llvm-for-llvmta/test/Transforms/InstCombine/icmp-shl-nsw.ll

357 lines
8.3 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
; If the (shl x, C) preserved the sign and this is a sign test,
; compare the LHS operand instead
define i1 @icmp_shl_nsw_sgt(i32 %x) {
; CHECK-LABEL: @icmp_shl_nsw_sgt(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i32 %x, 21
%cmp = icmp sgt i32 %shl, 0
ret i1 %cmp
}
define i1 @icmp_shl_nsw_sge0(i32 %x) {
; CHECK-LABEL: @icmp_shl_nsw_sge0(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i32 %x, 21
%cmp = icmp sge i32 %shl, 0
ret i1 %cmp
}
define i1 @icmp_shl_nsw_sge1(i32 %x) {
; CHECK-LABEL: @icmp_shl_nsw_sge1(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i32 %x, 21
%cmp = icmp sge i32 %shl, 1
ret i1 %cmp
}
define <2 x i1> @icmp_shl_nsw_sge1_vec(<2 x i32> %x) {
; CHECK-LABEL: @icmp_shl_nsw_sge1_vec(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt <2 x i32> %x, zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%shl = shl nsw <2 x i32> %x, <i32 21, i32 21>
%cmp = icmp sge <2 x i32> %shl, <i32 1, i32 1>
ret <2 x i1> %cmp
}
; Checks for icmp (eq|ne) (shl x, C), 0
define i1 @icmp_shl_nsw_eq(i32 %x) {
; CHECK-LABEL: @icmp_shl_nsw_eq(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%mul = shl nsw i32 %x, 5
%cmp = icmp eq i32 %mul, 0
ret i1 %cmp
}
define <2 x i1> @icmp_shl_nsw_eq_vec(<2 x i32> %x) {
; CHECK-LABEL: @icmp_shl_nsw_eq_vec(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq <2 x i32> %x, zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%mul = shl nsw <2 x i32> %x, <i32 5, i32 5>
%cmp = icmp eq <2 x i32> %mul, zeroinitializer
ret <2 x i1> %cmp
}
; icmp sgt with shl nsw with a constant compare operand and constant
; shift amount can always be reduced to icmp sgt alone.
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sgt1(i8 %x) {
; CHECK-LABEL: @icmp_sgt1(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i8 %x, -64
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, -128
ret i1 %cmp
}
define i1 @icmp_sgt2(i8 %x) {
; CHECK-LABEL: @icmp_sgt2(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, -64
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, -127
ret i1 %cmp
}
define i1 @icmp_sgt3(i8 %x) {
; CHECK-LABEL: @icmp_sgt3(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, -8
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, -16
ret i1 %cmp
}
define i1 @icmp_sgt4(i8 %x) {
; CHECK-LABEL: @icmp_sgt4(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, -2
ret i1 %cmp
}
; x >s -1 is a sign bit test.
; x >s 0 is a sign bit test.
define i1 @icmp_sgt5(i8 %x) {
; CHECK-LABEL: @icmp_sgt5(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, 1
ret i1 %cmp
}
define i1 @icmp_sgt6(i8 %x) {
; CHECK-LABEL: @icmp_sgt6(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, 8
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, 16
ret i1 %cmp
}
define i1 @icmp_sgt7(i8 %x) {
; CHECK-LABEL: @icmp_sgt7(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, 62
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, 124
ret i1 %cmp
}
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sgt8(i8 %x) {
; CHECK-LABEL: @icmp_sgt8(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 %x, 63
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sgt i8 %shl, 125
ret i1 %cmp
}
; Compares with 126 and 127 are recognized as always false.
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sgt9(i8 %x) {
; CHECK-LABEL: @icmp_sgt9(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i8 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sgt i8 %shl, -128
ret i1 %cmp
}
define i1 @icmp_sgt10(i8 %x) {
; CHECK-LABEL: @icmp_sgt10(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sgt i8 %shl, -127
ret i1 %cmp
}
define i1 @icmp_sgt11(i8 %x) {
; CHECK-LABEL: @icmp_sgt11(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i8 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sgt i8 %shl, -2
ret i1 %cmp
}
; Splat vector version should fold the same way.
define <2 x i1> @icmp_sgt11_vec(<2 x i8> %x) {
; CHECK-LABEL: @icmp_sgt11_vec(
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt <2 x i8> %x, <i8 -1, i8 -1>
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%shl = shl nsw <2 x i8> %x, <i8 7, i8 7>
%cmp = icmp sgt <2 x i8> %shl, <i8 -2, i8 -2>
ret <2 x i1> %cmp
}
; Known bits analysis returns false for compares with >=0.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Repeat the shl nsw + sgt tests with predicate changed to 'sle'.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sle1(i8 %x) {
; CHECK-LABEL: @icmp_sle1(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 %x, -64
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, -128
ret i1 %cmp
}
define i1 @icmp_sle2(i8 %x) {
; CHECK-LABEL: @icmp_sle2(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, -63
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, -127
ret i1 %cmp
}
define i1 @icmp_sle3(i8 %x) {
; CHECK-LABEL: @icmp_sle3(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, -7
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, -16
ret i1 %cmp
}
define i1 @icmp_sle4(i8 %x) {
; CHECK-LABEL: @icmp_sle4(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, -2
ret i1 %cmp
}
; x <=s -1 is a sign bit test.
; x <=s 0 is a sign bit test.
define i1 @icmp_sle5(i8 %x) {
; CHECK-LABEL: @icmp_sle5(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, 1
ret i1 %cmp
}
define i1 @icmp_sle6(i8 %x) {
; CHECK-LABEL: @icmp_sle6(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 9
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, 16
ret i1 %cmp
}
define i1 @icmp_sle7(i8 %x) {
; CHECK-LABEL: @icmp_sle7(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 63
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, 124
ret i1 %cmp
}
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sle8(i8 %x) {
; CHECK-LABEL: @icmp_sle8(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i8 %x, 63
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp sle i8 %shl, 125
ret i1 %cmp
}
; Compares with 126 and 127 are recognized as always true.
; Known bits analysis turns this into an equality predicate.
define i1 @icmp_sle9(i8 %x) {
; CHECK-LABEL: @icmp_sle9(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 %x, -1
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sle i8 %shl, -128
ret i1 %cmp
}
define i1 @icmp_sle10(i8 %x) {
; CHECK-LABEL: @icmp_sle10(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sle i8 %shl, -127
ret i1 %cmp
}
define i1 @icmp_sle11(i8 %x) {
; CHECK-LABEL: @icmp_sle11(
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 %x, 0
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 7
%cmp = icmp sle i8 %shl, -2
ret i1 %cmp
}
; Some of the earlier sgt/sle tests are transformed to eq/ne, but try a couple
; of those explicitly, so we know no intermediate transforms are necessary.
define i1 @icmp_eq1(i8 %x) {
; CHECK-LABEL: @icmp_eq1(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 %x, 6
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 1
%cmp = icmp eq i8 %shl, 12
ret i1 %cmp
}
define i1 @icmp_ne1(i8 %x) {
; CHECK-LABEL: @icmp_ne1(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i8 %x, -2
; CHECK-NEXT: ret i1 [[CMP]]
;
%shl = shl nsw i8 %x, 6
%cmp = icmp ne i8 %shl, -128
ret i1 %cmp
}