llvm-for-llvmta/lib/Transforms/Instrumentation/BoundsChecking.cpp

255 lines
9.3 KiB
C++

//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "bounds-checking"
static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
cl::desc("Use one trap block per function"));
STATISTIC(ChecksAdded, "Bounds checks added");
STATISTIC(ChecksSkipped, "Bounds checks skipped");
STATISTIC(ChecksUnable, "Bounds checks unable to add");
using BuilderTy = IRBuilder<TargetFolder>;
/// Gets the conditions under which memory accessing instructions will overflow.
///
/// \p Ptr is the pointer that will be read/written, and \p InstVal is either
/// the result from the load or the value being stored. It is used to determine
/// the size of memory block that is touched.
///
/// Returns the condition under which the access will overflow.
static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
const DataLayout &DL, TargetLibraryInfo &TLI,
ObjectSizeOffsetEvaluator &ObjSizeEval,
BuilderTy &IRB, ScalarEvolution &SE) {
uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
<< " bytes\n");
SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
if (!ObjSizeEval.bothKnown(SizeOffset)) {
++ChecksUnable;
return nullptr;
}
Value *Size = SizeOffset.first;
Value *Offset = SizeOffset.second;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
Type *IntTy = DL.getIntPtrType(Ptr->getType());
Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
// three checks are required to ensure safety:
// . Offset >= 0 (since the offset is given from the base ptr)
// . Size >= Offset (unsigned)
// . Size - Offset >= NeededSize (unsigned)
//
// optimization: if Size >= 0 (signed), skip 1st check
// FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
Value *ObjSize = IRB.CreateSub(Size, Offset);
Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
? ConstantInt::getFalse(Ptr->getContext())
: IRB.CreateICmpULT(Size, Offset);
Value *Cmp3 = SizeRange.sub(OffsetRange)
.getUnsignedMin()
.uge(NeededSizeRange.getUnsignedMax())
? ConstantInt::getFalse(Ptr->getContext())
: IRB.CreateICmpULT(ObjSize, NeededSizeVal);
Value *Or = IRB.CreateOr(Cmp2, Cmp3);
if ((!SizeCI || SizeCI->getValue().slt(0)) &&
!SizeRange.getSignedMin().isNonNegative()) {
Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
Or = IRB.CreateOr(Cmp1, Or);
}
return Or;
}
/// Adds run-time bounds checks to memory accessing instructions.
///
/// \p Or is the condition that should guard the trap.
///
/// \p GetTrapBB is a callable that returns the trap BB to use on failure.
template <typename GetTrapBBT>
static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) {
// check if the comparison is always false
ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
if (C) {
++ChecksSkipped;
// If non-zero, nothing to do.
if (!C->getZExtValue())
return;
}
++ChecksAdded;
BasicBlock::iterator SplitI = IRB.GetInsertPoint();
BasicBlock *OldBB = SplitI->getParent();
BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
OldBB->getTerminator()->eraseFromParent();
if (C) {
// If we have a constant zero, unconditionally branch.
// FIXME: We should really handle this differently to bypass the splitting
// the block.
BranchInst::Create(GetTrapBB(IRB), OldBB);
return;
}
// Create the conditional branch.
BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
}
static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
ScalarEvolution &SE) {
const DataLayout &DL = F.getParent()->getDataLayout();
ObjectSizeOpts EvalOpts;
EvalOpts.RoundToAlign = true;
ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
// check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
// touching instructions
SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
for (Instruction &I : instructions(F)) {
Value *Or = nullptr;
BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (!LI->isVolatile())
Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
ObjSizeEval, IRB, SE);
} else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
if (!SI->isVolatile())
Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
DL, TLI, ObjSizeEval, IRB, SE);
} else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
if (!AI->isVolatile())
Or =
getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
DL, TLI, ObjSizeEval, IRB, SE);
} else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
if (!AI->isVolatile())
Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(),
DL, TLI, ObjSizeEval, IRB, SE);
}
if (Or)
TrapInfo.push_back(std::make_pair(&I, Or));
}
// Create a trapping basic block on demand using a callback. Depending on
// flags, this will either create a single block for the entire function or
// will create a fresh block every time it is called.
BasicBlock *TrapBB = nullptr;
auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
if (TrapBB && SingleTrapBB)
return TrapBB;
Function *Fn = IRB.GetInsertBlock()->getParent();
// FIXME: This debug location doesn't make a lot of sense in the
// `SingleTrapBB` case.
auto DebugLoc = IRB.getCurrentDebugLocation();
IRBuilder<>::InsertPointGuard Guard(IRB);
TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
IRB.SetInsertPoint(TrapBB);
auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
CallInst *TrapCall = IRB.CreateCall(F, {});
TrapCall->setDoesNotReturn();
TrapCall->setDoesNotThrow();
TrapCall->setDebugLoc(DebugLoc);
IRB.CreateUnreachable();
return TrapBB;
};
// Add the checks.
for (const auto &Entry : TrapInfo) {
Instruction *Inst = Entry.first;
BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
insertBoundsCheck(Entry.second, IRB, GetTrapBB);
}
return !TrapInfo.empty();
}
PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
if (!addBoundsChecking(F, TLI, SE))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
namespace {
struct BoundsCheckingLegacyPass : public FunctionPass {
static char ID;
BoundsCheckingLegacyPass() : FunctionPass(ID) {
initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
return addBoundsChecking(F, TLI, SE);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
};
} // namespace
char BoundsCheckingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
"Run-time bounds checking", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
"Run-time bounds checking", false, false)
FunctionPass *llvm::createBoundsCheckingLegacyPass() {
return new BoundsCheckingLegacyPass();
}