyInBundle, // Return true if any instruction in bundle has property
|
|
AllInBundle // Return true if all instructions in bundle have property
|
|
};
|
|
|
|
/// Return true if the instruction (or in the case of a bundle,
|
|
/// the instructions inside the bundle) has the specified property.
|
|
/// The first argument is the property being queried.
|
|
/// The second argument indicates whether the query should look inside
|
|
/// instruction bundles.
|
|
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
|
|
assert(MCFlag < 64 &&
|
|
"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
|
|
// Inline the fast path for unbundled or bundle-internal instructions.
|
|
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
|
|
return getDesc().getFlags() & (1ULL << MCFlag);
|
|
|
|
// If this is the first instruction in a bundle, take the slow path.
|
|
return hasPropertyInBundle(1ULL << MCFlag, Type);
|
|
}
|
|
|
|
/// Return true if this is an instruction that should go through the usual
|
|
/// legalization steps.
|
|
bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::PreISelOpcode, Type);
|
|
}
|
|
|
|
/// Return true if this instruction can have a variable number of operands.
|
|
/// In this case, the variable operands will be after the normal
|
|
/// operands but before the implicit definitions and uses (if any are
|
|
/// present).
|
|
bool isVariadic(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Variadic, Type);
|
|
}
|
|
|
|
/// Set if this instruction has an optional definition, e.g.
|
|
/// ARM instructions which can set condition code if 's' bit is set.
|
|
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasOptionalDef, Type);
|
|
}
|
|
|
|
/// Return true if this is a pseudo instruction that doesn't
|
|
/// correspond to a real machine instruction.
|
|
bool isPseudo(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Pseudo, Type);
|
|
}
|
|
|
|
bool isReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Return, Type);
|
|
}
|
|
|
|
/// Return true if this is an instruction that marks the end of an EH scope,
|
|
/// i.e., a catchpad or a cleanuppad instruction.
|
|
bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::EHScopeReturn, Type);
|
|
}
|
|
|
|
bool isCall(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Call, Type);
|
|
}
|
|
|
|
/// Return true if this is a call instruction that may have an associated
|
|
/// call site entry in the debug info.
|
|
bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
|
|
/// Return true if copying, moving, or erasing this instruction requires
|
|
/// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
|
|
/// \ref eraseCallSiteInfo).
|
|
bool shouldUpdateCallSiteInfo() const;
|
|
|
|
/// Returns true if the specified instruction stops control flow
|
|
/// from executing the instruction immediately following it. Examples include
|
|
/// unconditional branches and return instructions.
|
|
bool isBarrier(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Barrier, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction part of the terminator for a basic block.
|
|
/// Typically this is things like return and branch instructions.
|
|
///
|
|
/// Various passes use this to insert code into the bottom of a basic block,
|
|
/// but before control flow occurs.
|
|
bool isTerminator(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Terminator, Type);
|
|
}
|
|
|
|
/// Returns true if this is a conditional, unconditional, or indirect branch.
|
|
/// Predicates below can be used to discriminate between
|
|
/// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
|
|
/// get more information.
|
|
bool isBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Branch, Type);
|
|
}
|
|
|
|
/// Return true if this is an indirect branch, such as a
|
|
/// branch through a register.
|
|
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::IndirectBranch, Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which may fall
|
|
/// through to the next instruction or may transfer control flow to some other
|
|
/// block. The TargetInstrInfo::analyzeBranch method can be used to get more
|
|
/// information about this branch.
|
|
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which always
|
|
/// transfers control flow to some other block. The
|
|
/// TargetInstrInfo::analyzeBranch method can be used to get more information
|
|
/// about this branch.
|
|
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this instruction has a predicate operand that
|
|
/// controls execution. It may be set to 'always', or may be set to other
|
|
/// values. There are various methods in TargetInstrInfo that can be used to
|
|
/// control and modify the predicate in this instruction.
|
|
bool isPredicable(QueryType Type = AllInBundle) const {
|
|
// If it's a bundle than all bundled instructions must be predicable for this
|
|
// to return true.
|
|
return hasProperty(MCID::Predicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a comparison.
|
|
bool isCompare(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Compare, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a move immediate
|
|
/// (including conditional moves) instruction.
|
|
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveImm, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a register move.
|
|
/// (including moving values from subreg to reg)
|
|
bool isMoveReg(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveReg, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a bitcast instruction.
|
|
bool isBitcast(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Bitcast, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a select instruction.
|
|
bool isSelect(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Select, Type);
|
|
}
|
|
|
|
/// Return true if this instruction cannot be safely duplicated.
|
|
/// For example, if the instruction has a unique labels attached
|
|
/// to it, duplicating it would cause multiple definition errors.
|
|
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::NotDuplicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is convergent.
|
|
/// Convergent instructions can not be made control-dependent on any
|
|
/// additional values.
|
|
bool isConvergent(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::Convergent, Type);
|
|
}
|
|
|
|
/// Returns true if the specified instruction has a delay slot
|
|
/// which must be filled by the code generator.
|
|
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::DelaySlot, Type);
|
|
}
|
|
|
|
/// Return true for instructions that can be folded as
|
|
/// memory operands in other instructions. The most common use for this
|
|
/// is instructions that are simple loads from memory that don't modify
|
|
/// the loaded value in any way, but it can also be used for instructions
|
|
/// that can be expressed as constant-pool loads, such as V_SETALLONES
|
|
/// on x86, to allow them to be folded when it is beneficial.
|
|
/// This should only be set on instructions that return a value in their
|
|
/// only virtual register definition.
|
|
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::FoldableAsLoad, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic REG_SEQUENCE instructions.
|
|
/// E.g., on ARM,
|
|
/// dX VMOVDRR rY, rZ
|
|
/// is equivalent to
|
|
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::RegSequence, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic EXTRACT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// rX, rY VMOVRRD dZ
|
|
/// is equivalent to two EXTRACT_SUBREG:
|
|
/// rX = EXTRACT_SUBREG dZ, ssub_0
|
|
/// rY = EXTRACT_SUBREG dZ, ssub_1
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ExtractSubreg, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic INSERT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// dX = VSETLNi32 dY, rZ, Imm
|
|
/// is equivalent to a INSERT_SUBREG:
|
|
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::InsertSubreg, Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Side Effect Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this instruction could possibly read memory.
|
|
/// Instructions with this flag set are not necessarily simple load
|
|
/// instructions, they may load a value and modify it, for example.
|
|
bool mayLoad(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayLoad, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly modify memory.
|
|
/// Instructions with this flag set are not necessarily simple store
|
|
/// instructions, they may store a modified value based on their operands, or
|
|
/// may not actually modify anything, for example.
|
|
bool mayStore(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayStore, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly read or modify memory.
|
|
bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
|
|
return mayLoad(Type) || mayStore(Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly raise a floating-point
|
|
/// exception. This is the case if the instruction is a floating-point
|
|
/// instruction that can in principle raise an exception, as indicated
|
|
/// by the MCID::MayRaiseFPException property, *and* at the same time,
|
|
/// the instruction is used in a context where we expect floating-point
|
|
/// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
|
|
bool mayRaiseFPException() const {
|
|
return hasProperty(MCID::MayRaiseFPException) &&
|
|
!getFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Flags that indicate whether an instruction can be modified by a method.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this may be a 2- or 3-address
|
|
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
|
|
/// result if Y and Z are exchanged. If this flag is set, then the
|
|
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
|
|
/// instruction.
|
|
///
|
|
/// Note that this flag may be set on instructions that are only commutable
|
|
/// sometimes. In these cases, the call to commuteInstruction will fail.
|
|
/// Also note that some instructions require non-trivial modification to
|
|
/// commute them.
|
|
bool isCommutable(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Commutable, Type);
|
|
}
|
|
|
|
/// Return true if this is a 2-address instruction
|
|
/// which can be changed into a 3-address instruction if needed. Doing this
|
|
/// transformation can be profitable in the register allocator, because it
|
|
/// means that the instruction can use a 2-address form if possible, but
|
|
/// degrade into a less efficient form if the source and dest register cannot
|
|
/// be assigned to the same register. For example, this allows the x86
|
|
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
|
|
/// is the same speed as the shift but has bigger code size.
|
|
///
|
|
/// If this returns true, then the target must implement the
|
|
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
|
|
/// is allowed to fail if the transformation isn't valid for this specific
|
|
/// instruction (e.g. shl reg, 4 on x86).
|
|
///
|
|
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ConvertibleTo3Addr, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires
|
|
/// custom insertion support when the DAG scheduler is inserting it into a
|
|
/// machine basic block. If this is true for the instruction, it basically
|
|
/// means that it is a pseudo instruction used at SelectionDAG time that is
|
|
/// expanded out into magic code by the target when MachineInstrs are formed.
|
|
///
|
|
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
|
|
/// is used to insert this into the MachineBasicBlock.
|
|
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::UsesCustomInserter, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires *adjustment*
|
|
/// after instruction selection by calling a target hook. For example, this
|
|
/// can be used to fill in ARM 's' optional operand depending on whether
|
|
/// the conditional flag register is used.
|
|
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasPostISelHook, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction is a candidate for remat.
|
|
/// This flag is deprecated, please don't use it anymore. If this
|
|
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
|
|
/// verify the instruction is really rematable.
|
|
bool isRematerializable(QueryType Type = AllInBundle) const {
|
|
// It's only possible to re-mat a bundle if all bundled instructions are
|
|
// re-materializable.
|
|
return hasProperty(MCID::Rematerializable, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction has the same cost (or less) than a move
|
|
/// instruction. This is useful during certain types of optimizations
|
|
/// (e.g., remat during two-address conversion or machine licm)
|
|
/// where we would like to remat or hoist the instruction, but not if it costs
|
|
/// more than moving the instruction into the appropriate register. Note, we
|
|
/// are not marking copies from and to the same register class with this flag.
|
|
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
|
|
// Only returns true for a bundle if all bundled instructions are cheap.
|
|
return hasProperty(MCID::CheapAsAMove, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction source operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::STRD's two source registers must be an
|
|
/// even / odd pair, ARM::STM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for sources of instructions with this flag.
|
|
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction def operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
|
|
/// even / odd pair, ARM::LDM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for definitions of instructions with this flag.
|
|
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
|
|
}
|
|
|
|
enum MICheckType {
|
|
CheckDefs, // Check all operands for equality
|
|
CheckKillDead, // Check all operands including kill / dead markers
|
|
IgnoreDefs, // Ignore all definitions
|
|
IgnoreVRegDefs // Ignore virtual register definitions
|
|
};
|
|
|
|
/// Return true if this instruction is identical to \p Other.
|
|
/// Two instructions are identical if they have the same opcode and all their
|
|
/// operands are identical (with respect to MachineOperand::isIdenticalTo()).
|
|
/// Note that this means liveness related flags (dead, undef, kill) do not
|
|
/// affect the notion of identical.
|
|
bool isIdenticalTo(const MachineInstr &Other,
|
|
MICheckType Check = CheckDefs) const;
|
|
|
|
/// Unlink 'this' from the containing basic block, and return it without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used on bundled instructions, use
|
|
/// removeFromBundle() to remove individual instructions from a bundle.
|
|
MachineInstr *removeFromParent();
|
|
|
|
/// Unlink this instruction from its basic block and return it without
|
|
/// deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
MachineInstr *removeFromBundle();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// If this instruction is the header of a bundle, the whole bundle is erased.
|
|
/// This function can not be used for instructions inside a bundle, use
|
|
/// eraseFromBundle() to erase individual bundled instructions.
|
|
void eraseFromParent();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// For all definitions mark their uses in DBG_VALUE nodes
|
|
/// as undefined. Otherwise like eraseFromParent().
|
|
void eraseFromParentAndMarkDBGValuesForRemoval();
|
|
|
|
/// Unlink 'this' form its basic block and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
void eraseFromBundle();
|
|
|
|
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
|
|
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
|
|
bool isAnnotationLabel() const {
|
|
return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr represents a label.
|
|
bool isLabel() const {
|
|
return isEHLabel() || isGCLabel() || isAnnotationLabel();
|
|
}
|
|
|
|
bool isCFIInstruction() const {
|
|
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
|
|
}
|
|
|
|
bool isPseudoProbe() const {
|
|
return getOpcode() == TargetOpcode::PSEUDO_PROBE;
|
|
}
|
|
|
|
// True if the instruction represents a position in the function.
|
|
bool isPosition() const { return isLabel() || isCFIInstruction(); }
|
|
|
|
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
|
|
bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
|
|
bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
|
|
bool isDebugInstr() const {
|
|
return isDebugValue() || isDebugLabel() || isDebugRef();
|
|
}
|
|
bool isDebugOrPseudoInstr() const {
|
|
return isDebugInstr() || isPseudoProbe();
|
|
}
|
|
|
|
bool isDebugOffsetImm() const { return getDebugOffset().isImm(); }
|
|
|
|
/// A DBG_VALUE is indirect iff the location operand is a register and
|
|
/// the offset operand is an immediate.
|
|
bool isIndirectDebugValue() const {
|
|
return isDebugValue() && getDebugOperand(0).isReg() && isDebugOffsetImm();
|
|
}
|
|
|
|
/// A DBG_VALUE is an entry value iff its debug expression contains the
|
|
/// DW_OP_LLVM_entry_value operation.
|
|
bool isDebugEntryValue() const;
|
|
|
|
/// Return true if the instruction is a debug value which describes a part of
|
|
/// a variable as unavailable.
|
|
bool isUndefDebugValue() const {
|
|
return isDebugValue() && getDebugOperand(0).isReg() &&
|
|
!getDebugOperand(0).getReg().isValid();
|
|
}
|
|
|
|
bool isPHI() const {
|
|
return getOpcode() == TargetOpcode::PHI ||
|
|
getOpcode() == TargetOpcode::G_PHI;
|
|
}
|
|
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
|
|
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
|
|
bool isInlineAsm() const {
|
|
return getOpcode() == TargetOpcode::INLINEASM ||
|
|
getOpcode() == TargetOpcode::INLINEASM_BR;
|
|
}
|
|
|
|
/// FIXME: Seems like a layering violation that the AsmDialect, which is X86
|
|
/// specific, be attached to a generic MachineInstr.
|
|
bool isMSInlineAsm() const {
|
|
return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
|
|
}
|
|
|
|
bool isStackAligningInlineAsm() const;
|
|
InlineAsm::AsmDialect getInlineAsmDialect() const;
|
|
|
|
bool isInsertSubreg() const {
|
|
return getOpcode() == TargetOpcode::INSERT_SUBREG;
|
|
}
|
|
|
|
bool isSubregToReg() const {
|
|
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
|
|
}
|
|
|
|
bool isRegSequence() const {
|
|
return getOpcode() == TargetOpcode::REG_SEQUENCE;
|
|
}
|
|
|
|
bool isBundle() const {
|
|
return getOpcode() == TargetOpcode::BUNDLE;
|
|
}
|
|
|
|
bool isCopy() const {
|
|
return getOpcode() == TargetOpcode::COPY;
|
|
}
|
|
|
|
bool isFullCopy() const {
|
|
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
|
|
}
|
|
|
|
bool isExtractSubreg() const {
|
|
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
|
|
}
|
|
|
|
/// Return true if the instruction behaves like a copy.
|
|
/// This does not include native copy instructions.
|
|
bool isCopyLike() const {
|
|
return isCopy() || isSubregToReg();
|
|
}
|
|
|
|
/// Return true is the instruction is an identity copy.
|
|
bool isIdentityCopy() const {
|
|
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
|
|
getOperand(0).getSubReg() == getOperand(1).getSubReg();
|
|
}
|
|
|
|
/// Return true if this instruction doesn't produce any output in the form of
|
|
/// executable instructions.
|
|
bool isMetaInstruction() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return false;
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::GC_LABEL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
case TargetOpcode::DBG_INSTR_REF:
|
|
case TargetOpcode::DBG_LABEL:
|
|
case TargetOpcode::LIFETIME_START:
|
|
case TargetOpcode::LIFETIME_END:
|
|
case TargetOpcode::PSEUDO_PROBE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return true if this is a transient instruction that is either very likely
|
|
/// to be eliminated during register allocation (such as copy-like
|
|
/// instructions), or if this instruction doesn't have an execution-time cost.
|
|
bool isTransient() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return isMetaInstruction();
|
|
// Copy-like instructions are usually eliminated during register allocation.
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::G_PHI:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return the number of instructions inside the MI bundle, excluding the
|
|
/// bundle header.
|
|
///
|
|
/// This is the number of instructions that MachineBasicBlock::iterator
|
|
/// skips, 0 for unbundled instructions.
|
|
unsigned getBundleSize() const;
|
|
|
|
/// Return true if the MachineInstr reads the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there
|
|
/// is a read of a super-register.
|
|
/// This does not count partial redefines of virtual registers as reads:
|
|
/// %reg1024:6 = OP.
|
|
bool readsRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr reads the specified virtual register.
|
|
/// Take into account that a partial define is a
|
|
/// read-modify-write operation.
|
|
bool readsVirtualRegister(Register Reg) const {
|
|
return readsWritesVirtualRegister(Reg).first;
|
|
}
|
|
|
|
/// Return a pair of bools (reads, writes) indicating if this instruction
|
|
/// reads or writes Reg. This also considers partial defines.
|
|
/// If Ops is not null, all operand indices for Reg are added.
|
|
std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
|
|
SmallVectorImpl<unsigned> *Ops = nullptr) const;
|
|
|
|
/// Return true if the MachineInstr kills the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there is
|
|
/// a kill of a super-register.
|
|
bool killsRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr fully defines the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a def of a super-register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool definesRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr modifies (fully define or partially
|
|
/// define) the specified register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool modifiesRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the register is dead in this machine instruction.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a dead def of a super-register.
|
|
bool registerDefIsDead(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr has an implicit-use operand of exactly
|
|
/// the given register (not considering sub/super-registers).
|
|
bool hasRegisterImplicitUseOperand(Register Reg) const;
|
|
|
|
/// Returns the operand index that is a use of the specific register or -1
|
|
/// if it is not found. It further tightens the search criteria to a use
|
|
/// that kills the register if isKill is true.
|
|
int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterUseOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
const MachineOperand *findRegisterUseOperand(
|
|
Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return const_cast<MachineInstr *>(this)->
|
|
findRegisterUseOperand(Reg, isKill, TRI);
|
|
}
|
|
|
|
/// Returns the operand index that is a def of the specified register or
|
|
/// -1 if it is not found. If isDead is true, defs that are not dead are
|
|
/// skipped. If Overlap is true, then it also looks for defs that merely
|
|
/// overlap the specified register. If TargetRegisterInfo is non-null,
|
|
/// then it also checks if there is a def of a super-register.
|
|
/// This may also return a register mask operand when Overlap is true.
|
|
int findRegisterDefOperandIdx(Register Reg,
|
|
bool isDead = false, bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterDefOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *
|
|
findRegisterDefOperand(Register Reg, bool isDead = false,
|
|
bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
const MachineOperand *
|
|
findRegisterDefOperand(Register Reg, bool isDead = false,
|
|
bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
|
|
Reg, isDead, Overlap, TRI);
|
|
}
|
|
|
|
/// Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int findFirstPredOperandIdx() const;
|
|
|
|
/// Find the index of the flag word operand that
|
|
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
|
|
/// getOperand(OpIdx) does not belong to an inline asm operand group.
|
|
///
|
|
/// If GroupNo is not NULL, it will receive the number of the operand group
|
|
/// containing OpIdx.
|
|
///
|
|
/// The flag operand is an immediate that can be decoded with methods like
|
|
/// InlineAsm::hasRegClassConstraint().
|
|
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
|
|
|
|
/// Compute the static register class constraint for operand OpIdx.
|
|
/// For normal instructions, this is derived from the MCInstrDesc.
|
|
/// For inline assembly it is derived from the flag words.
|
|
///
|
|
/// Returns NULL if the static register class constraint cannot be
|
|
/// determined.
|
|
const TargetRegisterClass*
|
|
getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Applies the constraints (def/use) implied by this MI on \p Reg to
|
|
/// the given \p CurRC.
|
|
/// If \p ExploreBundle is set and MI is part of a bundle, all the
|
|
/// instructions inside the bundle will be taken into account. In other words,
|
|
/// this method accumulates all the constraints of the operand of this MI and
|
|
/// the related bundle if MI is a bundle or inside a bundle.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by MI. Returns NULL if such a register class does not
|
|
/// exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
|
|
Register Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
|
|
bool ExploreBundle = false) const;
|
|
|
|
/// Applies the constraints (def/use) implied by the \p OpIdx operand
|
|
/// to the given \p CurRC.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
|
|
/// does not exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
/// \pre The operand at \p OpIdx must be a register.
|
|
const TargetRegisterClass *
|
|
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Add a tie between the register operands at DefIdx and UseIdx.
|
|
/// The tie will cause the register allocator to ensure that the two
|
|
/// operands are assigned the same physical register.
|
|
///
|
|
/// Tied operands are managed automatically for explicit operands in the
|
|
/// MCInstrDesc. This method is for exceptional cases like inline asm.
|
|
void tieOperands(unsigned DefIdx, unsigned UseIdx);
|
|
|
|
/// Given the index of a tied register operand, find the
|
|
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
|
|
/// index of the tied operand which must exist.
|
|
unsigned findTiedOperandIdx(unsigned OpIdx) const;
|
|
|
|
/// Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference if UseOpIdx is not null.
|
|
bool isRegTiedToUseOperand(unsigned DefOpIdx,
|
|
unsigned *UseOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
|
|
return false;
|
|
if (UseOpIdx)
|
|
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the use operand of the specified index is tied to a def
|
|
/// operand. It also returns the def operand index by reference if DefOpIdx
|
|
/// is not null.
|
|
bool isRegTiedToDefOperand(unsigned UseOpIdx,
|
|
unsigned *DefOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Clears kill flags on all operands.
|
|
void clearKillInfo();
|
|
|
|
/// Replace all occurrences of FromReg with ToReg:SubIdx,
|
|
/// properly composing subreg indices where necessary.
|
|
void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo);
|
|
|
|
/// We have determined MI kills a register. Look for the
|
|
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
|
|
/// add a implicit operand if it's not found. Returns true if the operand
|
|
/// exists / is added.
|
|
bool addRegisterKilled(Register IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
|
|
/// all aliasing registers.
|
|
void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
|
|
|
|
/// We have determined MI defined a register without a use.
|
|
/// Look for the operand that defines it and mark it as IsDead. If
|
|
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
|
|
/// true if the operand exists / is added.
|
|
bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all dead flags on operands defining register @p Reg.
|
|
void clearRegisterDeads(Register Reg);
|
|
|
|
/// Mark all subregister defs of register @p Reg with the undef flag.
|
|
/// This function is used when we determined to have a subregister def in an
|
|
/// otherwise undefined super register.
|
|
void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
|
|
|
|
/// We have determined MI defines a register. Make sure there is an operand
|
|
/// defining Reg.
|
|
void addRegisterDefined(Register Reg,
|
|
const TargetRegisterInfo *RegInfo = nullptr);
|
|
|
|
/// Mark every physreg used by this instruction as
|
|
/// dead except those in the UsedRegs list.
|
|
///
|
|
/// On instructions with register mask operands, also add implicit-def
|
|
/// operands for all registers in UsedRegs.
|
|
void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
|
|
const TargetRegisterInfo &TRI);
|
|
|
|
/// Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool isSafeToMove(AAResults *AA, bool &SawStore) const;
|
|
|
|
/// Returns true if this instruction's memory access aliases the memory
|
|
/// access of Other.
|
|
//
|
|
/// Assumes any physical registers used to compute addresses
|
|
/// have the same value for both instructions. Returns false if neither
|
|
/// instruction writes to memory.
|
|
///
|
|
/// @param AA Optional alias analysis, used to compare memory operands.
|
|
/// @param Other MachineInstr to check aliasing against.
|
|
/// @param UseTBAA Whether to pass TBAA information to alias analysis.
|
|
bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
|
|
|
|
/// Return true if this instruction may have an ordered
|
|
/// or volatile memory reference, or if the information describing the memory
|
|
/// reference is not available. Return false if it is known to have no
|
|
/// ordered or volatile memory references.
|
|
bool hasOrderedMemoryRef() const;
|
|
|
|
/// Return true if this load instruction never traps and points to a memory
|
|
/// location whose value doesn't change during the execution of this function.
|
|
///
|
|
/// Examples include loading a value from the constant pool or from the
|
|
/// argument area of a function (if it does not change). If the instruction
|
|
/// does multiple loads, this returns true only if all of the loads are
|
|
/// dereferenceable and invariant.
|
|
bool isDereferenceableInvariantLoad(AAResults *AA) const;
|
|
|
|
/// If the specified instruction is a PHI that always merges together the
|
|
/// same virtual register, return the register, otherwise return 0.
|
|
unsigned isConstantValuePHI() const;
|
|
|
|
/// Return true if this instruction has side effects that are not modeled
|
|
/// by mayLoad / mayStore, etc.
|
|
/// For all instructions, the property is encoded in MCInstrDesc::Flags
|
|
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
|
|
/// INLINEASM instruction, in which case the side effect property is encoded
|
|
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
|
|
///
|
|
bool hasUnmodeledSideEffects() const;
|
|
|
|
/// Returns true if it is illegal to fold a load across this instruction.
|
|
bool isLoadFoldBarrier() const;
|
|
|
|
/// Return true if all the defs of this instruction are dead.
|
|
bool allDefsAreDead() const;
|
|
|
|
/// Return a valid size if the instruction is a spill instruction.
|
|
Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a folded spill instruction.
|
|
Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a restore instruction.
|
|
Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a folded restore instruction.
|
|
Optional<unsigned>
|
|
getFoldedRestoreSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Debugging support
|
|
/// @{
|
|
/// Determine the generic type to be printed (if needed) on uses and defs.
|
|
LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
|
|
const MachineRegisterInfo &MRI) const;
|
|
|
|
/// Return true when an instruction has tied register that can't be determined
|
|
/// by the instruction's descriptor. This is useful for MIR printing, to
|
|
/// determine whether we need to print the ties or not.
|
|
bool hasComplexRegisterTies() const;
|
|
|
|
/// Print this MI to \p OS.
|
|
/// Don't print information that can be inferred from other instructions if
|
|
/// \p IsStandalone is false. It is usually true when only a fragment of the
|
|
/// function is printed.
|
|
/// Only print the defs and the opcode if \p SkipOpers is true.
|
|
/// Otherwise, also print operands if \p SkipDebugLoc is true.
|
|
/// Otherwise, also print the debug loc, with a terminating newline.
|
|
/// \p TII is used to print the opcode name. If it's not present, but the
|
|
/// MI is in a function, the opcode will be printed using the function's TII.
|
|
void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
|
|
bool SkipDebugLoc = false, bool AddNewLine = true,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
|
|
bool SkipOpers = false, bool SkipDebugLoc = false,
|
|
bool AddNewLine = true,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void dump() const;
|
|
/// Print on dbgs() the current instruction and the instructions defining its
|
|
/// operands and so on until we reach \p MaxDepth.
|
|
void dumpr(const MachineRegisterInfo &MRI,
|
|
unsigned MaxDepth = UINT_MAX) const;
|
|
/// @}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors used to build up machine instructions.
|
|
|
|
/// Add the specified operand to the instruction. If it is an implicit
|
|
/// operand, it is added to the end of the operand list. If it is an
|
|
/// explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
///
|
|
/// MF must be the machine function that was used to allocate this
|
|
/// instruction.
|
|
///
|
|
/// MachineInstrBuilder provides a more convenient interface for creating
|
|
/// instructions and adding operands.
|
|
void addOperand(MachineFunction &MF, const MachineOperand &Op);
|
|
|
|
/// Add an operand without providing an MF reference. This only works for
|
|
/// instructions that are inserted in a basic block.
|
|
///
|
|
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
|
|
/// preferred.
|
|
void addOperand(const MachineOperand &Op);
|
|
|
|
/// Replace the instruction descriptor (thus opcode) of
|
|
/// the current instruction with a new one.
|
|
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
|
|
|
|
/// Replace current source information with new such.
|
|
/// Avoid using this, the constructor argument is preferable.
|
|
void setDebugLoc(DebugLoc dl) {
|
|
debugLoc = std::move(dl);
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
}
|
|
|
|
/// Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
void RemoveOperand(unsigned OpNo);
|
|
|
|
/// Clear this MachineInstr's memory reference descriptor list. This resets
|
|
/// the memrefs to their most conservative state. This should be used only
|
|
/// as a last resort since it greatly pessimizes our knowledge of the memory
|
|
/// access performed by the instruction.
|
|
void dropMemRefs(MachineFunction &MF);
|
|
|
|
/// Assign this MachineInstr's memory reference descriptor list.
|
|
///
|
|
/// Unlike other methods, this *will* allocate them into a new array
|
|
/// associated with the provided `MachineFunction`.
|
|
void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
|
|
|
|
/// Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
|
|
|
|
/// Clone another MachineInstr's memory reference descriptor list and replace
|
|
/// ours with it.
|
|
///
|
|
/// Note that `*this` may be the incoming MI!
|
|
///
|
|
/// Prefer this API whenever possible as it can avoid allocations in common
|
|
/// cases.
|
|
void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Clone the merge of multiple MachineInstrs' memory reference descriptors
|
|
/// list and replace ours with it.
|
|
///
|
|
/// Note that `*this` may be one of the incoming MIs!
|
|
///
|
|
/// Prefer this API whenever possible as it can avoid allocations in common
|
|
/// cases.
|
|
void cloneMergedMemRefs(MachineFunction &MF,
|
|
ArrayRef<const MachineInstr *> MIs);
|
|
|
|
/// Set a symbol that will be emitted just prior to the instruction itself.
|
|
///
|
|
/// Setting this to a null pointer will remove any such symbol.
|
|
///
|
|
/// FIXME: This is not fully implemented yet.
|
|
void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
|
|
|
|
/// Set a symbol that will be emitted just after the instruction itself.
|
|
///
|
|
/// Setting this to a null pointer will remove any such symbol.
|
|
///
|
|
/// FIXME: This is not fully implemented yet.
|
|
void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
|
|
|
|
/// Clone another MachineInstr's pre- and post- instruction symbols and
|
|
/// replace ours with it.
|
|
void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Set a marker on instructions that denotes where we should create and emit
|
|
/// heap alloc site labels. This waits until after instruction selection and
|
|
/// optimizations to create the label, so it should still work if the
|
|
/// instruction is removed or duplicated.
|
|
void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
|
|
|
|
/// Return the MIFlags which represent both MachineInstrs. This
|
|
/// should be used when merging two MachineInstrs into one. This routine does
|
|
/// not modify the MIFlags of this MachineInstr.
|
|
uint16_t mergeFlagsWith(const MachineInstr& Other) const;
|
|
|
|
static uint16_t copyFlagsFromInstruction(const Instruction &I);
|
|
|
|
/// Copy all flags to MachineInst MIFlags
|
|
void copyIRFlags(const Instruction &I);
|
|
|
|
/// Break any tie involving OpIdx.
|
|
void untieRegOperand(unsigned OpIdx) {
|
|
MachineOperand &MO = getOperand(OpIdx);
|
|
if (MO.isReg() && MO.isTied()) {
|
|
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
|
|
MO.TiedTo = 0;
|
|
}
|
|
}
|
|
|
|
/// Add all implicit def and use operands to this instruction.
|
|
void addImplicitDefUseOperands(MachineFunction &MF);
|
|
|
|
/// Scan instructions immediately following MI and collect any matching
|
|
/// DBG_VALUEs.
|
|
void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
|
|
|
|
/// Find all DBG_VALUEs that point to the register def in this instruction
|
|
/// and point them to \p Reg instead.
|
|
void changeDebugValuesDefReg(Register Reg);
|
|
|
|
/// Returns the Intrinsic::ID for this instruction.
|
|
/// \pre Must have an intrinsic ID operand.
|
|
unsigned getIntrinsicID() const {
|
|
return getOperand(getNumExplicitDefs()).getIntrinsicID();
|
|
}
|
|
|
|
/// Sets all register debug operands in this debug value instruction to be
|
|
/// undef.
|
|
void setDebugValueUndef() {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
for (MachineOperand &MO : debug_operands()) {
|
|
if (MO.isReg()) {
|
|
MO.setReg(0);
|
|
MO.setSubReg(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// If this instruction is embedded into a MachineFunction, return the
|
|
/// MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *getRegInfo();
|
|
|
|
/// Unlink all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands already be on their
|
|
/// use lists.
|
|
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
|
|
|
|
/// Add all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands not be on their
|
|
/// use lists yet.
|
|
void AddRegOperandsToUseLists(MachineRegisterInfo&);
|
|
|
|
/// Slow path for hasProperty when we're dealing with a bundle.
|
|
bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
|
|
|
|
/// Implements the logic of getRegClassConstraintEffectForVReg for the
|
|
/// this MI and the given operand index \p OpIdx.
|
|
/// If the related operand does not constrained Reg, this returns CurRC.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
|
|
unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Stores extra instruction information inline or allocates as ExtraInfo
|
|
/// based on the number of pointers.
|
|
void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
|
|
MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
|
|
MDNode *HeapAllocMarker);
|
|
};
|
|
|
|
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
|
|
/// instruction rather than by pointer value.
|
|
/// The hashing and equality testing functions ignore definitions so this is
|
|
/// useful for CSE, etc.
|
|
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
|
|
static inline MachineInstr *getEmptyKey() {
|
|
return nullptr;
|
|
}
|
|
|
|
static inline MachineInstr *getTombstoneKey() {
|
|
return reinterpret_cast<MachineInstr*>(-1);
|
|
}
|
|
|
|
static unsigned getHashValue(const MachineInstr* const &MI);
|
|
|
|
static bool isEqual(const MachineInstr* const &LHS,
|
|
const MachineInstr* const &RHS) {
|
|
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
|
|
LHS == getEmptyKey() || LHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debugging Support
|
|
|
|
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
|
|
MI.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEINSTR_H
|