1954 lines
68 KiB
C++
1954 lines
68 KiB
C++
//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// The ELF component of yaml2obj.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/StringTableBuilder.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/ObjectYAML/DWARFEmitter.h"
|
|
#include "llvm/ObjectYAML/DWARFYAML.h"
|
|
#include "llvm/ObjectYAML/ELFYAML.h"
|
|
#include "llvm/ObjectYAML/yaml2obj.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/WithColor.h"
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// This class is used to build up a contiguous binary blob while keeping
|
|
// track of an offset in the output (which notionally begins at
|
|
// `InitialOffset`).
|
|
// The blob might be limited to an arbitrary size. All attempts to write data
|
|
// are ignored and the error condition is remembered once the limit is reached.
|
|
// Such an approach allows us to simplify the code by delaying error reporting
|
|
// and doing it at a convenient time.
|
|
namespace {
|
|
class ContiguousBlobAccumulator {
|
|
const uint64_t InitialOffset;
|
|
const uint64_t MaxSize;
|
|
|
|
SmallVector<char, 128> Buf;
|
|
raw_svector_ostream OS;
|
|
Error ReachedLimitErr = Error::success();
|
|
|
|
bool checkLimit(uint64_t Size) {
|
|
if (!ReachedLimitErr && getOffset() + Size <= MaxSize)
|
|
return true;
|
|
if (!ReachedLimitErr)
|
|
ReachedLimitErr = createStringError(errc::invalid_argument,
|
|
"reached the output size limit");
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit)
|
|
: InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {}
|
|
|
|
uint64_t tell() const { return OS.tell(); }
|
|
uint64_t getOffset() const { return InitialOffset + OS.tell(); }
|
|
void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); }
|
|
|
|
Error takeLimitError() {
|
|
// Request to write 0 bytes to check we did not reach the limit.
|
|
checkLimit(0);
|
|
return std::move(ReachedLimitErr);
|
|
}
|
|
|
|
/// \returns The new offset.
|
|
uint64_t padToAlignment(unsigned Align) {
|
|
uint64_t CurrentOffset = getOffset();
|
|
if (ReachedLimitErr)
|
|
return CurrentOffset;
|
|
|
|
uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align);
|
|
uint64_t PaddingSize = AlignedOffset - CurrentOffset;
|
|
if (!checkLimit(PaddingSize))
|
|
return CurrentOffset;
|
|
|
|
writeZeros(PaddingSize);
|
|
return AlignedOffset;
|
|
}
|
|
|
|
raw_ostream *getRawOS(uint64_t Size) {
|
|
if (checkLimit(Size))
|
|
return &OS;
|
|
return nullptr;
|
|
}
|
|
|
|
void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) {
|
|
if (!checkLimit(Bin.binary_size()))
|
|
return;
|
|
Bin.writeAsBinary(OS, N);
|
|
}
|
|
|
|
void writeZeros(uint64_t Num) {
|
|
if (checkLimit(Num))
|
|
OS.write_zeros(Num);
|
|
}
|
|
|
|
void write(const char *Ptr, size_t Size) {
|
|
if (checkLimit(Size))
|
|
OS.write(Ptr, Size);
|
|
}
|
|
|
|
void write(unsigned char C) {
|
|
if (checkLimit(1))
|
|
OS.write(C);
|
|
}
|
|
|
|
unsigned writeULEB128(uint64_t Val) {
|
|
if (!checkLimit(sizeof(uint64_t)))
|
|
return 0;
|
|
return encodeULEB128(Val, OS);
|
|
}
|
|
|
|
template <typename T> void write(T Val, support::endianness E) {
|
|
if (checkLimit(sizeof(T)))
|
|
support::endian::write<T>(OS, Val, E);
|
|
}
|
|
|
|
void updateDataAt(uint64_t Pos, void *Data, size_t Size) {
|
|
assert(Pos >= InitialOffset && Pos + Size <= getOffset());
|
|
memcpy(&Buf[Pos - InitialOffset], Data, Size);
|
|
}
|
|
};
|
|
|
|
// Used to keep track of section and symbol names, so that in the YAML file
|
|
// sections and symbols can be referenced by name instead of by index.
|
|
class NameToIdxMap {
|
|
StringMap<unsigned> Map;
|
|
|
|
public:
|
|
/// \Returns false if name is already present in the map.
|
|
bool addName(StringRef Name, unsigned Ndx) {
|
|
return Map.insert({Name, Ndx}).second;
|
|
}
|
|
/// \Returns false if name is not present in the map.
|
|
bool lookup(StringRef Name, unsigned &Idx) const {
|
|
auto I = Map.find(Name);
|
|
if (I == Map.end())
|
|
return false;
|
|
Idx = I->getValue();
|
|
return true;
|
|
}
|
|
/// Asserts if name is not present in the map.
|
|
unsigned get(StringRef Name) const {
|
|
unsigned Idx;
|
|
if (lookup(Name, Idx))
|
|
return Idx;
|
|
assert(false && "Expected section not found in index");
|
|
return 0;
|
|
}
|
|
unsigned size() const { return Map.size(); }
|
|
};
|
|
|
|
namespace {
|
|
struct Fragment {
|
|
uint64_t Offset;
|
|
uint64_t Size;
|
|
uint32_t Type;
|
|
uint64_t AddrAlign;
|
|
};
|
|
} // namespace
|
|
|
|
/// "Single point of truth" for the ELF file construction.
|
|
/// TODO: This class still has a ways to go before it is truly a "single
|
|
/// point of truth".
|
|
template <class ELFT> class ELFState {
|
|
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
|
|
|
|
enum class SymtabType { Static, Dynamic };
|
|
|
|
/// The future ".strtab" section.
|
|
StringTableBuilder DotStrtab{StringTableBuilder::ELF};
|
|
|
|
/// The future ".shstrtab" section.
|
|
StringTableBuilder DotShStrtab{StringTableBuilder::ELF};
|
|
|
|
/// The future ".dynstr" section.
|
|
StringTableBuilder DotDynstr{StringTableBuilder::ELF};
|
|
|
|
NameToIdxMap SN2I;
|
|
NameToIdxMap SymN2I;
|
|
NameToIdxMap DynSymN2I;
|
|
ELFYAML::Object &Doc;
|
|
|
|
StringSet<> ExcludedSectionHeaders;
|
|
|
|
uint64_t LocationCounter = 0;
|
|
bool HasError = false;
|
|
yaml::ErrorHandler ErrHandler;
|
|
void reportError(const Twine &Msg);
|
|
void reportError(Error Err);
|
|
|
|
std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
|
|
const StringTableBuilder &Strtab);
|
|
unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = "");
|
|
unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic);
|
|
|
|
void buildSectionIndex();
|
|
void buildSymbolIndexes();
|
|
void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
|
|
bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header,
|
|
StringRef SecName, ELFYAML::Section *YAMLSec);
|
|
void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec);
|
|
void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
StringTableBuilder &STB,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec);
|
|
void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec);
|
|
void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
|
|
std::vector<Elf_Shdr> &SHeaders);
|
|
|
|
std::vector<Fragment>
|
|
getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
|
|
ArrayRef<typename ELFT::Shdr> SHeaders);
|
|
|
|
void finalizeStrings();
|
|
void writeELFHeader(raw_ostream &OS);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::NoBitsSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RawContentSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RelocationSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RelrSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::GroupSection &Group,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymtabShndxSection &Shndx,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymverSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerneedSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerdefSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::ARMIndexTableSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::MipsABIFlags &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::DynamicSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::StackSizesSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::BBAddrMapSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::HashSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::AddrsigSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::NoteSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::GnuHashSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::LinkerOptionsSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::DependentLibrariesSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::CallGraphProfileSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
|
|
void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA);
|
|
|
|
ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH);
|
|
|
|
void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec);
|
|
|
|
DenseMap<StringRef, size_t> buildSectionHeaderReorderMap();
|
|
|
|
BumpPtrAllocator StringAlloc;
|
|
uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
|
|
llvm::Optional<llvm::yaml::Hex64> Offset);
|
|
|
|
uint64_t getSectionNameOffset(StringRef Name);
|
|
|
|
public:
|
|
static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
|
|
yaml::ErrorHandler EH, uint64_t MaxSize);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
|
|
return A.size() * sizeof(T);
|
|
}
|
|
|
|
template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
|
|
OS.write((const char *)A.data(), arrayDataSize(A));
|
|
}
|
|
|
|
template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
|
|
|
|
template <class ELFT>
|
|
ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH)
|
|
: Doc(D), ErrHandler(EH) {
|
|
std::vector<ELFYAML::Section *> Sections = Doc.getSections();
|
|
// Insert SHT_NULL section implicitly when it is not defined in YAML.
|
|
if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL)
|
|
Doc.Chunks.insert(
|
|
Doc.Chunks.begin(),
|
|
std::make_unique<ELFYAML::Section>(
|
|
ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true));
|
|
|
|
StringSet<> DocSections;
|
|
ELFYAML::SectionHeaderTable *SecHdrTable = nullptr;
|
|
for (size_t I = 0; I < Doc.Chunks.size(); ++I) {
|
|
const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I];
|
|
|
|
// We might have an explicit section header table declaration.
|
|
if (auto S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) {
|
|
if (SecHdrTable)
|
|
reportError("multiple section header tables are not allowed");
|
|
SecHdrTable = S;
|
|
continue;
|
|
}
|
|
|
|
// We add a technical suffix for each unnamed section/fill. It does not
|
|
// affect the output, but allows us to map them by name in the code and
|
|
// report better error messages.
|
|
if (C->Name.empty()) {
|
|
std::string NewName = ELFYAML::appendUniqueSuffix(
|
|
/*Name=*/"", "index " + Twine(I));
|
|
C->Name = StringRef(NewName).copy(StringAlloc);
|
|
assert(ELFYAML::dropUniqueSuffix(C->Name).empty());
|
|
}
|
|
|
|
if (!DocSections.insert(C->Name).second)
|
|
reportError("repeated section/fill name: '" + C->Name +
|
|
"' at YAML section/fill number " + Twine(I));
|
|
}
|
|
|
|
std::vector<StringRef> ImplicitSections;
|
|
if (Doc.DynamicSymbols)
|
|
ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"});
|
|
if (Doc.Symbols)
|
|
ImplicitSections.push_back(".symtab");
|
|
if (Doc.DWARF)
|
|
for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) {
|
|
std::string SecName = ("." + DebugSecName).str();
|
|
ImplicitSections.push_back(StringRef(SecName).copy(StringAlloc));
|
|
}
|
|
ImplicitSections.insert(ImplicitSections.end(), {".strtab"});
|
|
if (!SecHdrTable || !SecHdrTable->NoHeaders.getValueOr(false))
|
|
ImplicitSections.insert(ImplicitSections.end(), {".shstrtab"});
|
|
|
|
// Insert placeholders for implicit sections that are not
|
|
// defined explicitly in YAML.
|
|
for (StringRef SecName : ImplicitSections) {
|
|
if (DocSections.count(SecName))
|
|
continue;
|
|
|
|
std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>(
|
|
ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/);
|
|
Sec->Name = SecName;
|
|
|
|
if (SecName == ".dynsym")
|
|
Sec->Type = ELF::SHT_DYNSYM;
|
|
else if (SecName == ".symtab")
|
|
Sec->Type = ELF::SHT_SYMTAB;
|
|
else
|
|
Sec->Type = ELF::SHT_STRTAB;
|
|
|
|
// When the section header table is explicitly defined at the end of the
|
|
// sections list, it is reasonable to assume that the user wants to reorder
|
|
// section headers, but still wants to place the section header table after
|
|
// all sections, like it normally happens. In this case we want to insert
|
|
// other implicit sections right before the section header table.
|
|
if (Doc.Chunks.back().get() == SecHdrTable)
|
|
Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec));
|
|
else
|
|
Doc.Chunks.push_back(std::move(Sec));
|
|
}
|
|
|
|
// Insert the section header table implicitly at the end, when it is not
|
|
// explicitly defined.
|
|
if (!SecHdrTable)
|
|
Doc.Chunks.push_back(
|
|
std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/true));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeELFHeader(raw_ostream &OS) {
|
|
using namespace llvm::ELF;
|
|
|
|
Elf_Ehdr Header;
|
|
zero(Header);
|
|
Header.e_ident[EI_MAG0] = 0x7f;
|
|
Header.e_ident[EI_MAG1] = 'E';
|
|
Header.e_ident[EI_MAG2] = 'L';
|
|
Header.e_ident[EI_MAG3] = 'F';
|
|
Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
|
|
Header.e_ident[EI_DATA] = Doc.Header.Data;
|
|
Header.e_ident[EI_VERSION] = EV_CURRENT;
|
|
Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
|
|
Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
|
|
Header.e_type = Doc.Header.Type;
|
|
|
|
if (Doc.Header.Machine)
|
|
Header.e_machine = *Doc.Header.Machine;
|
|
else
|
|
Header.e_machine = EM_NONE;
|
|
|
|
Header.e_version = EV_CURRENT;
|
|
Header.e_entry = Doc.Header.Entry;
|
|
Header.e_flags = Doc.Header.Flags;
|
|
Header.e_ehsize = sizeof(Elf_Ehdr);
|
|
|
|
if (Doc.Header.EPhOff)
|
|
Header.e_phoff = *Doc.Header.EPhOff;
|
|
else if (!Doc.ProgramHeaders.empty())
|
|
Header.e_phoff = sizeof(Header);
|
|
else
|
|
Header.e_phoff = 0;
|
|
|
|
if (Doc.Header.EPhEntSize)
|
|
Header.e_phentsize = *Doc.Header.EPhEntSize;
|
|
else if (!Doc.ProgramHeaders.empty())
|
|
Header.e_phentsize = sizeof(Elf_Phdr);
|
|
else
|
|
Header.e_phentsize = 0;
|
|
|
|
if (Doc.Header.EPhNum)
|
|
Header.e_phnum = *Doc.Header.EPhNum;
|
|
else if (!Doc.ProgramHeaders.empty())
|
|
Header.e_phnum = Doc.ProgramHeaders.size();
|
|
else
|
|
Header.e_phnum = 0;
|
|
|
|
Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize
|
|
: sizeof(Elf_Shdr);
|
|
|
|
const ELFYAML::SectionHeaderTable &SectionHeaders =
|
|
Doc.getSectionHeaderTable();
|
|
|
|
if (Doc.Header.EShOff)
|
|
Header.e_shoff = *Doc.Header.EShOff;
|
|
else if (SectionHeaders.Offset)
|
|
Header.e_shoff = *SectionHeaders.Offset;
|
|
else
|
|
Header.e_shoff = 0;
|
|
|
|
if (Doc.Header.EShNum)
|
|
Header.e_shnum = *Doc.Header.EShNum;
|
|
else
|
|
Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size());
|
|
|
|
if (Doc.Header.EShStrNdx)
|
|
Header.e_shstrndx = *Doc.Header.EShStrNdx;
|
|
else if (SectionHeaders.Offset && !ExcludedSectionHeaders.count(".shstrtab"))
|
|
Header.e_shstrndx = SN2I.get(".shstrtab");
|
|
else
|
|
Header.e_shstrndx = 0;
|
|
|
|
OS.write((const char *)&Header, sizeof(Header));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
|
|
DenseMap<StringRef, ELFYAML::Fill *> NameToFill;
|
|
DenseMap<StringRef, size_t> NameToIndex;
|
|
for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) {
|
|
if (auto S = dyn_cast<ELFYAML::Fill>(Doc.Chunks[I].get()))
|
|
NameToFill[S->Name] = S;
|
|
NameToIndex[Doc.Chunks[I]->Name] = I + 1;
|
|
}
|
|
|
|
std::vector<ELFYAML::Section *> Sections = Doc.getSections();
|
|
for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) {
|
|
ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I];
|
|
Elf_Phdr Phdr;
|
|
zero(Phdr);
|
|
Phdr.p_type = YamlPhdr.Type;
|
|
Phdr.p_flags = YamlPhdr.Flags;
|
|
Phdr.p_vaddr = YamlPhdr.VAddr;
|
|
Phdr.p_paddr = YamlPhdr.PAddr;
|
|
PHeaders.push_back(Phdr);
|
|
|
|
if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec)
|
|
continue;
|
|
|
|
// Get the index of the section, or 0 in the case when the section doesn't exist.
|
|
size_t First = NameToIndex[*YamlPhdr.FirstSec];
|
|
if (!First)
|
|
reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec +
|
|
"' by the 'FirstSec' key of the program header with index " +
|
|
Twine(I));
|
|
size_t Last = NameToIndex[*YamlPhdr.LastSec];
|
|
if (!Last)
|
|
reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec +
|
|
"' by the 'LastSec' key of the program header with index " +
|
|
Twine(I));
|
|
if (!First || !Last)
|
|
continue;
|
|
|
|
if (First > Last)
|
|
reportError("program header with index " + Twine(I) +
|
|
": the section index of " + *YamlPhdr.FirstSec +
|
|
" is greater than the index of " + *YamlPhdr.LastSec);
|
|
|
|
for (size_t I = First; I <= Last; ++I)
|
|
YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get());
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec,
|
|
StringRef LocSym) {
|
|
assert(LocSec.empty() || LocSym.empty());
|
|
|
|
unsigned Index;
|
|
if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) {
|
|
if (!LocSym.empty())
|
|
reportError("unknown section referenced: '" + S + "' by YAML symbol '" +
|
|
LocSym + "'");
|
|
else
|
|
reportError("unknown section referenced: '" + S + "' by YAML section '" +
|
|
LocSec + "'");
|
|
return 0;
|
|
}
|
|
|
|
const ELFYAML::SectionHeaderTable &SectionHeaders =
|
|
Doc.getSectionHeaderTable();
|
|
if (SectionHeaders.IsImplicit ||
|
|
(SectionHeaders.NoHeaders && !SectionHeaders.NoHeaders.getValue()))
|
|
return Index;
|
|
|
|
assert(!SectionHeaders.NoHeaders.getValueOr(false) ||
|
|
!SectionHeaders.Sections);
|
|
size_t FirstExcluded =
|
|
SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0;
|
|
if (Index >= FirstExcluded) {
|
|
if (LocSym.empty())
|
|
reportError("unable to link '" + LocSec + "' to excluded section '" + S +
|
|
"'");
|
|
else
|
|
reportError("excluded section referenced: '" + S + "' by symbol '" +
|
|
LocSym + "'");
|
|
}
|
|
return Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec,
|
|
bool IsDynamic) {
|
|
const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I;
|
|
unsigned Index;
|
|
// Here we try to look up S in the symbol table. If it is not there,
|
|
// treat its value as a symbol index.
|
|
if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) {
|
|
reportError("unknown symbol referenced: '" + S + "' by YAML section '" +
|
|
LocSec + "'");
|
|
return 0;
|
|
}
|
|
return Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) {
|
|
if (!From)
|
|
return;
|
|
if (From->ShAddrAlign)
|
|
To.sh_addralign = *From->ShAddrAlign;
|
|
if (From->ShFlags)
|
|
To.sh_flags = *From->ShFlags;
|
|
if (From->ShName)
|
|
To.sh_name = *From->ShName;
|
|
if (From->ShOffset)
|
|
To.sh_offset = *From->ShOffset;
|
|
if (From->ShSize)
|
|
To.sh_size = *From->ShSize;
|
|
if (From->ShType)
|
|
To.sh_type = *From->ShType;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA,
|
|
Elf_Shdr &Header, StringRef SecName,
|
|
ELFYAML::Section *YAMLSec) {
|
|
// Check if the header was already initialized.
|
|
if (Header.sh_offset)
|
|
return false;
|
|
|
|
if (SecName == ".symtab")
|
|
initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
|
|
else if (SecName == ".strtab")
|
|
initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec);
|
|
else if (SecName == ".shstrtab")
|
|
initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec);
|
|
else if (SecName == ".dynsym")
|
|
initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
|
|
else if (SecName == ".dynstr")
|
|
initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec);
|
|
else if (SecName.startswith(".debug_")) {
|
|
// If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we
|
|
// will not treat it as a debug section.
|
|
if (YAMLSec && !isa<ELFYAML::RawContentSection>(YAMLSec))
|
|
return false;
|
|
initDWARFSectionHeader(Header, SecName, CBA, YAMLSec);
|
|
} else
|
|
return false;
|
|
|
|
LocationCounter += Header.sh_size;
|
|
|
|
// Override section fields if requested.
|
|
overrideFields<ELFT>(YAMLSec, Header);
|
|
return true;
|
|
}
|
|
|
|
constexpr char SuffixStart = '(';
|
|
constexpr char SuffixEnd = ')';
|
|
|
|
std::string llvm::ELFYAML::appendUniqueSuffix(StringRef Name,
|
|
const Twine &Msg) {
|
|
// Do not add a space when a Name is empty.
|
|
std::string Ret = Name.empty() ? "" : Name.str() + ' ';
|
|
return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str();
|
|
}
|
|
|
|
StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) {
|
|
if (S.empty() || S.back() != SuffixEnd)
|
|
return S;
|
|
|
|
// A special case for empty names. See appendUniqueSuffix() above.
|
|
size_t SuffixPos = S.rfind(SuffixStart);
|
|
if (SuffixPos == 0)
|
|
return "";
|
|
|
|
if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ')
|
|
return S;
|
|
return S.substr(0, SuffixPos - 1);
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint64_t ELFState<ELFT>::getSectionNameOffset(StringRef Name) {
|
|
// If a section is excluded from section headers, we do not save its name in
|
|
// the string table.
|
|
if (ExcludedSectionHeaders.count(Name))
|
|
return 0;
|
|
return DotShStrtab.getOffset(Name);
|
|
}
|
|
|
|
static uint64_t writeContent(ContiguousBlobAccumulator &CBA,
|
|
const Optional<yaml::BinaryRef> &Content,
|
|
const Optional<llvm::yaml::Hex64> &Size) {
|
|
size_t ContentSize = 0;
|
|
if (Content) {
|
|
CBA.writeAsBinary(*Content);
|
|
ContentSize = Content->binary_size();
|
|
}
|
|
|
|
if (!Size)
|
|
return ContentSize;
|
|
|
|
CBA.writeZeros(*Size - ContentSize);
|
|
return *Size;
|
|
}
|
|
|
|
static StringRef getDefaultLinkSec(unsigned SecType) {
|
|
switch (SecType) {
|
|
case ELF::SHT_REL:
|
|
case ELF::SHT_RELA:
|
|
case ELF::SHT_GROUP:
|
|
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
|
|
case ELF::SHT_LLVM_ADDRSIG:
|
|
return ".symtab";
|
|
case ELF::SHT_GNU_versym:
|
|
case ELF::SHT_HASH:
|
|
case ELF::SHT_GNU_HASH:
|
|
return ".dynsym";
|
|
case ELF::SHT_DYNSYM:
|
|
case ELF::SHT_GNU_verdef:
|
|
case ELF::SHT_GNU_verneed:
|
|
return ".dynstr";
|
|
case ELF::SHT_SYMTAB:
|
|
return ".strtab";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
// Ensure SHN_UNDEF entry is present. An all-zero section header is a
|
|
// valid SHN_UNDEF entry since SHT_NULL == 0.
|
|
SHeaders.resize(Doc.getSections().size());
|
|
|
|
for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) {
|
|
if (ELFYAML::Fill *S = dyn_cast<ELFYAML::Fill>(D.get())) {
|
|
S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
|
|
writeFill(*S, CBA);
|
|
LocationCounter += S->Size;
|
|
continue;
|
|
}
|
|
|
|
if (ELFYAML::SectionHeaderTable *S =
|
|
dyn_cast<ELFYAML::SectionHeaderTable>(D.get())) {
|
|
if (S->NoHeaders.getValueOr(false))
|
|
continue;
|
|
|
|
if (!S->Offset)
|
|
S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint),
|
|
/*Offset=*/None);
|
|
else
|
|
S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
|
|
|
|
uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr);
|
|
// The full section header information might be not available here, so
|
|
// fill the space with zeroes as a placeholder.
|
|
CBA.writeZeros(Size);
|
|
LocationCounter += Size;
|
|
continue;
|
|
}
|
|
|
|
ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get());
|
|
bool IsFirstUndefSection = Sec == Doc.getSections().front();
|
|
if (IsFirstUndefSection && Sec->IsImplicit)
|
|
continue;
|
|
|
|
Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)];
|
|
if (Sec->Link) {
|
|
SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name);
|
|
} else {
|
|
StringRef LinkSec = getDefaultLinkSec(Sec->Type);
|
|
unsigned Link = 0;
|
|
if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) &&
|
|
SN2I.lookup(LinkSec, Link))
|
|
SHeader.sh_link = Link;
|
|
}
|
|
|
|
if (Sec->EntSize)
|
|
SHeader.sh_entsize = *Sec->EntSize;
|
|
else
|
|
SHeader.sh_entsize = ELFYAML::getDefaultShEntSize<ELFT>(
|
|
Doc.Header.Machine.getValueOr(ELF::EM_NONE), Sec->Type, Sec->Name);
|
|
|
|
// We have a few sections like string or symbol tables that are usually
|
|
// added implicitly to the end. However, if they are explicitly specified
|
|
// in the YAML, we need to write them here. This ensures the file offset
|
|
// remains correct.
|
|
if (initImplicitHeader(CBA, SHeader, Sec->Name,
|
|
Sec->IsImplicit ? nullptr : Sec))
|
|
continue;
|
|
|
|
assert(Sec && "It can't be null unless it is an implicit section. But all "
|
|
"implicit sections should already have been handled above.");
|
|
|
|
SHeader.sh_name =
|
|
getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name));
|
|
SHeader.sh_type = Sec->Type;
|
|
if (Sec->Flags)
|
|
SHeader.sh_flags = *Sec->Flags;
|
|
SHeader.sh_addralign = Sec->AddressAlign;
|
|
|
|
// Set the offset for all sections, except the SHN_UNDEF section with index
|
|
// 0 when not explicitly requested.
|
|
if (!IsFirstUndefSection || Sec->Offset)
|
|
SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset);
|
|
|
|
assignSectionAddress(SHeader, Sec);
|
|
|
|
if (IsFirstUndefSection) {
|
|
if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
|
|
// We do not write any content for special SHN_UNDEF section.
|
|
if (RawSec->Size)
|
|
SHeader.sh_size = *RawSec->Size;
|
|
if (RawSec->Info)
|
|
SHeader.sh_info = *RawSec->Info;
|
|
}
|
|
|
|
LocationCounter += SHeader.sh_size;
|
|
overrideFields<ELFT>(Sec, SHeader);
|
|
continue;
|
|
}
|
|
|
|
if (!isa<ELFYAML::NoBitsSection>(Sec) && (Sec->Content || Sec->Size))
|
|
SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size);
|
|
|
|
if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::GroupSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::ARMIndexTableSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else if (auto S = dyn_cast<ELFYAML::BBAddrMapSection>(Sec)) {
|
|
writeSectionContent(SHeader, *S, CBA);
|
|
} else {
|
|
llvm_unreachable("Unknown section type");
|
|
}
|
|
|
|
LocationCounter += SHeader.sh_size;
|
|
|
|
// Override section fields if requested.
|
|
overrideFields<ELFT>(Sec, SHeader);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader,
|
|
ELFYAML::Section *YAMLSec) {
|
|
if (YAMLSec && YAMLSec->Address) {
|
|
SHeader.sh_addr = *YAMLSec->Address;
|
|
LocationCounter = *YAMLSec->Address;
|
|
return;
|
|
}
|
|
|
|
// sh_addr represents the address in the memory image of a process. Sections
|
|
// in a relocatable object file or non-allocatable sections do not need
|
|
// sh_addr assignment.
|
|
if (Doc.Header.Type.value == ELF::ET_REL ||
|
|
!(SHeader.sh_flags & ELF::SHF_ALLOC))
|
|
return;
|
|
|
|
LocationCounter =
|
|
alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1);
|
|
SHeader.sh_addr = LocationCounter;
|
|
}
|
|
|
|
static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) {
|
|
for (size_t I = 0; I < Symbols.size(); ++I)
|
|
if (Symbols[I].Binding.value != ELF::STB_LOCAL)
|
|
return I;
|
|
return Symbols.size();
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::vector<typename ELFT::Sym>
|
|
ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
|
|
const StringTableBuilder &Strtab) {
|
|
std::vector<Elf_Sym> Ret;
|
|
Ret.resize(Symbols.size() + 1);
|
|
|
|
size_t I = 0;
|
|
for (const ELFYAML::Symbol &Sym : Symbols) {
|
|
Elf_Sym &Symbol = Ret[++I];
|
|
|
|
// If NameIndex, which contains the name offset, is explicitly specified, we
|
|
// use it. This is useful for preparing broken objects. Otherwise, we add
|
|
// the specified Name to the string table builder to get its offset.
|
|
if (Sym.StName)
|
|
Symbol.st_name = *Sym.StName;
|
|
else if (!Sym.Name.empty())
|
|
Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name));
|
|
|
|
Symbol.setBindingAndType(Sym.Binding, Sym.Type);
|
|
if (Sym.Section)
|
|
Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name);
|
|
else if (Sym.Index)
|
|
Symbol.st_shndx = *Sym.Index;
|
|
|
|
Symbol.st_value = Sym.Value.getValueOr(yaml::Hex64(0));
|
|
Symbol.st_other = Sym.Other ? *Sym.Other : 0;
|
|
Symbol.st_size = Sym.Size.getValueOr(yaml::Hex64(0));
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
|
|
SymtabType STType,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec) {
|
|
|
|
bool IsStatic = STType == SymtabType::Static;
|
|
ArrayRef<ELFYAML::Symbol> Symbols;
|
|
if (IsStatic && Doc.Symbols)
|
|
Symbols = *Doc.Symbols;
|
|
else if (!IsStatic && Doc.DynamicSymbols)
|
|
Symbols = *Doc.DynamicSymbols;
|
|
|
|
ELFYAML::RawContentSection *RawSec =
|
|
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
|
|
if (RawSec && (RawSec->Content || RawSec->Size)) {
|
|
bool HasSymbolsDescription =
|
|
(IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols);
|
|
if (HasSymbolsDescription) {
|
|
StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`");
|
|
if (RawSec->Content)
|
|
reportError("cannot specify both `Content` and " + Property +
|
|
" for symbol table section '" + RawSec->Name + "'");
|
|
if (RawSec->Size)
|
|
reportError("cannot specify both `Size` and " + Property +
|
|
" for symbol table section '" + RawSec->Name + "'");
|
|
return;
|
|
}
|
|
}
|
|
|
|
SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym");
|
|
|
|
if (YAMLSec)
|
|
SHeader.sh_type = YAMLSec->Type;
|
|
else
|
|
SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
|
|
|
|
if (YAMLSec && YAMLSec->Flags)
|
|
SHeader.sh_flags = *YAMLSec->Flags;
|
|
else if (!IsStatic)
|
|
SHeader.sh_flags = ELF::SHF_ALLOC;
|
|
|
|
// If the symbol table section is explicitly described in the YAML
|
|
// then we should set the fields requested.
|
|
SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
|
|
: findFirstNonGlobal(Symbols) + 1;
|
|
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
|
|
|
|
assignSectionAddress(SHeader, YAMLSec);
|
|
|
|
SHeader.sh_offset =
|
|
alignToOffset(CBA, SHeader.sh_addralign, RawSec ? RawSec->Offset : None);
|
|
|
|
if (RawSec && (RawSec->Content || RawSec->Size)) {
|
|
assert(Symbols.empty());
|
|
SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
|
|
return;
|
|
}
|
|
|
|
std::vector<Elf_Sym> Syms =
|
|
toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr);
|
|
SHeader.sh_size = Syms.size() * sizeof(Elf_Sym);
|
|
CBA.write((const char *)Syms.data(), SHeader.sh_size);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
StringTableBuilder &STB,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec) {
|
|
SHeader.sh_name = getSectionNameOffset(Name);
|
|
SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
|
|
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
|
|
|
|
ELFYAML::RawContentSection *RawSec =
|
|
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
|
|
|
|
SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
|
|
YAMLSec ? YAMLSec->Offset : None);
|
|
|
|
if (RawSec && (RawSec->Content || RawSec->Size)) {
|
|
SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
|
|
} else {
|
|
if (raw_ostream *OS = CBA.getRawOS(STB.getSize()))
|
|
STB.write(*OS);
|
|
SHeader.sh_size = STB.getSize();
|
|
}
|
|
|
|
if (RawSec && RawSec->Info)
|
|
SHeader.sh_info = *RawSec->Info;
|
|
|
|
if (YAMLSec && YAMLSec->Flags)
|
|
SHeader.sh_flags = *YAMLSec->Flags;
|
|
else if (Name == ".dynstr")
|
|
SHeader.sh_flags = ELF::SHF_ALLOC;
|
|
|
|
assignSectionAddress(SHeader, YAMLSec);
|
|
}
|
|
|
|
static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name) {
|
|
SetVector<StringRef> DebugSecNames = DWARF.getNonEmptySectionNames();
|
|
return Name.consume_front(".") && DebugSecNames.count(Name);
|
|
}
|
|
|
|
template <class ELFT>
|
|
Expected<uint64_t> emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name,
|
|
const DWARFYAML::Data &DWARF,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
// We are unable to predict the size of debug data, so we request to write 0
|
|
// bytes. This should always return us an output stream unless CBA is already
|
|
// in an error state.
|
|
raw_ostream *OS = CBA.getRawOS(0);
|
|
if (!OS)
|
|
return 0;
|
|
|
|
uint64_t BeginOffset = CBA.tell();
|
|
|
|
auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1));
|
|
if (Error Err = EmitFunc(*OS, DWARF))
|
|
return std::move(Err);
|
|
|
|
return CBA.tell() - BeginOffset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec) {
|
|
SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
|
|
SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS;
|
|
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
|
|
SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
|
|
YAMLSec ? YAMLSec->Offset : None);
|
|
|
|
ELFYAML::RawContentSection *RawSec =
|
|
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
|
|
if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) {
|
|
if (RawSec && (RawSec->Content || RawSec->Size))
|
|
reportError("cannot specify section '" + Name +
|
|
"' contents in the 'DWARF' entry and the 'Content' "
|
|
"or 'Size' in the 'Sections' entry at the same time");
|
|
else {
|
|
if (Expected<uint64_t> ShSizeOrErr =
|
|
emitDWARF<ELFT>(SHeader, Name, *Doc.DWARF, CBA))
|
|
SHeader.sh_size = *ShSizeOrErr;
|
|
else
|
|
reportError(ShSizeOrErr.takeError());
|
|
}
|
|
} else if (RawSec)
|
|
SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
|
|
else
|
|
llvm_unreachable("debug sections can only be initialized via the 'DWARF' "
|
|
"entry or a RawContentSection");
|
|
|
|
if (RawSec && RawSec->Info)
|
|
SHeader.sh_info = *RawSec->Info;
|
|
|
|
if (YAMLSec && YAMLSec->Flags)
|
|
SHeader.sh_flags = *YAMLSec->Flags;
|
|
else if (Name == ".debug_str")
|
|
SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS;
|
|
|
|
assignSectionAddress(SHeader, YAMLSec);
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) {
|
|
ErrHandler(Msg);
|
|
HasError = true;
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::reportError(Error Err) {
|
|
handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) {
|
|
reportError(Err.message());
|
|
});
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::vector<Fragment>
|
|
ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
|
|
ArrayRef<Elf_Shdr> SHeaders) {
|
|
std::vector<Fragment> Ret;
|
|
for (const ELFYAML::Chunk *C : Phdr.Chunks) {
|
|
if (const ELFYAML::Fill *F = dyn_cast<ELFYAML::Fill>(C)) {
|
|
Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS,
|
|
/*ShAddrAlign=*/1});
|
|
continue;
|
|
}
|
|
|
|
const ELFYAML::Section *S = cast<ELFYAML::Section>(C);
|
|
const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)];
|
|
Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign});
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
|
|
std::vector<Elf_Shdr> &SHeaders) {
|
|
uint32_t PhdrIdx = 0;
|
|
for (auto &YamlPhdr : Doc.ProgramHeaders) {
|
|
Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
|
|
std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders);
|
|
if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) {
|
|
return A.Offset < B.Offset;
|
|
}))
|
|
reportError("sections in the program header with index " +
|
|
Twine(PhdrIdx) + " are not sorted by their file offset");
|
|
|
|
if (YamlPhdr.Offset) {
|
|
if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset)
|
|
reportError("'Offset' for segment with index " + Twine(PhdrIdx) +
|
|
" must be less than or equal to the minimum file offset of "
|
|
"all included sections (0x" +
|
|
Twine::utohexstr(Fragments.front().Offset) + ")");
|
|
PHeader.p_offset = *YamlPhdr.Offset;
|
|
} else if (!Fragments.empty()) {
|
|
PHeader.p_offset = Fragments.front().Offset;
|
|
}
|
|
|
|
// Set the file size if not set explicitly.
|
|
if (YamlPhdr.FileSize) {
|
|
PHeader.p_filesz = *YamlPhdr.FileSize;
|
|
} else if (!Fragments.empty()) {
|
|
uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset;
|
|
// SHT_NOBITS sections occupy no physical space in a file, we should not
|
|
// take their sizes into account when calculating the file size of a
|
|
// segment.
|
|
if (Fragments.back().Type != llvm::ELF::SHT_NOBITS)
|
|
FileSize += Fragments.back().Size;
|
|
PHeader.p_filesz = FileSize;
|
|
}
|
|
|
|
// Find the maximum offset of the end of a section in order to set p_memsz.
|
|
uint64_t MemOffset = PHeader.p_offset;
|
|
for (const Fragment &F : Fragments)
|
|
MemOffset = std::max(MemOffset, F.Offset + F.Size);
|
|
// Set the memory size if not set explicitly.
|
|
PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize)
|
|
: MemOffset - PHeader.p_offset;
|
|
|
|
if (YamlPhdr.Align) {
|
|
PHeader.p_align = *YamlPhdr.Align;
|
|
} else {
|
|
// Set the alignment of the segment to be the maximum alignment of the
|
|
// sections so that by default the segment has a valid and sensible
|
|
// alignment.
|
|
PHeader.p_align = 1;
|
|
for (const Fragment &F : Fragments)
|
|
PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool llvm::ELFYAML::shouldAllocateFileSpace(
|
|
ArrayRef<ELFYAML::ProgramHeader> Phdrs, const ELFYAML::NoBitsSection &S) {
|
|
for (const ELFYAML::ProgramHeader &PH : Phdrs) {
|
|
auto It = llvm::find_if(
|
|
PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; });
|
|
if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) {
|
|
return (isa<ELFYAML::Fill>(C) ||
|
|
cast<ELFYAML::Section>(C)->Type != ELF::SHT_NOBITS);
|
|
}))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::NoBitsSection &S,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!S.Size)
|
|
return;
|
|
|
|
SHeader.sh_size = *S.Size;
|
|
|
|
// When a nobits section is followed by a non-nobits section or fill
|
|
// in the same segment, we allocate the file space for it. This behavior
|
|
// matches linkers.
|
|
if (shouldAllocateFileSpace(Doc.ProgramHeaders, S))
|
|
CBA.writeZeros(*S.Size);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (Section.Info)
|
|
SHeader.sh_info = *Section.Info;
|
|
}
|
|
|
|
static bool isMips64EL(const ELFYAML::Object &Obj) {
|
|
return Obj.getMachine() == llvm::ELF::EM_MIPS &&
|
|
Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
|
|
Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert((Section.Type == llvm::ELF::SHT_REL ||
|
|
Section.Type == llvm::ELF::SHT_RELA) &&
|
|
"Section type is not SHT_REL nor SHT_RELA");
|
|
|
|
if (!Section.RelocatableSec.empty())
|
|
SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name);
|
|
|
|
if (!Section.Relocations)
|
|
return;
|
|
|
|
const bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
|
|
for (const ELFYAML::Relocation &Rel : *Section.Relocations) {
|
|
const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym");
|
|
unsigned SymIdx =
|
|
Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0;
|
|
if (IsRela) {
|
|
Elf_Rela REntry;
|
|
zero(REntry);
|
|
REntry.r_offset = Rel.Offset;
|
|
REntry.r_addend = Rel.Addend;
|
|
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
|
|
CBA.write((const char *)&REntry, sizeof(REntry));
|
|
} else {
|
|
Elf_Rel REntry;
|
|
zero(REntry);
|
|
REntry.r_offset = Rel.Offset;
|
|
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
|
|
CBA.write((const char *)&REntry, sizeof(REntry));
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) *
|
|
Section.Relocations->size();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RelrSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (llvm::yaml::Hex64 E : *Section.Entries) {
|
|
if (!ELFT::Is64Bits && E > UINT32_MAX)
|
|
reportError(Section.Name + ": the value is too large for 32-bits: 0x" +
|
|
Twine::utohexstr(E));
|
|
CBA.write<uintX_t>(E, ELFT::TargetEndianness);
|
|
}
|
|
|
|
SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (Shndx.Content || Shndx.Size) {
|
|
SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size);
|
|
return;
|
|
}
|
|
|
|
if (!Shndx.Entries)
|
|
return;
|
|
|
|
for (uint32_t E : *Shndx.Entries)
|
|
CBA.write<uint32_t>(E, ELFT::TargetEndianness);
|
|
SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::GroupSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert(Section.Type == llvm::ELF::SHT_GROUP &&
|
|
"Section type is not SHT_GROUP");
|
|
|
|
if (Section.Signature)
|
|
SHeader.sh_info =
|
|
toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false);
|
|
|
|
if (!Section.Members)
|
|
return;
|
|
|
|
for (const ELFYAML::SectionOrType &Member : *Section.Members) {
|
|
unsigned int SectionIndex = 0;
|
|
if (Member.sectionNameOrType == "GRP_COMDAT")
|
|
SectionIndex = llvm::ELF::GRP_COMDAT;
|
|
else
|
|
SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name);
|
|
CBA.write<uint32_t>(SectionIndex, ELFT::TargetEndianness);
|
|
}
|
|
SHeader.sh_size = SHeader.sh_entsize * Section.Members->size();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymverSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (uint16_t Version : *Section.Entries)
|
|
CBA.write<uint16_t>(Version, ELFT::TargetEndianness);
|
|
SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (const ELFYAML::StackSizeEntry &E : *Section.Entries) {
|
|
CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
|
|
SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (const ELFYAML::BBAddrMapEntry &E : *Section.Entries) {
|
|
// Write the address of the function.
|
|
CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
|
|
// Write number of BBEntries (number of basic blocks in the function).
|
|
size_t NumBlocks = E.BBEntries ? E.BBEntries->size() : 0;
|
|
SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks);
|
|
if (!NumBlocks)
|
|
continue;
|
|
// Write all BBEntries.
|
|
for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *E.BBEntries)
|
|
SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset) +
|
|
CBA.writeULEB128(BBE.Size) +
|
|
CBA.writeULEB128(BBE.Metadata);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Options)
|
|
return;
|
|
|
|
for (const ELFYAML::LinkerOption &LO : *Section.Options) {
|
|
CBA.write(LO.Key.data(), LO.Key.size());
|
|
CBA.write('\0');
|
|
CBA.write(LO.Value.data(), LO.Value.size());
|
|
CBA.write('\0');
|
|
SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Libs)
|
|
return;
|
|
|
|
for (StringRef Lib : *Section.Libs) {
|
|
CBA.write(Lib.data(), Lib.size());
|
|
CBA.write('\0');
|
|
SHeader.sh_size += Lib.size() + 1;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint64_t
|
|
ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
|
|
llvm::Optional<llvm::yaml::Hex64> Offset) {
|
|
uint64_t CurrentOffset = CBA.getOffset();
|
|
uint64_t AlignedOffset;
|
|
|
|
if (Offset) {
|
|
if ((uint64_t)*Offset < CurrentOffset) {
|
|
reportError("the 'Offset' value (0x" +
|
|
Twine::utohexstr((uint64_t)*Offset) + ") goes backward");
|
|
return CurrentOffset;
|
|
}
|
|
|
|
// We ignore an alignment when an explicit offset has been requested.
|
|
AlignedOffset = *Offset;
|
|
} else {
|
|
AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1));
|
|
}
|
|
|
|
CBA.writeZeros(AlignedOffset - CurrentOffset);
|
|
return AlignedOffset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (const ELFYAML::CallGraphEntry &E : *Section.Entries) {
|
|
unsigned From = toSymbolIndex(E.From, Section.Name, /*IsDynamic=*/false);
|
|
unsigned To = toSymbolIndex(E.To, Section.Name, /*IsDynamic=*/false);
|
|
|
|
CBA.write<uint32_t>(From, ELFT::TargetEndianness);
|
|
CBA.write<uint32_t>(To, ELFT::TargetEndianness);
|
|
CBA.write<uint64_t>(E.Weight, ELFT::TargetEndianness);
|
|
SHeader.sh_size += 16;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::HashSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Bucket)
|
|
return;
|
|
|
|
if (!Section.Bucket)
|
|
return;
|
|
|
|
CBA.write<uint32_t>(
|
|
Section.NBucket.getValueOr(llvm::yaml::Hex64(Section.Bucket->size())),
|
|
ELFT::TargetEndianness);
|
|
CBA.write<uint32_t>(
|
|
Section.NChain.getValueOr(llvm::yaml::Hex64(Section.Chain->size())),
|
|
ELFT::TargetEndianness);
|
|
|
|
for (uint32_t Val : *Section.Bucket)
|
|
CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
|
|
for (uint32_t Val : *Section.Chain)
|
|
CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
|
|
|
|
SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerdefSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
|
|
if (Section.Info)
|
|
SHeader.sh_info = *Section.Info;
|
|
else if (Section.Entries)
|
|
SHeader.sh_info = Section.Entries->size();
|
|
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
uint64_t AuxCnt = 0;
|
|
for (size_t I = 0; I < Section.Entries->size(); ++I) {
|
|
const ELFYAML::VerdefEntry &E = (*Section.Entries)[I];
|
|
|
|
Elf_Verdef VerDef;
|
|
VerDef.vd_version = E.Version.getValueOr(1);
|
|
VerDef.vd_flags = E.Flags.getValueOr(0);
|
|
VerDef.vd_ndx = E.VersionNdx.getValueOr(0);
|
|
VerDef.vd_hash = E.Hash.getValueOr(0);
|
|
VerDef.vd_aux = sizeof(Elf_Verdef);
|
|
VerDef.vd_cnt = E.VerNames.size();
|
|
if (I == Section.Entries->size() - 1)
|
|
VerDef.vd_next = 0;
|
|
else
|
|
VerDef.vd_next =
|
|
sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
|
|
CBA.write((const char *)&VerDef, sizeof(Elf_Verdef));
|
|
|
|
for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
|
|
Elf_Verdaux VernAux;
|
|
VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
|
|
if (J == E.VerNames.size() - 1)
|
|
VernAux.vda_next = 0;
|
|
else
|
|
VernAux.vda_next = sizeof(Elf_Verdaux);
|
|
CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux));
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) +
|
|
AuxCnt * sizeof(Elf_Verdaux);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerneedSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (Section.Info)
|
|
SHeader.sh_info = *Section.Info;
|
|
else if (Section.VerneedV)
|
|
SHeader.sh_info = Section.VerneedV->size();
|
|
|
|
if (!Section.VerneedV)
|
|
return;
|
|
|
|
uint64_t AuxCnt = 0;
|
|
for (size_t I = 0; I < Section.VerneedV->size(); ++I) {
|
|
const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I];
|
|
|
|
Elf_Verneed VerNeed;
|
|
VerNeed.vn_version = VE.Version;
|
|
VerNeed.vn_file = DotDynstr.getOffset(VE.File);
|
|
if (I == Section.VerneedV->size() - 1)
|
|
VerNeed.vn_next = 0;
|
|
else
|
|
VerNeed.vn_next =
|
|
sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
|
|
VerNeed.vn_cnt = VE.AuxV.size();
|
|
VerNeed.vn_aux = sizeof(Elf_Verneed);
|
|
CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed));
|
|
|
|
for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
|
|
const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
|
|
|
|
Elf_Vernaux VernAux;
|
|
VernAux.vna_hash = VAuxE.Hash;
|
|
VernAux.vna_flags = VAuxE.Flags;
|
|
VernAux.vna_other = VAuxE.Other;
|
|
VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
|
|
if (J == VE.AuxV.size() - 1)
|
|
VernAux.vna_next = 0;
|
|
else
|
|
VernAux.vna_next = sizeof(Elf_Vernaux);
|
|
CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux));
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) +
|
|
AuxCnt * sizeof(Elf_Vernaux);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) {
|
|
CBA.write<uint32_t>(E.Offset, ELFT::TargetEndianness);
|
|
CBA.write<uint32_t>(E.Value, ELFT::TargetEndianness);
|
|
}
|
|
SHeader.sh_size = Section.Entries->size() * 8;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::MipsABIFlags &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS &&
|
|
"Section type is not SHT_MIPS_ABIFLAGS");
|
|
|
|
object::Elf_Mips_ABIFlags<ELFT> Flags;
|
|
zero(Flags);
|
|
SHeader.sh_size = SHeader.sh_entsize;
|
|
|
|
Flags.version = Section.Version;
|
|
Flags.isa_level = Section.ISALevel;
|
|
Flags.isa_rev = Section.ISARevision;
|
|
Flags.gpr_size = Section.GPRSize;
|
|
Flags.cpr1_size = Section.CPR1Size;
|
|
Flags.cpr2_size = Section.CPR2Size;
|
|
Flags.fp_abi = Section.FpABI;
|
|
Flags.isa_ext = Section.ISAExtension;
|
|
Flags.ases = Section.ASEs;
|
|
Flags.flags1 = Section.Flags1;
|
|
Flags.flags2 = Section.Flags2;
|
|
CBA.write((const char *)&Flags, sizeof(Flags));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::DynamicSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert(Section.Type == llvm::ELF::SHT_DYNAMIC &&
|
|
"Section type is not SHT_DYNAMIC");
|
|
|
|
if (!Section.Entries)
|
|
return;
|
|
|
|
for (const ELFYAML::DynamicEntry &DE : *Section.Entries) {
|
|
CBA.write<uintX_t>(DE.Tag, ELFT::TargetEndianness);
|
|
CBA.write<uintX_t>(DE.Val, ELFT::TargetEndianness);
|
|
}
|
|
SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::AddrsigSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Symbols)
|
|
return;
|
|
|
|
if (!Section.Symbols)
|
|
return;
|
|
|
|
for (StringRef Sym : *Section.Symbols)
|
|
SHeader.sh_size +=
|
|
CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::NoteSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.Notes)
|
|
return;
|
|
|
|
uint64_t Offset = CBA.tell();
|
|
for (const ELFYAML::NoteEntry &NE : *Section.Notes) {
|
|
// Write name size.
|
|
if (NE.Name.empty())
|
|
CBA.write<uint32_t>(0, ELFT::TargetEndianness);
|
|
else
|
|
CBA.write<uint32_t>(NE.Name.size() + 1, ELFT::TargetEndianness);
|
|
|
|
// Write description size.
|
|
if (NE.Desc.binary_size() == 0)
|
|
CBA.write<uint32_t>(0, ELFT::TargetEndianness);
|
|
else
|
|
CBA.write<uint32_t>(NE.Desc.binary_size(), ELFT::TargetEndianness);
|
|
|
|
// Write type.
|
|
CBA.write<uint32_t>(NE.Type, ELFT::TargetEndianness);
|
|
|
|
// Write name, null terminator and padding.
|
|
if (!NE.Name.empty()) {
|
|
CBA.write(NE.Name.data(), NE.Name.size());
|
|
CBA.write('\0');
|
|
CBA.padToAlignment(4);
|
|
}
|
|
|
|
// Write description and padding.
|
|
if (NE.Desc.binary_size() != 0) {
|
|
CBA.writeAsBinary(NE.Desc);
|
|
CBA.padToAlignment(4);
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = CBA.tell() - Offset;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::GnuHashSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
if (!Section.HashBuckets)
|
|
return;
|
|
|
|
if (!Section.Header)
|
|
return;
|
|
|
|
// We write the header first, starting with the hash buckets count. Normally
|
|
// it is the number of entries in HashBuckets, but the "NBuckets" property can
|
|
// be used to override this field, which is useful for producing broken
|
|
// objects.
|
|
if (Section.Header->NBuckets)
|
|
CBA.write<uint32_t>(*Section.Header->NBuckets, ELFT::TargetEndianness);
|
|
else
|
|
CBA.write<uint32_t>(Section.HashBuckets->size(), ELFT::TargetEndianness);
|
|
|
|
// Write the index of the first symbol in the dynamic symbol table accessible
|
|
// via the hash table.
|
|
CBA.write<uint32_t>(Section.Header->SymNdx, ELFT::TargetEndianness);
|
|
|
|
// Write the number of words in the Bloom filter. As above, the "MaskWords"
|
|
// property can be used to set this field to any value.
|
|
if (Section.Header->MaskWords)
|
|
CBA.write<uint32_t>(*Section.Header->MaskWords, ELFT::TargetEndianness);
|
|
else
|
|
CBA.write<uint32_t>(Section.BloomFilter->size(), ELFT::TargetEndianness);
|
|
|
|
// Write the shift constant used by the Bloom filter.
|
|
CBA.write<uint32_t>(Section.Header->Shift2, ELFT::TargetEndianness);
|
|
|
|
// We've finished writing the header. Now write the Bloom filter.
|
|
for (llvm::yaml::Hex64 Val : *Section.BloomFilter)
|
|
CBA.write<uintX_t>(Val, ELFT::TargetEndianness);
|
|
|
|
// Write an array of hash buckets.
|
|
for (llvm::yaml::Hex32 Val : *Section.HashBuckets)
|
|
CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
|
|
|
|
// Write an array of hash values.
|
|
for (llvm::yaml::Hex32 Val : *Section.HashValues)
|
|
CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
|
|
|
|
SHeader.sh_size = 16 /*Header size*/ +
|
|
Section.BloomFilter->size() * sizeof(typename ELFT::uint) +
|
|
Section.HashBuckets->size() * 4 +
|
|
Section.HashValues->size() * 4;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0;
|
|
if (!PatternSize) {
|
|
CBA.writeZeros(Fill.Size);
|
|
return;
|
|
}
|
|
|
|
// Fill the content with the specified pattern.
|
|
uint64_t Written = 0;
|
|
for (; Written + PatternSize <= Fill.Size; Written += PatternSize)
|
|
CBA.writeAsBinary(*Fill.Pattern);
|
|
CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written);
|
|
}
|
|
|
|
template <class ELFT>
|
|
DenseMap<StringRef, size_t> ELFState<ELFT>::buildSectionHeaderReorderMap() {
|
|
const ELFYAML::SectionHeaderTable &SectionHeaders =
|
|
Doc.getSectionHeaderTable();
|
|
if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders)
|
|
return DenseMap<StringRef, size_t>();
|
|
|
|
DenseMap<StringRef, size_t> Ret;
|
|
size_t SecNdx = 0;
|
|
StringSet<> Seen;
|
|
|
|
auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) {
|
|
if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second)
|
|
reportError("repeated section name: '" + Hdr.Name +
|
|
"' in the section header description");
|
|
Seen.insert(Hdr.Name);
|
|
};
|
|
|
|
if (SectionHeaders.Sections)
|
|
for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections)
|
|
AddSection(Hdr);
|
|
|
|
if (SectionHeaders.Excluded)
|
|
for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
|
|
AddSection(Hdr);
|
|
|
|
for (const ELFYAML::Section *S : Doc.getSections()) {
|
|
// Ignore special first SHT_NULL section.
|
|
if (S == Doc.getSections().front())
|
|
continue;
|
|
if (!Seen.count(S->Name))
|
|
reportError("section '" + S->Name +
|
|
"' should be present in the 'Sections' or 'Excluded' lists");
|
|
Seen.erase(S->Name);
|
|
}
|
|
|
|
for (const auto &It : Seen)
|
|
reportError("section header contains undefined section '" + It.getKey() +
|
|
"'");
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::buildSectionIndex() {
|
|
// A YAML description can have an explicit section header declaration that
|
|
// allows to change the order of section headers.
|
|
DenseMap<StringRef, size_t> ReorderMap = buildSectionHeaderReorderMap();
|
|
|
|
if (HasError)
|
|
return;
|
|
|
|
// Build excluded section headers map.
|
|
std::vector<ELFYAML::Section *> Sections = Doc.getSections();
|
|
const ELFYAML::SectionHeaderTable &SectionHeaders =
|
|
Doc.getSectionHeaderTable();
|
|
if (SectionHeaders.Excluded)
|
|
for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
|
|
if (!ExcludedSectionHeaders.insert(Hdr.Name).second)
|
|
llvm_unreachable("buildSectionIndex() failed");
|
|
|
|
if (SectionHeaders.NoHeaders.getValueOr(false))
|
|
for (const ELFYAML::Section *S : Sections)
|
|
if (!ExcludedSectionHeaders.insert(S->Name).second)
|
|
llvm_unreachable("buildSectionIndex() failed");
|
|
|
|
size_t SecNdx = -1;
|
|
for (const ELFYAML::Section *S : Sections) {
|
|
++SecNdx;
|
|
|
|
size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name);
|
|
if (!SN2I.addName(S->Name, Index))
|
|
llvm_unreachable("buildSectionIndex() failed");
|
|
|
|
if (!ExcludedSectionHeaders.count(S->Name))
|
|
DotShStrtab.add(ELFYAML::dropUniqueSuffix(S->Name));
|
|
}
|
|
|
|
DotShStrtab.finalize();
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() {
|
|
auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) {
|
|
for (size_t I = 0, S = V.size(); I < S; ++I) {
|
|
const ELFYAML::Symbol &Sym = V[I];
|
|
if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1))
|
|
reportError("repeated symbol name: '" + Sym.Name + "'");
|
|
}
|
|
};
|
|
|
|
if (Doc.Symbols)
|
|
Build(*Doc.Symbols, SymN2I);
|
|
if (Doc.DynamicSymbols)
|
|
Build(*Doc.DynamicSymbols, DynSymN2I);
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
|
|
// Add the regular symbol names to .strtab section.
|
|
if (Doc.Symbols)
|
|
for (const ELFYAML::Symbol &Sym : *Doc.Symbols)
|
|
DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name));
|
|
DotStrtab.finalize();
|
|
|
|
// Add the dynamic symbol names to .dynstr section.
|
|
if (Doc.DynamicSymbols)
|
|
for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols)
|
|
DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name));
|
|
|
|
// SHT_GNU_verdef and SHT_GNU_verneed sections might also
|
|
// add strings to .dynstr section.
|
|
for (const ELFYAML::Chunk *Sec : Doc.getSections()) {
|
|
if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
|
|
if (VerNeed->VerneedV) {
|
|
for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) {
|
|
DotDynstr.add(VE.File);
|
|
for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
|
|
DotDynstr.add(Aux.Name);
|
|
}
|
|
}
|
|
} else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
|
|
if (VerDef->Entries)
|
|
for (const ELFYAML::VerdefEntry &E : *VerDef->Entries)
|
|
for (StringRef Name : E.VerNames)
|
|
DotDynstr.add(Name);
|
|
}
|
|
}
|
|
|
|
DotDynstr.finalize();
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
|
|
yaml::ErrorHandler EH, uint64_t MaxSize) {
|
|
ELFState<ELFT> State(Doc, EH);
|
|
if (State.HasError)
|
|
return false;
|
|
|
|
// Finalize .strtab and .dynstr sections. We do that early because want to
|
|
// finalize the string table builders before writing the content of the
|
|
// sections that might want to use them.
|
|
State.finalizeStrings();
|
|
|
|
State.buildSectionIndex();
|
|
State.buildSymbolIndexes();
|
|
|
|
if (State.HasError)
|
|
return false;
|
|
|
|
std::vector<Elf_Phdr> PHeaders;
|
|
State.initProgramHeaders(PHeaders);
|
|
|
|
// XXX: This offset is tightly coupled with the order that we write
|
|
// things to `OS`.
|
|
const size_t SectionContentBeginOffset =
|
|
sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
|
|
// It is quite easy to accidentally create output with yaml2obj that is larger
|
|
// than intended, for example, due to an issue in the YAML description.
|
|
// We limit the maximum allowed output size, but also provide a command line
|
|
// option to change this limitation.
|
|
ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize);
|
|
|
|
std::vector<Elf_Shdr> SHeaders;
|
|
State.initSectionHeaders(SHeaders, CBA);
|
|
|
|
// Now we can decide segment offsets.
|
|
State.setProgramHeaderLayout(PHeaders, SHeaders);
|
|
|
|
bool ReachedLimit = CBA.getOffset() > MaxSize;
|
|
if (Error E = CBA.takeLimitError()) {
|
|
// We report a custom error message instead below.
|
|
consumeError(std::move(E));
|
|
ReachedLimit = true;
|
|
}
|
|
|
|
if (ReachedLimit)
|
|
State.reportError(
|
|
"the desired output size is greater than permitted. Use the "
|
|
"--max-size option to change the limit");
|
|
|
|
if (State.HasError)
|
|
return false;
|
|
|
|
State.writeELFHeader(OS);
|
|
writeArrayData(OS, makeArrayRef(PHeaders));
|
|
|
|
const ELFYAML::SectionHeaderTable &SHT = Doc.getSectionHeaderTable();
|
|
if (!SHT.NoHeaders.getValueOr(false))
|
|
CBA.updateDataAt(*SHT.Offset, SHeaders.data(),
|
|
SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr));
|
|
|
|
CBA.writeBlobToStream(OS);
|
|
return true;
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace yaml {
|
|
|
|
bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH,
|
|
uint64_t MaxSize) {
|
|
bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
|
|
bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
|
|
if (Is64Bit) {
|
|
if (IsLE)
|
|
return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH, MaxSize);
|
|
return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH, MaxSize);
|
|
}
|
|
if (IsLE)
|
|
return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH, MaxSize);
|
|
return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH, MaxSize);
|
|
}
|
|
|
|
} // namespace yaml
|
|
} // namespace llvm
|