llvm-for-llvmta/test/CodeGen/X86/combine-multiplies.ll

169 lines
6.2 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i386-unknown-linux-gnu -mattr=sse2 | FileCheck %s
; Source file looks something like this:
;
; typedef int AAA[100][100];
;
; void testCombineMultiplies(AAA a,int lll)
; {
; int LOC = lll + 5;
;
; a[LOC][LOC] = 11;
;
; a[LOC][20] = 22;
; a[LOC+20][20] = 33;
; }
;
; We want to make sure we don't generate 2 multiply instructions,
; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
; should combine the instructions in such a way to avoid the extra
; multiply.
;
; Output looks roughly like this:
;
; movl 8(%esp), %eax
; movl 12(%esp), %ecx
; imull $400, %ecx, %edx # imm = 0x190
; leal (%edx,%eax), %esi
; movl $11, 2020(%esi,%ecx,4)
; movl $22, 2080(%edx,%eax)
; movl $33, 10080(%edx,%eax)
; Function Attrs: nounwind
define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) nounwind {
; CHECK-LABEL: testCombineMultiplies:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushl %esi
; CHECK-NEXT: movl {{[0-9]+}}(%esp), %eax
; CHECK-NEXT: movl {{[0-9]+}}(%esp), %ecx
; CHECK-NEXT: imull $400, %ecx, %edx # imm = 0x190
; CHECK-NEXT: leal (%edx,%eax), %esi
; CHECK-NEXT: movl $11, 2020(%esi,%ecx,4)
; CHECK-NEXT: movl $22, 2080(%edx,%eax)
; CHECK-NEXT: movl $33, 10080(%edx,%eax)
; CHECK-NEXT: popl %esi
; CHECK-NEXT: retl
entry:
%add = add nsw i32 %lll, 5
%arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
store i32 11, i32* %arrayidx1, align 4
%arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
store i32 22, i32* %arrayidx3, align 4
%add4 = add nsw i32 %lll, 25
%arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
store i32 33, i32* %arrayidx6, align 4
ret void
}
; Test for the same optimization on vector multiplies.
;
; Source looks something like this:
;
; typedef int v4int __attribute__((__vector_size__(16)));
;
; v4int x;
; v4int v2, v3;
; void testCombineMultiplies_splat(v4int v1) {
; v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
; v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
; x = (v1 + (v4int){ 11, 11, 11, 11 });
; }
;
; Output looks something like this:
;
; testCombineMultiplies_splat: # @testCombineMultiplies_splat
; # %bb.0: # %entry
; movdqa .LCPI1_0, %xmm1 # xmm1 = [11,11,11,11]
; paddd %xmm0, %xmm1
; movdqa .LCPI1_1, %xmm2 # xmm2 = [22,22,22,22]
; pshufd $245, %xmm0, %xmm3 # xmm3 = xmm0[1,1,3,3]
; pmuludq %xmm2, %xmm0
; pshufd $232, %xmm0, %xmm0 # xmm0 = xmm0[0,2,2,3]
; pmuludq %xmm2, %xmm3
; pshufd $232, %xmm3, %xmm2 # xmm2 = xmm3[0,2,2,3]
; punpckldq %xmm2, %xmm0 # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; movdqa .LCPI1_2, %xmm2 # xmm2 = [242,242,242,242]
; paddd %xmm0, %xmm2
; paddd .LCPI1_3, %xmm0
; movdqa %xmm2, v2
; movdqa %xmm0, v3
; movdqa %xmm1, x
; retl
;
; Again, we want to make sure we don't generate two different multiplies.
; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
; pmuludq instructions), followed by two adds. Without this optimization, we'd
; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
@v2 = common global <4 x i32> zeroinitializer, align 16
@v3 = common global <4 x i32> zeroinitializer, align 16
@x = common global <4 x i32> zeroinitializer, align 16
; Function Attrs: nounwind
define void @testCombineMultiplies_splat(<4 x i32> %v1) nounwind {
; CHECK-LABEL: testCombineMultiplies_splat:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movdqa {{.*#+}} xmm1 = [11,11,11,11]
; CHECK-NEXT: paddd %xmm0, %xmm1
; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [22,22,22,22]
; CHECK-NEXT: pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3]
; CHECK-NEXT: pmuludq %xmm2, %xmm0
; CHECK-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; CHECK-NEXT: pmuludq %xmm2, %xmm3
; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm3[0,2,2,3]
; CHECK-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [242,242,242,242]
; CHECK-NEXT: paddd %xmm0, %xmm2
; CHECK-NEXT: paddd {{\.LCPI.*}}, %xmm0
; CHECK-NEXT: movdqa %xmm2, v2
; CHECK-NEXT: movdqa %xmm0, v3
; CHECK-NEXT: movdqa %xmm1, x
; CHECK-NEXT: retl
entry:
%add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
%mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
%add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
%mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
store <4 x i32> %mul1, <4 x i32>* @v2, align 16
store <4 x i32> %mul2, <4 x i32>* @v3, align 16
store <4 x i32> %add1, <4 x i32>* @x, align 16
ret void
}
; Finally, check the non-splatted vector case. This is very similar
; to the previous test case, except for the vector values.
; Function Attrs: nounwind
define void @testCombineMultiplies_non_splat(<4 x i32> %v1) nounwind {
; CHECK-LABEL: testCombineMultiplies_non_splat:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movdqa {{.*#+}} xmm1 = [11,22,33,44]
; CHECK-NEXT: paddd %xmm0, %xmm1
; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [22,33,44,55]
; CHECK-NEXT: pshufd {{.*#+}} xmm3 = xmm0[1,1,3,3]
; CHECK-NEXT: pmuludq %xmm2, %xmm0
; CHECK-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm2[1,1,3,3]
; CHECK-NEXT: pmuludq %xmm3, %xmm2
; CHECK-NEXT: pshufd {{.*#+}} xmm2 = xmm2[0,2,2,3]
; CHECK-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; CHECK-NEXT: movdqa {{.*#+}} xmm2 = [242,726,1452,2420]
; CHECK-NEXT: paddd %xmm0, %xmm2
; CHECK-NEXT: paddd {{\.LCPI.*}}, %xmm0
; CHECK-NEXT: movdqa %xmm2, v2
; CHECK-NEXT: movdqa %xmm0, v3
; CHECK-NEXT: movdqa %xmm1, x
; CHECK-NEXT: retl
entry:
%add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
%mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
%add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
%mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
store <4 x i32> %mul1, <4 x i32>* @v2, align 16
store <4 x i32> %mul2, <4 x i32>* @v3, align 16
store <4 x i32> %add1, <4 x i32>* @x, align 16
ret void
}