llvm-for-llvmta/include/llvm/CodeGen/MachinePipeliner.h

599 lines
21 KiB
C++

//===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
// Software pipelining (SWP) is an instruction scheduling technique for loops
// that overlap loop iterations and exploits ILP via a compiler transformation.
//
// Swing Modulo Scheduling is an implementation of software pipelining
// that generates schedules that are near optimal in terms of initiation
// interval, register requirements, and stage count. See the papers:
//
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
// Conference on Parallel Architectures and Compilation Techiniques.
//
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
// Transactions on Computers, Vol. 50, No. 3, 2001.
//
// "An Implementation of Swing Modulo Scheduling With Extensions for
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
// Urbana-Champaign, 2005.
//
//
// The SMS algorithm consists of three main steps after computing the minimal
// initiation interval (MII).
// 1) Analyze the dependence graph and compute information about each
// instruction in the graph.
// 2) Order the nodes (instructions) by priority based upon the heuristics
// described in the algorithm.
// 3) Attempt to schedule the nodes in the specified order using the MII.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_MACHINEPIPELINER_H
#define LLVM_LIB_CODEGEN_MACHINEPIPELINER_H
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"
namespace llvm {
class AAResults;
class NodeSet;
class SMSchedule;
extern cl::opt<bool> SwpEnableCopyToPhi;
/// The main class in the implementation of the target independent
/// software pipeliner pass.
class MachinePipeliner : public MachineFunctionPass {
public:
MachineFunction *MF = nullptr;
MachineOptimizationRemarkEmitter *ORE = nullptr;
const MachineLoopInfo *MLI = nullptr;
const MachineDominatorTree *MDT = nullptr;
const InstrItineraryData *InstrItins;
const TargetInstrInfo *TII = nullptr;
RegisterClassInfo RegClassInfo;
bool disabledByPragma = false;
unsigned II_setByPragma = 0;
#ifndef NDEBUG
static int NumTries;
#endif
/// Cache the target analysis information about the loop.
struct LoopInfo {
MachineBasicBlock *TBB = nullptr;
MachineBasicBlock *FBB = nullptr;
SmallVector<MachineOperand, 4> BrCond;
MachineInstr *LoopInductionVar = nullptr;
MachineInstr *LoopCompare = nullptr;
};
LoopInfo LI;
static char ID;
MachinePipeliner() : MachineFunctionPass(ID) {
initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
void preprocessPhiNodes(MachineBasicBlock &B);
bool canPipelineLoop(MachineLoop &L);
bool scheduleLoop(MachineLoop &L);
bool swingModuloScheduler(MachineLoop &L);
void setPragmaPipelineOptions(MachineLoop &L);
};
/// This class builds the dependence graph for the instructions in a loop,
/// and attempts to schedule the instructions using the SMS algorithm.
class SwingSchedulerDAG : public ScheduleDAGInstrs {
MachinePipeliner &Pass;
/// The minimum initiation interval between iterations for this schedule.
unsigned MII = 0;
/// The maximum initiation interval between iterations for this schedule.
unsigned MAX_II = 0;
/// Set to true if a valid pipelined schedule is found for the loop.
bool Scheduled = false;
MachineLoop &Loop;
LiveIntervals &LIS;
const RegisterClassInfo &RegClassInfo;
unsigned II_setByPragma = 0;
/// A toplogical ordering of the SUnits, which is needed for changing
/// dependences and iterating over the SUnits.
ScheduleDAGTopologicalSort Topo;
struct NodeInfo {
int ASAP = 0;
int ALAP = 0;
int ZeroLatencyDepth = 0;
int ZeroLatencyHeight = 0;
NodeInfo() = default;
};
/// Computed properties for each node in the graph.
std::vector<NodeInfo> ScheduleInfo;
enum OrderKind { BottomUp = 0, TopDown = 1 };
/// Computed node ordering for scheduling.
SetVector<SUnit *> NodeOrder;
using NodeSetType = SmallVector<NodeSet, 8>;
using ValueMapTy = DenseMap<unsigned, unsigned>;
using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
/// Instructions to change when emitting the final schedule.
DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
/// We may create a new instruction, so remember it because it
/// must be deleted when the pass is finished.
DenseMap<MachineInstr*, MachineInstr *> NewMIs;
/// Ordered list of DAG postprocessing steps.
std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
/// Helper class to implement Johnson's circuit finding algorithm.
class Circuits {
std::vector<SUnit> &SUnits;
SetVector<SUnit *> Stack;
BitVector Blocked;
SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
SmallVector<SmallVector<int, 4>, 16> AdjK;
// Node to Index from ScheduleDAGTopologicalSort
std::vector<int> *Node2Idx;
unsigned NumPaths;
static unsigned MaxPaths;
public:
Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
: SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
Node2Idx = new std::vector<int>(SUs.size());
unsigned Idx = 0;
for (const auto &NodeNum : Topo)
Node2Idx->at(NodeNum) = Idx++;
}
~Circuits() { delete Node2Idx; }
/// Reset the data structures used in the circuit algorithm.
void reset() {
Stack.clear();
Blocked.reset();
B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
NumPaths = 0;
}
void createAdjacencyStructure(SwingSchedulerDAG *DAG);
bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
void unblock(int U);
};
struct CopyToPhiMutation : public ScheduleDAGMutation {
void apply(ScheduleDAGInstrs *DAG) override;
};
public:
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
const RegisterClassInfo &rci, unsigned II)
: ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
RegClassInfo(rci), II_setByPragma(II), Topo(SUnits, &ExitSU) {
P.MF->getSubtarget().getSMSMutations(Mutations);
if (SwpEnableCopyToPhi)
Mutations.push_back(std::make_unique<CopyToPhiMutation>());
}
void schedule() override;
void finishBlock() override;
/// Return true if the loop kernel has been scheduled.
bool hasNewSchedule() { return Scheduled; }
/// Return the earliest time an instruction may be scheduled.
int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
/// Return the latest time an instruction my be scheduled.
int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
/// The mobility function, which the number of slots in which
/// an instruction may be scheduled.
int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
/// The depth, in the dependence graph, for a node.
unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
/// The maximum unweighted length of a path from an arbitrary node to the
/// given node in which each edge has latency 0
int getZeroLatencyDepth(SUnit *Node) {
return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
}
/// The height, in the dependence graph, for a node.
unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
/// The maximum unweighted length of a path from the given node to an
/// arbitrary node in which each edge has latency 0
int getZeroLatencyHeight(SUnit *Node) {
return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
}
/// Return true if the dependence is a back-edge in the data dependence graph.
/// Since the DAG doesn't contain cycles, we represent a cycle in the graph
/// using an anti dependence from a Phi to an instruction.
bool isBackedge(SUnit *Source, const SDep &Dep) {
if (Dep.getKind() != SDep::Anti)
return false;
return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
}
bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
/// The distance function, which indicates that operation V of iteration I
/// depends on operations U of iteration I-distance.
unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
// Instructions that feed a Phi have a distance of 1. Computing larger
// values for arrays requires data dependence information.
if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
return 1;
return 0;
}
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
/// Return the new base register that was stored away for the changed
/// instruction.
unsigned getInstrBaseReg(SUnit *SU) {
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(SU);
if (It != InstrChanges.end())
return It->second.first;
return 0;
}
void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
Mutations.push_back(std::move(Mutation));
}
static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
private:
void addLoopCarriedDependences(AAResults *AA);
void updatePhiDependences();
void changeDependences();
unsigned calculateResMII();
unsigned calculateRecMII(NodeSetType &RecNodeSets);
void findCircuits(NodeSetType &NodeSets);
void fuseRecs(NodeSetType &NodeSets);
void removeDuplicateNodes(NodeSetType &NodeSets);
void computeNodeFunctions(NodeSetType &NodeSets);
void registerPressureFilter(NodeSetType &NodeSets);
void colocateNodeSets(NodeSetType &NodeSets);
void checkNodeSets(NodeSetType &NodeSets);
void groupRemainingNodes(NodeSetType &NodeSets);
void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
SetVector<SUnit *> &NodesAdded);
void computeNodeOrder(NodeSetType &NodeSets);
void checkValidNodeOrder(const NodeSetType &Circuits) const;
bool schedulePipeline(SMSchedule &Schedule);
bool computeDelta(MachineInstr &MI, unsigned &Delta);
MachineInstr *findDefInLoop(Register Reg);
bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
unsigned &OffsetPos, unsigned &NewBase,
int64_t &NewOffset);
void postprocessDAG();
/// Set the Minimum Initiation Interval for this schedule attempt.
void setMII(unsigned ResMII, unsigned RecMII);
/// Set the Maximum Initiation Interval for this schedule attempt.
void setMAX_II();
};
/// A NodeSet contains a set of SUnit DAG nodes with additional information
/// that assigns a priority to the set.
class NodeSet {
SetVector<SUnit *> Nodes;
bool HasRecurrence = false;
unsigned RecMII = 0;
int MaxMOV = 0;
unsigned MaxDepth = 0;
unsigned Colocate = 0;
SUnit *ExceedPressure = nullptr;
unsigned Latency = 0;
public:
using iterator = SetVector<SUnit *>::const_iterator;
NodeSet() = default;
NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
Latency = 0;
for (unsigned i = 0, e = Nodes.size(); i < e; ++i) {
DenseMap<SUnit *, unsigned> SuccSUnitLatency;
for (const SDep &Succ : Nodes[i]->Succs) {
auto SuccSUnit = Succ.getSUnit();
if (!Nodes.count(SuccSUnit))
continue;
unsigned CurLatency = Succ.getLatency();
unsigned MaxLatency = 0;
if (SuccSUnitLatency.count(SuccSUnit))
MaxLatency = SuccSUnitLatency[SuccSUnit];
if (CurLatency > MaxLatency)
SuccSUnitLatency[SuccSUnit] = CurLatency;
}
for (auto SUnitLatency : SuccSUnitLatency)
Latency += SUnitLatency.second;
}
}
bool insert(SUnit *SU) { return Nodes.insert(SU); }
void insert(iterator S, iterator E) { Nodes.insert(S, E); }
template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
return Nodes.remove_if(P);
}
unsigned count(SUnit *SU) const { return Nodes.count(SU); }
bool hasRecurrence() { return HasRecurrence; };
unsigned size() const { return Nodes.size(); }
bool empty() const { return Nodes.empty(); }
SUnit *getNode(unsigned i) const { return Nodes[i]; };
void setRecMII(unsigned mii) { RecMII = mii; };
void setColocate(unsigned c) { Colocate = c; };
void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
int getRecMII() { return RecMII; }
/// Summarize node functions for the entire node set.
void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
for (SUnit *SU : *this) {
MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
}
}
unsigned getLatency() { return Latency; }
unsigned getMaxDepth() { return MaxDepth; }
void clear() {
Nodes.clear();
RecMII = 0;
HasRecurrence = false;
MaxMOV = 0;
MaxDepth = 0;
Colocate = 0;
ExceedPressure = nullptr;
}
operator SetVector<SUnit *> &() { return Nodes; }
/// Sort the node sets by importance. First, rank them by recurrence MII,
/// then by mobility (least mobile done first), and finally by depth.
/// Each node set may contain a colocate value which is used as the first
/// tie breaker, if it's set.
bool operator>(const NodeSet &RHS) const {
if (RecMII == RHS.RecMII) {
if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
return Colocate < RHS.Colocate;
if (MaxMOV == RHS.MaxMOV)
return MaxDepth > RHS.MaxDepth;
return MaxMOV < RHS.MaxMOV;
}
return RecMII > RHS.RecMII;
}
bool operator==(const NodeSet &RHS) const {
return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
MaxDepth == RHS.MaxDepth;
}
bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
iterator begin() { return Nodes.begin(); }
iterator end() { return Nodes.end(); }
void print(raw_ostream &os) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const;
#endif
};
// 16 was selected based on the number of ProcResource kinds for all
// existing Subtargets, so that SmallVector don't need to resize too often.
static const int DefaultProcResSize = 16;
class ResourceManager {
private:
const MCSubtargetInfo *STI;
const MCSchedModel &SM;
const bool UseDFA;
std::unique_ptr<DFAPacketizer> DFAResources;
/// Each processor resource is associated with a so-called processor resource
/// mask. This vector allows to correlate processor resource IDs with
/// processor resource masks. There is exactly one element per each processor
/// resource declared by the scheduling model.
llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks;
llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceCount;
public:
ResourceManager(const TargetSubtargetInfo *ST)
: STI(ST), SM(ST->getSchedModel()), UseDFA(ST->useDFAforSMS()),
ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
ProcResourceCount(SM.getNumProcResourceKinds(), 0) {
if (UseDFA)
DFAResources.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
initProcResourceVectors(SM, ProcResourceMasks);
}
void initProcResourceVectors(const MCSchedModel &SM,
SmallVectorImpl<uint64_t> &Masks);
/// Check if the resources occupied by a MCInstrDesc are available in
/// the current state.
bool canReserveResources(const MCInstrDesc *MID) const;
/// Reserve the resources occupied by a MCInstrDesc and change the current
/// state to reflect that change.
void reserveResources(const MCInstrDesc *MID);
/// Check if the resources occupied by a machine instruction are available
/// in the current state.
bool canReserveResources(const MachineInstr &MI) const;
/// Reserve the resources occupied by a machine instruction and change the
/// current state to reflect that change.
void reserveResources(const MachineInstr &MI);
/// Reset the state
void clearResources();
};
/// This class represents the scheduled code. The main data structure is a
/// map from scheduled cycle to instructions. During scheduling, the
/// data structure explicitly represents all stages/iterations. When
/// the algorithm finshes, the schedule is collapsed into a single stage,
/// which represents instructions from different loop iterations.
///
/// The SMS algorithm allows negative values for cycles, so the first cycle
/// in the schedule is the smallest cycle value.
class SMSchedule {
private:
/// Map from execution cycle to instructions.
DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
/// Map from instruction to execution cycle.
std::map<SUnit *, int> InstrToCycle;
/// Keep track of the first cycle value in the schedule. It starts
/// as zero, but the algorithm allows negative values.
int FirstCycle = 0;
/// Keep track of the last cycle value in the schedule.
int LastCycle = 0;
/// The initiation interval (II) for the schedule.
int InitiationInterval = 0;
/// Target machine information.
const TargetSubtargetInfo &ST;
/// Virtual register information.
MachineRegisterInfo &MRI;
ResourceManager ProcItinResources;
public:
SMSchedule(MachineFunction *mf)
: ST(mf->getSubtarget()), MRI(mf->getRegInfo()), ProcItinResources(&ST) {}
void reset() {
ScheduledInstrs.clear();
InstrToCycle.clear();
FirstCycle = 0;
LastCycle = 0;
InitiationInterval = 0;
}
/// Set the initiation interval for this schedule.
void setInitiationInterval(int ii) { InitiationInterval = ii; }
/// Return the first cycle in the completed schedule. This
/// can be a negative value.
int getFirstCycle() const { return FirstCycle; }
/// Return the last cycle in the finalized schedule.
int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
/// Return the cycle of the earliest scheduled instruction in the dependence
/// chain.
int earliestCycleInChain(const SDep &Dep);
/// Return the cycle of the latest scheduled instruction in the dependence
/// chain.
int latestCycleInChain(const SDep &Dep);
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
/// Iterators for the cycle to instruction map.
using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
using const_sched_iterator =
DenseMap<int, std::deque<SUnit *>>::const_iterator;
/// Return true if the instruction is scheduled at the specified stage.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
return (stageScheduled(SU) == (int)StageNum);
}
/// Return the stage for a scheduled instruction. Return -1 if
/// the instruction has not been scheduled.
int stageScheduled(SUnit *SU) const {
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
if (it == InstrToCycle.end())
return -1;
return (it->second - FirstCycle) / InitiationInterval;
}
/// Return the cycle for a scheduled instruction. This function normalizes
/// the first cycle to be 0.
unsigned cycleScheduled(SUnit *SU) const {
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
return (it->second - FirstCycle) % InitiationInterval;
}
/// Return the maximum stage count needed for this schedule.
unsigned getMaxStageCount() {
return (LastCycle - FirstCycle) / InitiationInterval;
}
/// Return the instructions that are scheduled at the specified cycle.
std::deque<SUnit *> &getInstructions(int cycle) {
return ScheduledInstrs[cycle];
}
bool isValidSchedule(SwingSchedulerDAG *SSD);
void finalizeSchedule(SwingSchedulerDAG *SSD);
void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
std::deque<SUnit *> &Insts);
bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
MachineOperand &MO);
void print(raw_ostream &os) const;
void dump() const;
};
} // end namespace llvm
#endif // LLVM_LIB_CODEGEN_MACHINEPIPELINER_H