llvm-for-llvmta/test/Transforms/SimplifyCFG/X86/empty-cleanuppad.ll

520 lines
16 KiB
LLVM

; RUN: opt < %s -simplifycfg -simplifycfg-require-and-preserve-domtree=1 -S -hoist-common-insts=true | FileCheck %s
; ModuleID = 'cppeh-simplify.cpp'
target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc18.0.0"
; This case arises when two objects with empty destructors are cleaned up.
;
; void f1() {
; S a;
; S b;
; g();
; }
;
; In this case, both cleanup pads can be eliminated and the invoke can be
; converted to a call.
;
; CHECK: define void @f1()
; CHECK: entry:
; CHECK: call void @g()
; CHECK: ret void
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f1() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g() to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
ret void
ehcleanup: ; preds = %entry
%0 = cleanuppad within none []
cleanupret from %0 unwind label %ehcleanup.1
ehcleanup.1: ; preds = %ehcleanup
%1 = cleanuppad within none []
cleanupret from %1 unwind to caller
}
; This case arises when an object with an empty destructor must be cleaned up
; outside of a try-block and an object with a non-empty destructor must be
; cleaned up within the try-block.
;
; void f2() {
; S a;
; try {
; S2 b;
; g();
; } catch (...) {}
; }
;
; In this case, the outermost cleanup pad can be eliminated and the catch block
; should unwind to the caller (that is, exception handling continues with the
; parent frame of the caller).
;
; CHECK: define void @f2()
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: ehcleanup:
; CHECK: cleanuppad within none
; CHECK: call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %b)
; CHECK: cleanupret from %0 unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK: catchswitch within none [label %catch] unwind to caller
; CHECK: catch:
; CHECK: catchpad
; CHECK: catchret
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f2() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
%b = alloca %struct.S2, align 1
invoke void @g() to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
br label %try.cont
ehcleanup: ; preds = %entry
%0 = cleanuppad within none []
call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %b)
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup
%cs1 = catchswitch within none [label %catch] unwind label %ehcleanup.1
catch: ; preds = %catch.dispatch
%1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %1 to label %catchret.dest
catchret.dest: ; preds = %catch
br label %try.cont
try.cont: ; preds = %catchret.dest, %invoke.cont
ret void
ehcleanup.1:
%2 = cleanuppad within none []
cleanupret from %2 unwind to caller
}
; This case arises when an object with a non-empty destructor must be cleaned up
; outside of a try-block and an object with an empty destructor must be cleaned
; within the try-block.
;
; void f3() {
; S2 a;
; try {
; S b;
; g();
; } catch (...) {}
; }
;
; In this case the inner cleanup pad should be eliminated and the invoke of g()
; should unwind directly to the catchpad.
;
; CHECK-LABEL: define void @f3()
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: to label %try.cont unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK-NEXT: catchswitch within none [label %catch] unwind label %ehcleanup.1
; CHECK: catch:
; CHECK: catchpad within %cs1 [i8* null, i32 64, i8* null]
; CHECK: catchret
; CHECK: ehcleanup.1:
; CHECK: cleanuppad
; CHECK: call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %a)
; CHECK: cleanupret from %cp3 unwind to caller
; CHECK: }
;
define void @f3() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
%a = alloca %struct.S2, align 1
invoke void @g() to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
br label %try.cont
ehcleanup: ; preds = %entry
%0 = cleanuppad within none []
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup
%cs1 = catchswitch within none [label %catch] unwind label %ehcleanup.1
catch: ; preds = %catch.dispatch
%cp2 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %cp2 to label %catchret.dest
catchret.dest: ; preds = %catch
br label %try.cont
try.cont: ; preds = %catchret.dest, %invoke.cont
ret void
ehcleanup.1:
%cp3 = cleanuppad within none []
call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %a)
cleanupret from %cp3 unwind to caller
}
; This case arises when an object with an empty destructor may require cleanup
; from either inside or outside of a try-block.
;
; void f4() {
; S a;
; g();
; try {
; g();
; } catch (...) {}
; }
;
; In this case, the cleanuppad should be eliminated, the invoke outside of the
; catch block should be converted to a call (that is, that is, exception
; handling continues with the parent frame of the caller).)
;
; CHECK-LABEL: define void @f4()
; CHECK: entry:
; CHECK: call void @g
; Note: The cleanuppad simplification will insert an unconditional branch here
; but it will be eliminated, placing the following invoke in the entry BB.
; CHECK: invoke void @g()
; CHECK: to label %try.cont unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK: catchswitch within none [label %catch] unwind to caller
; CHECK: catch:
; CHECK: catchpad
; CHECK: catchret
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f4() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g()
to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
invoke void @g()
to label %try.cont unwind label %catch.dispatch
catch.dispatch: ; preds = %invoke.cont
%cs1 = catchswitch within none [label %catch] unwind label %ehcleanup
catch: ; preds = %catch.dispatch
%0 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %0 to label %try.cont
try.cont: ; preds = %catch, %invoke.cont
ret void
ehcleanup:
%cp2 = cleanuppad within none []
cleanupret from %cp2 unwind to caller
}
; This case tests simplification of an otherwise empty cleanup pad that contains
; a PHI node.
;
; int f6() {
; int state = 1;
; try {
; S a;
; g();
; state = 2;
; g();
; } catch (...) {
; return state;
; }
; return 0;
; }
;
; In this case, the cleanup pad should be eliminated and the PHI node in the
; cleanup pad should be sunk into the catch dispatch block.
;
; CHECK-LABEL: define i32 @f6()
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: invoke.cont:
; CHECK: invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT: cleanuppad
; CHECK: catch.dispatch:
; CHECK: %state.0 = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
; CHECK: }
define i32 @f6() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g()
to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
invoke void @g()
to label %return unwind label %ehcleanup
ehcleanup: ; preds = %invoke.cont, %entry
%state.0 = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
%0 = cleanuppad within none []
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup
%cs1 = catchswitch within none [label %catch] unwind to caller
catch: ; preds = %catch.dispatch
%1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %1 to label %return
return: ; preds = %invoke.cont, %catch
%retval.0 = phi i32 [ %state.0, %catch ], [ 0, %invoke.cont ]
ret i32 %retval.0
}
; This case tests another variation of simplification of an otherwise empty
; cleanup pad that contains a PHI node.
;
; int f7() {
; int state = 1;
; try {
; g();
; state = 2;
; S a;
; g();
; state = 3;
; g();
; } catch (...) {
; return state;
; }
; return 0;
; }
;
; In this case, the cleanup pad should be eliminated and the PHI node in the
; cleanup pad should be merged with the PHI node in the catch dispatch block.
;
; CHECK-LABEL: define i32 @f7()
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: invoke.cont:
; CHECK: invoke void @g()
; CHECK: invoke.cont.1:
; CHECK: invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT: cleanuppad
; CHECK: catch.dispatch:
; CHECK: %state.1 = phi i32 [ 1, %entry ], [ 3, %invoke.cont.1 ], [ 2, %invoke.cont ]
; CHECK: }
define i32 @f7() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g()
to label %invoke.cont unwind label %catch.dispatch
invoke.cont: ; preds = %entry
invoke void @g()
to label %invoke.cont.1 unwind label %ehcleanup
invoke.cont.1: ; preds = %invoke.cont
invoke void @g()
to label %return unwind label %ehcleanup
ehcleanup: ; preds = %invoke.cont.1, %invoke.cont
%state.0 = phi i32 [ 3, %invoke.cont.1 ], [ 2, %invoke.cont ]
%0 = cleanuppad within none []
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup, %entry
%state.1 = phi i32 [ %state.0, %ehcleanup ], [ 1, %entry ]
%cs1 = catchswitch within none [label %catch] unwind to caller
catch: ; preds = %catch.dispatch
%1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %1 to label %return
return: ; preds = %invoke.cont.1, %catch
%retval.0 = phi i32 [ %state.1, %catch ], [ 0, %invoke.cont.1 ]
ret i32 %retval.0
}
; This case tests a scenario where an empty cleanup pad is not dominated by all
; of the predecessors of its successor, but the successor references a PHI node
; in the empty cleanup pad.
;
; Conceptually, the case being modeled is something like this:
;
; int f8() {
; int x = 1;
; try {
; S a;
; g();
; x = 2;
; retry:
; g();
; return
; } catch (...) {
; use_x(x);
; }
; goto retry;
; }
;
; While that C++ syntax isn't legal, the IR below is.
;
; In this case, the PHI node that is sunk from ehcleanup to catch.dispatch
; should have an incoming value entry for path from 'foo' that references the
; PHI node itself.
;
; CHECK-LABEL: define void @f8()
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: invoke.cont:
; CHECK: invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT: cleanuppad
; CHECK: catch.dispatch:
; CHECK: %x = phi i32 [ 2, %invoke.cont ], [ 1, %entry ], [ %x, %catch.cont ]
; CHECK: }
define void @f8() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g()
to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
invoke void @g()
to label %return unwind label %ehcleanup
ehcleanup: ; preds = %invoke.cont, %entry
%x = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
%0 = cleanuppad within none []
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup, %catch.cont
%cs1 = catchswitch within none [label %catch] unwind to caller
catch: ; preds = %catch.dispatch
%1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
call void @use_x(i32 %x)
catchret from %1 to label %catch.cont
catch.cont: ; preds = %catch
invoke void @g()
to label %return unwind label %catch.dispatch
return: ; preds = %invoke.cont, %catch.cont
ret void
}
; CHECK-LABEL: define i32 @f9()
; CHECK: entry:
; CHECK: invoke void @"\01??1S2@@QEAA@XZ"(
; CHECK-NOT: cleanuppad
; CHECK: catch.dispatch:
; CHECK: }
define i32 @f9() personality i32 (...)* @__CxxFrameHandler3 {
entry:
%s = alloca i8, align 1
call void @llvm.lifetime.start.p0i8(i64 1, i8* nonnull %s)
%bc = bitcast i8* %s to %struct.S2*
invoke void @"\01??1S2@@QEAA@XZ"(%struct.S2* %bc)
to label %try.cont unwind label %ehcleanup
ehcleanup:
%cleanup.pad = cleanuppad within none []
call void @llvm.lifetime.end.p0i8(i64 1, i8* nonnull %s)
cleanupret from %cleanup.pad unwind label %catch.dispatch
catch.dispatch:
%catch.switch = catchswitch within none [label %catch] unwind to caller
catch:
%catch.pad = catchpad within %catch.switch [i8* null, i32 0, i8* null]
catchret from %catch.pad to label %try.cont
try.cont:
ret i32 0
}
; CHECK-LABEL: define void @f10(
define void @f10(i32 %V) personality i32 (...)* @__CxxFrameHandler3 {
entry:
invoke void @g()
to label %unreachable unwind label %cleanup
; CHECK: call void @g()
; CHECK-NEXT: unreachable
unreachable:
unreachable
cleanup:
%cp = cleanuppad within none []
switch i32 %V, label %cleanupret1 [
i32 0, label %cleanupret2
]
cleanupret1:
cleanupret from %cp unwind to caller
cleanupret2:
cleanupret from %cp unwind to caller
}
; CHECK-LABEL: define void @f11(
; This case tests the handling of an empty cleanup pad that
; contains a lifetime_end intrinsic and does not dominate its
; successor.
; CHECK: entry:
; CHECK: invoke void @g()
; CHECK: invoke.cont:
; CHECK: invoke void @g()
; CHECK: invoke.cont2:
; CHECK: invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT: phi
; CHECK-NOT: cleanuppad
; CHECK-NOT: lifetime.end
; CHECK: catch.dispatch:
; CHECK: catchswitch
; CHECK: catch:
; CHECK: catchret
; CHECK: }
define void @f11() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
invoke void @g()
to label %invoke.cont unwind label %ehcleanup
invoke.cont: ; preds = %entry
invoke void @g()
to label %invoke.cont2 unwind label %ehcleanup
invoke.cont2: ; preds = %invoke.cont
invoke void @g()
to label %return unwind label %catch.dispatch
ehcleanup: ; preds = %invoke.cont, %entry
%x = phi i8* [ undef, %invoke.cont ], [ undef, %entry ]
%0 = cleanuppad within none []
call void @llvm.lifetime.end.p0i8(i64 16, i8* nonnull %x)
cleanupret from %0 unwind label %catch.dispatch
catch.dispatch: ; preds = %ehcleanup, %invoke.cont
%cs1 = catchswitch within none [label %catch] unwind to caller
catch: ; preds = %catch.dispatch
%1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
catchret from %1 to label %return
return: ; preds = %invoke.cont, %catch.cont
ret void
}
%struct.S = type { i8 }
%struct.S2 = type { i8 }
declare void @"\01??1S2@@QEAA@XZ"(%struct.S2*)
declare void @g()
declare void @use_x(i32 %x)
declare i32 @__CxxFrameHandler3(...)
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)