1484 lines
53 KiB
C++
1484 lines
53 KiB
C++
//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SelectionDAG::LegalizeVectors method.
|
|
//
|
|
// The vector legalizer looks for vector operations which might need to be
|
|
// scalarized and legalizes them. This is a separate step from Legalize because
|
|
// scalarizing can introduce illegal types. For example, suppose we have an
|
|
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
|
|
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
|
|
// operation, which introduces nodes with the illegal type i64 which must be
|
|
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
|
|
// the operation must be unrolled, which introduces nodes with the illegal
|
|
// type i8 which must be promoted.
|
|
//
|
|
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
|
|
// or operations that happen to take a vector which are custom-lowered;
|
|
// the legalization for such operations never produces nodes
|
|
// with illegal types, so it's okay to put off legalizing them until
|
|
// SelectionDAG::Legalize runs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "legalizevectorops"
|
|
|
|
namespace {
|
|
|
|
class VectorLegalizer {
|
|
SelectionDAG& DAG;
|
|
const TargetLowering &TLI;
|
|
bool Changed = false; // Keep track of whether anything changed
|
|
|
|
/// For nodes that are of legal width, and that have more than one use, this
|
|
/// map indicates what regularized operand to use. This allows us to avoid
|
|
/// legalizing the same thing more than once.
|
|
SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
|
|
|
|
/// Adds a node to the translation cache.
|
|
void AddLegalizedOperand(SDValue From, SDValue To) {
|
|
LegalizedNodes.insert(std::make_pair(From, To));
|
|
// If someone requests legalization of the new node, return itself.
|
|
if (From != To)
|
|
LegalizedNodes.insert(std::make_pair(To, To));
|
|
}
|
|
|
|
/// Legalizes the given node.
|
|
SDValue LegalizeOp(SDValue Op);
|
|
|
|
/// Assuming the node is legal, "legalize" the results.
|
|
SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
|
|
|
|
/// Make sure Results are legal and update the translation cache.
|
|
SDValue RecursivelyLegalizeResults(SDValue Op,
|
|
MutableArrayRef<SDValue> Results);
|
|
|
|
/// Wrapper to interface LowerOperation with a vector of Results.
|
|
/// Returns false if the target wants to use default expansion. Otherwise
|
|
/// returns true. If return is true and the Results are empty, then the
|
|
/// target wants to keep the input node as is.
|
|
bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements unrolling a VSETCC.
|
|
SDValue UnrollVSETCC(SDNode *Node);
|
|
|
|
/// Implement expand-based legalization of vector operations.
|
|
///
|
|
/// This is just a high-level routine to dispatch to specific code paths for
|
|
/// operations to legalize them.
|
|
void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
|
|
/// FP_TO_SINT isn't legal.
|
|
void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
|
|
/// SINT_TO_FLOAT and SHR on vectors isn't legal.
|
|
void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
|
|
SDValue ExpandSEXTINREG(SDNode *Node);
|
|
|
|
/// Implement expansion for ANY_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place and bitcasts to the proper
|
|
/// type. The contents of the bits in the extended part of each element are
|
|
/// undef.
|
|
SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
|
|
|
|
/// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place, bitcasts to the proper
|
|
/// type, then shifts left and arithmetic shifts right to introduce a sign
|
|
/// extension.
|
|
SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
|
|
|
|
/// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place and blends zeros into
|
|
/// the remaining lanes, finally bitcasting to the proper type.
|
|
SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
|
|
|
|
/// Expand bswap of vectors into a shuffle if legal.
|
|
SDValue ExpandBSWAP(SDNode *Node);
|
|
|
|
/// Implement vselect in terms of XOR, AND, OR when blend is not
|
|
/// supported by the target.
|
|
SDValue ExpandVSELECT(SDNode *Node);
|
|
SDValue ExpandSELECT(SDNode *Node);
|
|
std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
|
|
SDValue ExpandStore(SDNode *N);
|
|
SDValue ExpandFNEG(SDNode *Node);
|
|
void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements vector promotion.
|
|
///
|
|
/// This is essentially just bitcasting the operands to a different type and
|
|
/// bitcasting the result back to the original type.
|
|
void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements [SU]INT_TO_FP vector promotion.
|
|
///
|
|
/// This is a [zs]ext of the input operand to a larger integer type.
|
|
void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
/// Implements FP_TO_[SU]INT vector promotion of the result type.
|
|
///
|
|
/// It is promoted to a larger integer type. The result is then
|
|
/// truncated back to the original type.
|
|
void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
|
|
|
|
public:
|
|
VectorLegalizer(SelectionDAG& dag) :
|
|
DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
|
|
|
|
/// Begin legalizer the vector operations in the DAG.
|
|
bool Run();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool VectorLegalizer::Run() {
|
|
// Before we start legalizing vector nodes, check if there are any vectors.
|
|
bool HasVectors = false;
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
|
|
// Check if the values of the nodes contain vectors. We don't need to check
|
|
// the operands because we are going to check their values at some point.
|
|
HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
|
|
|
|
// If we found a vector node we can start the legalization.
|
|
if (HasVectors)
|
|
break;
|
|
}
|
|
|
|
// If this basic block has no vectors then no need to legalize vectors.
|
|
if (!HasVectors)
|
|
return false;
|
|
|
|
// The legalize process is inherently a bottom-up recursive process (users
|
|
// legalize their uses before themselves). Given infinite stack space, we
|
|
// could just start legalizing on the root and traverse the whole graph. In
|
|
// practice however, this causes us to run out of stack space on large basic
|
|
// blocks. To avoid this problem, compute an ordering of the nodes where each
|
|
// node is only legalized after all of its operands are legalized.
|
|
DAG.AssignTopologicalOrder();
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
|
|
LegalizeOp(SDValue(&*I, 0));
|
|
|
|
// Finally, it's possible the root changed. Get the new root.
|
|
SDValue OldRoot = DAG.getRoot();
|
|
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
|
|
DAG.setRoot(LegalizedNodes[OldRoot]);
|
|
|
|
LegalizedNodes.clear();
|
|
|
|
// Remove dead nodes now.
|
|
DAG.RemoveDeadNodes();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
|
|
assert(Op->getNumValues() == Result->getNumValues() &&
|
|
"Unexpected number of results");
|
|
// Generic legalization: just pass the operand through.
|
|
for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
|
|
AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
|
|
return SDValue(Result, Op.getResNo());
|
|
}
|
|
|
|
SDValue
|
|
VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
|
|
MutableArrayRef<SDValue> Results) {
|
|
assert(Results.size() == Op->getNumValues() &&
|
|
"Unexpected number of results");
|
|
// Make sure that the generated code is itself legal.
|
|
for (unsigned i = 0, e = Results.size(); i != e; ++i) {
|
|
Results[i] = LegalizeOp(Results[i]);
|
|
AddLegalizedOperand(Op.getValue(i), Results[i]);
|
|
}
|
|
|
|
return Results[Op.getResNo()];
|
|
}
|
|
|
|
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
|
|
// Note that LegalizeOp may be reentered even from single-use nodes, which
|
|
// means that we always must cache transformed nodes.
|
|
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
|
|
if (I != LegalizedNodes.end()) return I->second;
|
|
|
|
// Legalize the operands
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (const SDValue &Oper : Op->op_values())
|
|
Ops.push_back(LegalizeOp(Oper));
|
|
|
|
SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
|
|
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Node);
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
|
|
LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
|
|
Node->dump(&DAG));
|
|
switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
|
|
LD->getMemoryVT())) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal:
|
|
return TranslateLegalizeResults(Op, Node);
|
|
case TargetLowering::Custom: {
|
|
SmallVector<SDValue, 2> ResultVals;
|
|
if (LowerOperationWrapper(Node, ResultVals)) {
|
|
if (ResultVals.empty())
|
|
return TranslateLegalizeResults(Op, Node);
|
|
|
|
Changed = true;
|
|
return RecursivelyLegalizeResults(Op, ResultVals);
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case TargetLowering::Expand: {
|
|
Changed = true;
|
|
std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
|
|
AddLegalizedOperand(Op.getValue(0), Tmp.first);
|
|
AddLegalizedOperand(Op.getValue(1), Tmp.second);
|
|
return Op.getResNo() ? Tmp.first : Tmp.second;
|
|
}
|
|
}
|
|
}
|
|
} else if (Op.getOpcode() == ISD::STORE) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(Node);
|
|
EVT StVT = ST->getMemoryVT();
|
|
MVT ValVT = ST->getValue().getSimpleValueType();
|
|
if (StVT.isVector() && ST->isTruncatingStore()) {
|
|
LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
|
|
Node->dump(&DAG));
|
|
switch (TLI.getTruncStoreAction(ValVT, StVT)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal:
|
|
return TranslateLegalizeResults(Op, Node);
|
|
case TargetLowering::Custom: {
|
|
SmallVector<SDValue, 1> ResultVals;
|
|
if (LowerOperationWrapper(Node, ResultVals)) {
|
|
if (ResultVals.empty())
|
|
return TranslateLegalizeResults(Op, Node);
|
|
|
|
Changed = true;
|
|
return RecursivelyLegalizeResults(Op, ResultVals);
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case TargetLowering::Expand: {
|
|
Changed = true;
|
|
SDValue Chain = ExpandStore(Node);
|
|
AddLegalizedOperand(Op, Chain);
|
|
return Chain;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HasVectorValueOrOp =
|
|
llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
|
|
llvm::any_of(Node->op_values(),
|
|
[](SDValue O) { return O.getValueType().isVector(); });
|
|
if (!HasVectorValueOrOp)
|
|
return TranslateLegalizeResults(Op, Node);
|
|
|
|
TargetLowering::LegalizeAction Action = TargetLowering::Legal;
|
|
EVT ValVT;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
return TranslateLegalizeResults(Op, Node);
|
|
case ISD::MERGE_VALUES:
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
// This operation lies about being legal: when it claims to be legal,
|
|
// it should actually be expanded.
|
|
if (Action == TargetLowering::Legal)
|
|
Action = TargetLowering::Expand;
|
|
break;
|
|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
|
|
case ISD::STRICT_##DAGN:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
ValVT = Node->getValueType(0);
|
|
if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
|
|
Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
|
|
ValVT = Node->getOperand(1).getValueType();
|
|
Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
|
|
// If we're asked to expand a strict vector floating-point operation,
|
|
// by default we're going to simply unroll it. That is usually the
|
|
// best approach, except in the case where the resulting strict (scalar)
|
|
// operations would themselves use the fallback mutation to non-strict.
|
|
// In that specific case, just do the fallback on the vector op.
|
|
if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
|
|
TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
|
|
TargetLowering::Legal) {
|
|
EVT EltVT = ValVT.getVectorElementType();
|
|
if (TLI.getOperationAction(Node->getOpcode(), EltVT)
|
|
== TargetLowering::Expand &&
|
|
TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
|
|
== TargetLowering::Legal)
|
|
Action = TargetLowering::Legal;
|
|
}
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::MULHS:
|
|
case ISD::MULHU:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::FSHL:
|
|
case ISD::FSHR:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
case ISD::ABS:
|
|
case ISD::BSWAP:
|
|
case ISD::BITREVERSE:
|
|
case ISD::CTLZ:
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTPOP:
|
|
case ISD::SELECT:
|
|
case ISD::VSELECT:
|
|
case ISD::SELECT_CC:
|
|
case ISD::SETCC:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::TRUNCATE:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FNEG:
|
|
case ISD::FABS:
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMINNUM_IEEE:
|
|
case ISD::FMAXNUM_IEEE:
|
|
case ISD::FMINIMUM:
|
|
case ISD::FMAXIMUM:
|
|
case ISD::FCOPYSIGN:
|
|
case ISD::FSQRT:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
case ISD::FPOWI:
|
|
case ISD::FPOW:
|
|
case ISD::FLOG:
|
|
case ISD::FLOG2:
|
|
case ISD::FLOG10:
|
|
case ISD::FEXP:
|
|
case ISD::FEXP2:
|
|
case ISD::FCEIL:
|
|
case ISD::FTRUNC:
|
|
case ISD::FRINT:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FROUND:
|
|
case ISD::FROUNDEVEN:
|
|
case ISD::FFLOOR:
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FMA:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG:
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI:
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO:
|
|
case ISD::FCANONICALIZE:
|
|
case ISD::SADDSAT:
|
|
case ISD::UADDSAT:
|
|
case ISD::SSUBSAT:
|
|
case ISD::USUBSAT:
|
|
case ISD::SSHLSAT:
|
|
case ISD::USHLSAT:
|
|
case ISD::FP_TO_SINT_SAT:
|
|
case ISD::FP_TO_UINT_SAT:
|
|
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
|
|
break;
|
|
case ISD::SMULFIX:
|
|
case ISD::SMULFIXSAT:
|
|
case ISD::UMULFIX:
|
|
case ISD::UMULFIXSAT:
|
|
case ISD::SDIVFIX:
|
|
case ISD::SDIVFIXSAT:
|
|
case ISD::UDIVFIX:
|
|
case ISD::UDIVFIXSAT: {
|
|
unsigned Scale = Node->getConstantOperandVal(2);
|
|
Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
|
|
Node->getValueType(0), Scale);
|
|
break;
|
|
}
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_MUL:
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_FADD:
|
|
case ISD::VECREDUCE_FMUL:
|
|
case ISD::VECREDUCE_FMAX:
|
|
case ISD::VECREDUCE_FMIN:
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getOperand(0).getValueType());
|
|
break;
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
case ISD::VECREDUCE_SEQ_FMUL:
|
|
Action = TLI.getOperationAction(Node->getOpcode(),
|
|
Node->getOperand(1).getValueType());
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
|
|
|
|
SmallVector<SDValue, 8> ResultVals;
|
|
switch (Action) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Promote:
|
|
LLVM_DEBUG(dbgs() << "Promoting\n");
|
|
Promote(Node, ResultVals);
|
|
assert(!ResultVals.empty() && "No results for promotion?");
|
|
break;
|
|
case TargetLowering::Legal:
|
|
LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
|
|
break;
|
|
case TargetLowering::Custom:
|
|
LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
|
|
if (LowerOperationWrapper(Node, ResultVals))
|
|
break;
|
|
LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
|
|
LLVM_FALLTHROUGH;
|
|
case TargetLowering::Expand:
|
|
LLVM_DEBUG(dbgs() << "Expanding\n");
|
|
Expand(Node, ResultVals);
|
|
break;
|
|
}
|
|
|
|
if (ResultVals.empty())
|
|
return TranslateLegalizeResults(Op, Node);
|
|
|
|
Changed = true;
|
|
return RecursivelyLegalizeResults(Op, ResultVals);
|
|
}
|
|
|
|
// FIME: This is very similar to the X86 override of
|
|
// TargetLowering::LowerOperationWrapper. Can we merge them somehow?
|
|
bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
|
|
|
|
if (!Res.getNode())
|
|
return false;
|
|
|
|
if (Res == SDValue(Node, 0))
|
|
return true;
|
|
|
|
// If the original node has one result, take the return value from
|
|
// LowerOperation as is. It might not be result number 0.
|
|
if (Node->getNumValues() == 1) {
|
|
Results.push_back(Res);
|
|
return true;
|
|
}
|
|
|
|
// If the original node has multiple results, then the return node should
|
|
// have the same number of results.
|
|
assert((Node->getNumValues() == Res->getNumValues()) &&
|
|
"Lowering returned the wrong number of results!");
|
|
|
|
// Places new result values base on N result number.
|
|
for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
|
|
Results.push_back(Res.getValue(I));
|
|
|
|
return true;
|
|
}
|
|
|
|
void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
|
|
// For a few operations there is a specific concept for promotion based on
|
|
// the operand's type.
|
|
switch (Node->getOpcode()) {
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::STRICT_SINT_TO_FP:
|
|
case ISD::STRICT_UINT_TO_FP:
|
|
// "Promote" the operation by extending the operand.
|
|
PromoteINT_TO_FP(Node, Results);
|
|
return;
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::STRICT_FP_TO_UINT:
|
|
case ISD::STRICT_FP_TO_SINT:
|
|
// Promote the operation by extending the operand.
|
|
PromoteFP_TO_INT(Node, Results);
|
|
return;
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
// These operations are used to do promotion so they can't be promoted
|
|
// themselves.
|
|
llvm_unreachable("Don't know how to promote this operation!");
|
|
}
|
|
|
|
// There are currently two cases of vector promotion:
|
|
// 1) Bitcasting a vector of integers to a different type to a vector of the
|
|
// same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
|
|
// 2) Extending a vector of floats to a vector of the same number of larger
|
|
// floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
|
|
assert(Node->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
MVT VT = Node->getSimpleValueType(0);
|
|
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
|
|
SDLoc dl(Node);
|
|
SmallVector<SDValue, 4> Operands(Node->getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
|
|
if (Node->getOperand(j).getValueType().isVector())
|
|
if (Node->getOperand(j)
|
|
.getValueType()
|
|
.getVectorElementType()
|
|
.isFloatingPoint() &&
|
|
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
|
|
Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
|
|
else
|
|
Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
|
|
else
|
|
Operands[j] = Node->getOperand(j);
|
|
}
|
|
|
|
SDValue Res =
|
|
DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
|
|
|
|
if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
|
|
(VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
|
|
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
|
|
Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
|
|
else
|
|
Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
|
|
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
// INT_TO_FP operations may require the input operand be promoted even
|
|
// when the type is otherwise legal.
|
|
bool IsStrict = Node->isStrictFPOpcode();
|
|
MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
|
|
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
|
|
assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
|
|
"Vectors have different number of elements!");
|
|
|
|
SDLoc dl(Node);
|
|
SmallVector<SDValue, 4> Operands(Node->getNumOperands());
|
|
|
|
unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
|
|
Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
|
|
? ISD::ZERO_EXTEND
|
|
: ISD::SIGN_EXTEND;
|
|
for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
|
|
if (Node->getOperand(j).getValueType().isVector())
|
|
Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
|
|
else
|
|
Operands[j] = Node->getOperand(j);
|
|
}
|
|
|
|
if (IsStrict) {
|
|
SDValue Res = DAG.getNode(Node->getOpcode(), dl,
|
|
{Node->getValueType(0), MVT::Other}, Operands);
|
|
Results.push_back(Res);
|
|
Results.push_back(Res.getValue(1));
|
|
return;
|
|
}
|
|
|
|
SDValue Res =
|
|
DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
// For FP_TO_INT we promote the result type to a vector type with wider
|
|
// elements and then truncate the result. This is different from the default
|
|
// PromoteVector which uses bitcast to promote thus assumning that the
|
|
// promoted vector type has the same overall size.
|
|
void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
MVT VT = Node->getSimpleValueType(0);
|
|
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
|
|
bool IsStrict = Node->isStrictFPOpcode();
|
|
assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
|
|
"Vectors have different number of elements!");
|
|
|
|
unsigned NewOpc = Node->getOpcode();
|
|
// Change FP_TO_UINT to FP_TO_SINT if possible.
|
|
// TODO: Should we only do this if FP_TO_UINT itself isn't legal?
|
|
if (NewOpc == ISD::FP_TO_UINT &&
|
|
TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
|
|
NewOpc = ISD::FP_TO_SINT;
|
|
|
|
if (NewOpc == ISD::STRICT_FP_TO_UINT &&
|
|
TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
|
|
NewOpc = ISD::STRICT_FP_TO_SINT;
|
|
|
|
SDLoc dl(Node);
|
|
SDValue Promoted, Chain;
|
|
if (IsStrict) {
|
|
Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
|
|
{Node->getOperand(0), Node->getOperand(1)});
|
|
Chain = Promoted.getValue(1);
|
|
} else
|
|
Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
|
|
|
|
// Assert that the converted value fits in the original type. If it doesn't
|
|
// (eg: because the value being converted is too big), then the result of the
|
|
// original operation was undefined anyway, so the assert is still correct.
|
|
if (Node->getOpcode() == ISD::FP_TO_UINT ||
|
|
Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
|
|
NewOpc = ISD::AssertZext;
|
|
else
|
|
NewOpc = ISD::AssertSext;
|
|
|
|
Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
|
|
DAG.getValueType(VT.getScalarType()));
|
|
Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
|
|
Results.push_back(Promoted);
|
|
if (IsStrict)
|
|
Results.push_back(Chain);
|
|
}
|
|
|
|
std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
return TLI.scalarizeVectorLoad(LD, DAG);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandStore(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
|
|
return TF;
|
|
}
|
|
|
|
void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Tmp;
|
|
switch (Node->getOpcode()) {
|
|
case ISD::MERGE_VALUES:
|
|
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
|
|
Results.push_back(Node->getOperand(i));
|
|
return;
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
Results.push_back(ExpandSEXTINREG(Node));
|
|
return;
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
|
|
return;
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
|
|
return;
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG:
|
|
Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
|
|
return;
|
|
case ISD::BSWAP:
|
|
Results.push_back(ExpandBSWAP(Node));
|
|
return;
|
|
case ISD::VSELECT:
|
|
Results.push_back(ExpandVSELECT(Node));
|
|
return;
|
|
case ISD::SELECT:
|
|
Results.push_back(ExpandSELECT(Node));
|
|
return;
|
|
case ISD::FP_TO_UINT:
|
|
ExpandFP_TO_UINT(Node, Results);
|
|
return;
|
|
case ISD::UINT_TO_FP:
|
|
ExpandUINT_TO_FLOAT(Node, Results);
|
|
return;
|
|
case ISD::FNEG:
|
|
Results.push_back(ExpandFNEG(Node));
|
|
return;
|
|
case ISD::FSUB:
|
|
ExpandFSUB(Node, Results);
|
|
return;
|
|
case ISD::SETCC:
|
|
Results.push_back(UnrollVSETCC(Node));
|
|
return;
|
|
case ISD::ABS:
|
|
if (TLI.expandABS(Node, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::BITREVERSE:
|
|
ExpandBITREVERSE(Node, Results);
|
|
return;
|
|
case ISD::CTPOP:
|
|
if (TLI.expandCTPOP(Node, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
if (TLI.expandCTLZ(Node, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::CTTZ:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
if (TLI.expandCTTZ(Node, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::FSHL:
|
|
case ISD::FSHR:
|
|
if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) {
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
|
|
Results.push_back(Expanded);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
|
|
Results.push_back(Expanded);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::UADDO:
|
|
case ISD::USUBO:
|
|
ExpandUADDSUBO(Node, Results);
|
|
return;
|
|
case ISD::SADDO:
|
|
case ISD::SSUBO:
|
|
ExpandSADDSUBO(Node, Results);
|
|
return;
|
|
case ISD::UMULO:
|
|
case ISD::SMULO:
|
|
ExpandMULO(Node, Results);
|
|
return;
|
|
case ISD::USUBSAT:
|
|
case ISD::SSUBSAT:
|
|
case ISD::UADDSAT:
|
|
case ISD::SADDSAT:
|
|
if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
|
|
Results.push_back(Expanded);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SMULFIX:
|
|
case ISD::UMULFIX:
|
|
if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
|
|
Results.push_back(Expanded);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SMULFIXSAT:
|
|
case ISD::UMULFIXSAT:
|
|
// FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
|
|
// why. Maybe it results in worse codegen compared to the unroll for some
|
|
// targets? This should probably be investigated. And if we still prefer to
|
|
// unroll an explanation could be helpful.
|
|
break;
|
|
case ISD::SDIVFIX:
|
|
case ISD::UDIVFIX:
|
|
ExpandFixedPointDiv(Node, Results);
|
|
return;
|
|
case ISD::SDIVFIXSAT:
|
|
case ISD::UDIVFIXSAT:
|
|
break;
|
|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
|
|
case ISD::STRICT_##DAGN:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
ExpandStrictFPOp(Node, Results);
|
|
return;
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_MUL:
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_FADD:
|
|
case ISD::VECREDUCE_FMUL:
|
|
case ISD::VECREDUCE_FMAX:
|
|
case ISD::VECREDUCE_FMIN:
|
|
Results.push_back(TLI.expandVecReduce(Node, DAG));
|
|
return;
|
|
case ISD::VECREDUCE_SEQ_FADD:
|
|
case ISD::VECREDUCE_SEQ_FMUL:
|
|
Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
|
|
return;
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
ExpandREM(Node, Results);
|
|
return;
|
|
}
|
|
|
|
Results.push_back(DAG.UnrollVectorOp(Node));
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
|
|
// Lower a select instruction where the condition is a scalar and the
|
|
// operands are vectors. Lower this select to VSELECT and implement it
|
|
// using XOR AND OR. The selector bit is broadcasted.
|
|
EVT VT = Node->getValueType(0);
|
|
SDLoc DL(Node);
|
|
|
|
SDValue Mask = Node->getOperand(0);
|
|
SDValue Op1 = Node->getOperand(1);
|
|
SDValue Op2 = Node->getOperand(2);
|
|
|
|
assert(VT.isVector() && !Mask.getValueType().isVector()
|
|
&& Op1.getValueType() == Op2.getValueType() && "Invalid type");
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// Also, we need to be able to construct a splat vector using BUILD_VECTOR.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
// Generate a mask operand.
|
|
EVT MaskTy = VT.changeVectorElementTypeToInteger();
|
|
|
|
// What is the size of each element in the vector mask.
|
|
EVT BitTy = MaskTy.getScalarType();
|
|
|
|
Mask = DAG.getSelect(DL, BitTy, Mask,
|
|
DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
|
|
BitTy),
|
|
DAG.getConstant(0, DL, BitTy));
|
|
|
|
// Broadcast the mask so that the entire vector is all-one or all zero.
|
|
Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
// Make sure that the SRA and SHL instructions are available.
|
|
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
SDLoc DL(Node);
|
|
EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
|
|
unsigned BW = VT.getScalarSizeInBits();
|
|
unsigned OrigBW = OrigTy.getScalarSizeInBits();
|
|
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
|
|
|
|
SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
|
|
return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
|
|
}
|
|
|
|
// Generically expand a vector anyext in register to a shuffle of the relevant
|
|
// lanes into the appropriate locations, with other lanes left undef.
|
|
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
|
|
SDLoc DL(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
int NumElements = VT.getVectorNumElements();
|
|
SDValue Src = Node->getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
int NumSrcElements = SrcVT.getVectorNumElements();
|
|
|
|
// *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
|
|
// into a larger vector type.
|
|
if (SrcVT.bitsLE(VT)) {
|
|
assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
|
|
"ANY_EXTEND_VECTOR_INREG vector size mismatch");
|
|
NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
|
|
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
|
|
NumSrcElements);
|
|
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
|
|
Src, DAG.getVectorIdxConstant(0, DL));
|
|
}
|
|
|
|
// Build a base mask of undef shuffles.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
ShuffleMask.resize(NumSrcElements, -1);
|
|
|
|
// Place the extended lanes into the correct locations.
|
|
int ExtLaneScale = NumSrcElements / NumElements;
|
|
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
|
|
for (int i = 0; i < NumElements; ++i)
|
|
ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
|
|
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, VT,
|
|
DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
|
|
SDLoc DL(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Src = Node->getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
|
|
// First build an any-extend node which can be legalized above when we
|
|
// recurse through it.
|
|
SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
|
|
|
|
// Now we need sign extend. Do this by shifting the elements. Even if these
|
|
// aren't legal operations, they have a better chance of being legalized
|
|
// without full scalarization than the sign extension does.
|
|
unsigned EltWidth = VT.getScalarSizeInBits();
|
|
unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
|
|
SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
|
|
return DAG.getNode(ISD::SRA, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
|
|
ShiftAmount);
|
|
}
|
|
|
|
// Generically expand a vector zext in register to a shuffle of the relevant
|
|
// lanes into the appropriate locations, a blend of zero into the high bits,
|
|
// and a bitcast to the wider element type.
|
|
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
|
|
SDLoc DL(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
int NumElements = VT.getVectorNumElements();
|
|
SDValue Src = Node->getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
int NumSrcElements = SrcVT.getVectorNumElements();
|
|
|
|
// *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
|
|
// into a larger vector type.
|
|
if (SrcVT.bitsLE(VT)) {
|
|
assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
|
|
"ZERO_EXTEND_VECTOR_INREG vector size mismatch");
|
|
NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
|
|
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
|
|
NumSrcElements);
|
|
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
|
|
Src, DAG.getVectorIdxConstant(0, DL));
|
|
}
|
|
|
|
// Build up a zero vector to blend into this one.
|
|
SDValue Zero = DAG.getConstant(0, DL, SrcVT);
|
|
|
|
// Shuffle the incoming lanes into the correct position, and pull all other
|
|
// lanes from the zero vector.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
ShuffleMask.reserve(NumSrcElements);
|
|
for (int i = 0; i < NumSrcElements; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
int ExtLaneScale = NumSrcElements / NumElements;
|
|
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
|
|
for (int i = 0; i < NumElements; ++i)
|
|
ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
|
|
}
|
|
|
|
static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
|
|
for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
|
|
for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
|
|
ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
// Generate a byte wise shuffle mask for the BSWAP.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
createBSWAPShuffleMask(VT, ShuffleMask);
|
|
EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
|
|
|
|
// Only emit a shuffle if the mask is legal.
|
|
if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
SDLoc DL(Node);
|
|
SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
|
|
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
// If we have the scalar operation, it's probably cheaper to unroll it.
|
|
if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
|
|
SDValue Tmp = DAG.UnrollVectorOp(Node);
|
|
Results.push_back(Tmp);
|
|
return;
|
|
}
|
|
|
|
// If the vector element width is a whole number of bytes, test if its legal
|
|
// to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
|
|
// vector. This greatly reduces the number of bit shifts necessary.
|
|
unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
|
|
if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
|
|
SmallVector<int, 16> BSWAPMask;
|
|
createBSWAPShuffleMask(VT, BSWAPMask);
|
|
|
|
EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
|
|
if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
|
|
(TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
|
|
(TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
|
|
SDLoc DL(Node);
|
|
SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
|
|
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
|
|
BSWAPMask);
|
|
Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
|
|
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
|
|
Results.push_back(Op);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we have the appropriate vector bit operations, it is better to use them
|
|
// than unrolling and expanding each component.
|
|
if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
|
|
// Let LegalizeDAG handle this later.
|
|
return;
|
|
|
|
// Otherwise unroll.
|
|
SDValue Tmp = DAG.UnrollVectorOp(Node);
|
|
Results.push_back(Tmp);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
|
|
// Implement VSELECT in terms of XOR, AND, OR
|
|
// on platforms which do not support blend natively.
|
|
SDLoc DL(Node);
|
|
|
|
SDValue Mask = Node->getOperand(0);
|
|
SDValue Op1 = Node->getOperand(1);
|
|
SDValue Op2 = Node->getOperand(2);
|
|
|
|
EVT VT = Mask.getValueType();
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// This operation also isn't safe with AND, OR, XOR when the boolean
|
|
// type is 0/1 as we need an all ones vector constant to mask with.
|
|
// FIXME: Sign extend 1 to all ones if thats legal on the target.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getBooleanContents(Op1.getValueType()) !=
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent)
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
// If the mask and the type are different sizes, unroll the vector op. This
|
|
// can occur when getSetCCResultType returns something that is different in
|
|
// size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
|
|
if (VT.getSizeInBits() != Op1.getValueSizeInBits())
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
// Attempt to expand using TargetLowering.
|
|
SDValue Result, Chain;
|
|
if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
|
|
Results.push_back(Result);
|
|
if (Node->isStrictFPOpcode())
|
|
Results.push_back(Chain);
|
|
return;
|
|
}
|
|
|
|
// Otherwise go ahead and unroll.
|
|
if (Node->isStrictFPOpcode()) {
|
|
UnrollStrictFPOp(Node, Results);
|
|
return;
|
|
}
|
|
|
|
Results.push_back(DAG.UnrollVectorOp(Node));
|
|
}
|
|
|
|
void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
bool IsStrict = Node->isStrictFPOpcode();
|
|
unsigned OpNo = IsStrict ? 1 : 0;
|
|
SDValue Src = Node->getOperand(OpNo);
|
|
EVT VT = Src.getValueType();
|
|
SDLoc DL(Node);
|
|
|
|
// Attempt to expand using TargetLowering.
|
|
SDValue Result;
|
|
SDValue Chain;
|
|
if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
|
|
Results.push_back(Result);
|
|
if (IsStrict)
|
|
Results.push_back(Chain);
|
|
return;
|
|
}
|
|
|
|
// Make sure that the SINT_TO_FP and SRL instructions are available.
|
|
if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
|
|
TargetLowering::Expand) ||
|
|
(IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
|
|
TargetLowering::Expand)) ||
|
|
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
|
|
if (IsStrict) {
|
|
UnrollStrictFPOp(Node, Results);
|
|
return;
|
|
}
|
|
|
|
Results.push_back(DAG.UnrollVectorOp(Node));
|
|
return;
|
|
}
|
|
|
|
unsigned BW = VT.getScalarSizeInBits();
|
|
assert((BW == 64 || BW == 32) &&
|
|
"Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
|
|
|
|
SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
|
|
|
|
// Constants to clear the upper part of the word.
|
|
// Notice that we can also use SHL+SHR, but using a constant is slightly
|
|
// faster on x86.
|
|
uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
|
|
SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
|
|
|
|
// Two to the power of half-word-size.
|
|
SDValue TWOHW =
|
|
DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
|
|
|
|
// Clear upper part of LO, lower HI
|
|
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
|
|
SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
|
|
|
|
if (IsStrict) {
|
|
// Convert hi and lo to floats
|
|
// Convert the hi part back to the upper values
|
|
// TODO: Can any fast-math-flags be set on these nodes?
|
|
SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
|
|
{Node->getValueType(0), MVT::Other},
|
|
{Node->getOperand(0), HI});
|
|
fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
|
|
{fHI.getValue(1), fHI, TWOHW});
|
|
SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
|
|
{Node->getValueType(0), MVT::Other},
|
|
{Node->getOperand(0), LO});
|
|
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
|
|
fLO.getValue(1));
|
|
|
|
// Add the two halves
|
|
SDValue Result =
|
|
DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
|
|
{TF, fHI, fLO});
|
|
|
|
Results.push_back(Result);
|
|
Results.push_back(Result.getValue(1));
|
|
return;
|
|
}
|
|
|
|
// Convert hi and lo to floats
|
|
// Convert the hi part back to the upper values
|
|
// TODO: Can any fast-math-flags be set on these nodes?
|
|
SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
|
|
fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
|
|
SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
|
|
|
|
// Add the two halves
|
|
Results.push_back(
|
|
DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
|
|
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
|
|
SDLoc DL(Node);
|
|
SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
|
|
// TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
|
|
return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
|
|
Node->getOperand(0));
|
|
}
|
|
return DAG.UnrollVectorOp(Node);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandFSUB(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
// For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
|
|
// we can defer this to operation legalization where it will be lowered as
|
|
// a+(-b).
|
|
EVT VT = Node->getValueType(0);
|
|
if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FADD, VT))
|
|
return; // Defer to LegalizeDAG
|
|
|
|
SDValue Tmp = DAG.UnrollVectorOp(Node);
|
|
Results.push_back(Tmp);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Result, Overflow;
|
|
TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
|
|
Results.push_back(Result);
|
|
Results.push_back(Overflow);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Result, Overflow;
|
|
TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
|
|
Results.push_back(Result);
|
|
Results.push_back(Overflow);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandMULO(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Result, Overflow;
|
|
if (!TLI.expandMULO(Node, Result, Overflow, DAG))
|
|
std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
|
|
|
|
Results.push_back(Result);
|
|
Results.push_back(Overflow);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDNode *N = Node;
|
|
if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
|
|
N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
|
|
Results.push_back(Expanded);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
|
|
ExpandUINT_TO_FLOAT(Node, Results);
|
|
return;
|
|
}
|
|
if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
|
|
ExpandFP_TO_UINT(Node, Results);
|
|
return;
|
|
}
|
|
|
|
UnrollStrictFPOp(Node, Results);
|
|
}
|
|
|
|
void VectorLegalizer::ExpandREM(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
|
|
"Expected REM node");
|
|
|
|
SDValue Result;
|
|
if (!TLI.expandREM(Node, Result, DAG))
|
|
Result = DAG.UnrollVectorOp(Node);
|
|
Results.push_back(Result);
|
|
}
|
|
|
|
void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
EVT VT = Node->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned NumOpers = Node->getNumOperands();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
EVT TmpEltVT = EltVT;
|
|
if (Node->getOpcode() == ISD::STRICT_FSETCC ||
|
|
Node->getOpcode() == ISD::STRICT_FSETCCS)
|
|
TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
|
|
*DAG.getContext(), TmpEltVT);
|
|
|
|
EVT ValueVTs[] = {TmpEltVT, MVT::Other};
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDLoc dl(Node);
|
|
|
|
SmallVector<SDValue, 32> OpValues;
|
|
SmallVector<SDValue, 32> OpChains;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SmallVector<SDValue, 4> Opers;
|
|
SDValue Idx = DAG.getVectorIdxConstant(i, dl);
|
|
|
|
// The Chain is the first operand.
|
|
Opers.push_back(Chain);
|
|
|
|
// Now process the remaining operands.
|
|
for (unsigned j = 1; j < NumOpers; ++j) {
|
|
SDValue Oper = Node->getOperand(j);
|
|
EVT OperVT = Oper.getValueType();
|
|
|
|
if (OperVT.isVector())
|
|
Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
OperVT.getVectorElementType(), Oper, Idx);
|
|
|
|
Opers.push_back(Oper);
|
|
}
|
|
|
|
SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
|
|
SDValue ScalarResult = ScalarOp.getValue(0);
|
|
SDValue ScalarChain = ScalarOp.getValue(1);
|
|
|
|
if (Node->getOpcode() == ISD::STRICT_FSETCC ||
|
|
Node->getOpcode() == ISD::STRICT_FSETCCS)
|
|
ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
|
|
DAG.getConstant(APInt::getAllOnesValue
|
|
(EltVT.getSizeInBits()), dl, EltVT),
|
|
DAG.getConstant(0, dl, EltVT));
|
|
|
|
OpValues.push_back(ScalarResult);
|
|
OpChains.push_back(ScalarChain);
|
|
}
|
|
|
|
SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
|
|
|
|
Results.push_back(Result);
|
|
Results.push_back(NewChain);
|
|
}
|
|
|
|
SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
|
|
EVT VT = Node->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
SDValue CC = Node->getOperand(2);
|
|
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
|
|
SDLoc dl(Node);
|
|
SmallVector<SDValue, 8> Ops(NumElems);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
|
|
DAG.getVectorIdxConstant(i, dl));
|
|
SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
|
|
DAG.getVectorIdxConstant(i, dl));
|
|
Ops[i] = DAG.getNode(ISD::SETCC, dl,
|
|
TLI.getSetCCResultType(DAG.getDataLayout(),
|
|
*DAG.getContext(), TmpEltVT),
|
|
LHSElem, RHSElem, CC);
|
|
Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
|
|
DAG.getConstant(APInt::getAllOnesValue
|
|
(EltVT.getSizeInBits()), dl, EltVT),
|
|
DAG.getConstant(0, dl, EltVT));
|
|
}
|
|
return DAG.getBuildVector(VT, dl, Ops);
|
|
}
|
|
|
|
bool SelectionDAG::LegalizeVectors() {
|
|
return VectorLegalizer(*this).Run();
|
|
}
|