llvm-for-llvmta/unittests/AsmParser/AsmParserTest.cpp

418 lines
13 KiB
C++

//===- llvm/unittest/AsmParser/AsmParserTest.cpp - asm parser unittests ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(AsmParserTest, NullTerminatedInput) {
LLVMContext Ctx;
StringRef Source = "; Empty module \n";
SMDiagnostic Error;
auto Mod = parseAssemblyString(Source, Error, Ctx);
EXPECT_TRUE(Mod != nullptr);
EXPECT_TRUE(Error.getMessage().empty());
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(AsmParserTest, NonNullTerminatedInput) {
LLVMContext Ctx;
StringRef Source = "; Empty module \n\1\2";
SMDiagnostic Error;
std::unique_ptr<Module> Mod;
EXPECT_DEATH(Mod = parseAssemblyString(Source.substr(0, Source.size() - 2),
Error, Ctx),
"Buffer is not null terminated!");
}
#endif
#endif
TEST(AsmParserTest, SlotMappingTest) {
LLVMContext Ctx;
StringRef Source = "@0 = global i32 0\n !0 = !{}\n !42 = !{i32 42}";
SMDiagnostic Error;
SlotMapping Mapping;
auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping);
EXPECT_TRUE(Mod != nullptr);
EXPECT_TRUE(Error.getMessage().empty());
ASSERT_EQ(Mapping.GlobalValues.size(), 1u);
EXPECT_TRUE(isa<GlobalVariable>(Mapping.GlobalValues[0]));
EXPECT_EQ(Mapping.MetadataNodes.size(), 2u);
EXPECT_EQ(Mapping.MetadataNodes.count(0), 1u);
EXPECT_EQ(Mapping.MetadataNodes.count(42), 1u);
EXPECT_EQ(Mapping.MetadataNodes.count(1), 0u);
}
TEST(AsmParserTest, TypeAndConstantValueParsing) {
LLVMContext Ctx;
SMDiagnostic Error;
StringRef Source = "define void @test() {\n entry:\n ret void\n}";
auto Mod = parseAssemblyString(Source, Error, Ctx);
ASSERT_TRUE(Mod != nullptr);
auto &M = *Mod;
const Value *V;
V = parseConstantValue("double 3.5", Error, M);
ASSERT_TRUE(V);
EXPECT_TRUE(V->getType()->isDoubleTy());
ASSERT_TRUE(isa<ConstantFP>(V));
EXPECT_TRUE(cast<ConstantFP>(V)->isExactlyValue(3.5));
V = parseConstantValue("i32 42", Error, M);
ASSERT_TRUE(V);
EXPECT_TRUE(V->getType()->isIntegerTy());
ASSERT_TRUE(isa<ConstantInt>(V));
EXPECT_TRUE(cast<ConstantInt>(V)->equalsInt(42));
V = parseConstantValue("<4 x i32> <i32 0, i32 1, i32 2, i32 3>", Error, M);
ASSERT_TRUE(V);
EXPECT_TRUE(V->getType()->isVectorTy());
ASSERT_TRUE(isa<ConstantDataVector>(V));
V = parseConstantValue("i32 add (i32 1, i32 2)", Error, M);
ASSERT_TRUE(V);
ASSERT_TRUE(isa<ConstantInt>(V));
V = parseConstantValue("i8* blockaddress(@test, %entry)", Error, M);
ASSERT_TRUE(V);
ASSERT_TRUE(isa<BlockAddress>(V));
V = parseConstantValue("i8** undef", Error, M);
ASSERT_TRUE(V);
ASSERT_TRUE(isa<UndefValue>(V));
EXPECT_FALSE(parseConstantValue("duble 3.25", Error, M));
EXPECT_EQ(Error.getMessage(), "expected type");
EXPECT_FALSE(parseConstantValue("i32 3.25", Error, M));
EXPECT_EQ(Error.getMessage(), "floating point constant invalid for type");
EXPECT_FALSE(parseConstantValue("i32* @foo", Error, M));
EXPECT_EQ(Error.getMessage(), "expected a constant value");
EXPECT_FALSE(parseConstantValue("i32 3, ", Error, M));
EXPECT_EQ(Error.getMessage(), "expected end of string");
}
TEST(AsmParserTest, TypeAndConstantValueWithSlotMappingParsing) {
LLVMContext Ctx;
SMDiagnostic Error;
StringRef Source =
"%st = type { i32, i32 }\n"
"@v = common global [50 x %st] zeroinitializer, align 16\n"
"%0 = type { i32, i32, i32, i32 }\n"
"@g = common global [50 x %0] zeroinitializer, align 16\n"
"define void @marker4(i64 %d) {\n"
"entry:\n"
" %conv = trunc i64 %d to i32\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n"
" ret void\n"
"}";
SlotMapping Mapping;
auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping);
ASSERT_TRUE(Mod != nullptr);
auto &M = *Mod;
const Value *V;
V = parseConstantValue("i32* getelementptr inbounds ([50 x %st], [50 x %st]* "
"@v, i64 0, i64 0, i32 0)",
Error, M, &Mapping);
ASSERT_TRUE(V);
ASSERT_TRUE(isa<ConstantExpr>(V));
V = parseConstantValue("i32* getelementptr inbounds ([50 x %0], [50 x %0]* "
"@g, i64 0, i64 0, i32 0)",
Error, M, &Mapping);
ASSERT_TRUE(V);
ASSERT_TRUE(isa<ConstantExpr>(V));
}
TEST(AsmParserTest, TypeWithSlotMappingParsing) {
LLVMContext Ctx;
SMDiagnostic Error;
StringRef Source =
"%st = type { i32, i32 }\n"
"@v = common global [50 x %st] zeroinitializer, align 16\n"
"%0 = type { i32, i32, i32, i32 }\n"
"@g = common global [50 x %0] zeroinitializer, align 16\n"
"define void @marker4(i64 %d) {\n"
"entry:\n"
" %conv = trunc i64 %d to i32\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n"
" ret void\n"
"}";
SlotMapping Mapping;
auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping);
ASSERT_TRUE(Mod != nullptr);
auto &M = *Mod;
// Check we properly parse integer types.
Type *Ty;
Ty = parseType("i32", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Check we properly parse integer types with exotic size.
Ty = parseType("i13", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 13);
// Check we properly parse floating point types.
Ty = parseType("float", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isFloatTy());
Ty = parseType("double", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isDoubleTy());
// Check we properly parse struct types.
// Named struct.
Ty = parseType("%st", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
// Check the details of the struct.
StructType *ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->getNumElements() == 2);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Ty = ST->getElementType(i);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
}
// Anonymous struct.
Ty = parseType("%0", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
// Check the details of the struct.
ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->getNumElements() == 4);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Ty = ST->getElementType(i);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
}
// Check we properly parse vector types.
Ty = parseType("<5 x i32>", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isVectorTy());
// Check the details of the vector.
auto *VT = cast<FixedVectorType>(Ty);
ASSERT_TRUE(VT->getNumElements() == 5);
ASSERT_TRUE(VT->getPrimitiveSizeInBits().getFixedSize() == 160);
Ty = VT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Opaque struct.
Ty = parseType("%opaque", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->isOpaque());
// Check we properly parse pointer types.
// One indirection.
Ty = parseType("i32*", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isPointerTy());
PointerType *PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Two indirections.
Ty = parseType("i32**", Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isPointerTy());
PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isPointerTy());
PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Check that we reject types with garbage.
Ty = parseType("i32 garbage", Error, M, &Mapping);
ASSERT_TRUE(!Ty);
}
TEST(AsmParserTest, TypeAtBeginningWithSlotMappingParsing) {
LLVMContext Ctx;
SMDiagnostic Error;
StringRef Source =
"%st = type { i32, i32 }\n"
"@v = common global [50 x %st] zeroinitializer, align 16\n"
"%0 = type { i32, i32, i32, i32 }\n"
"@g = common global [50 x %0] zeroinitializer, align 16\n"
"define void @marker4(i64 %d) {\n"
"entry:\n"
" %conv = trunc i64 %d to i32\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %st], [50 x %st]* @v, i64 0, i64 0, i32 0), align 16\n"
" store i32 %conv, i32* getelementptr inbounds "
" ([50 x %0], [50 x %0]* @g, i64 0, i64 0, i32 0), align 16\n"
" ret void\n"
"}";
SlotMapping Mapping;
auto Mod = parseAssemblyString(Source, Error, Ctx, &Mapping);
ASSERT_TRUE(Mod != nullptr);
auto &M = *Mod;
unsigned Read;
// Check we properly parse integer types.
Type *Ty;
Ty = parseTypeAtBeginning("i32", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
ASSERT_TRUE(Read == 3);
// Check we properly parse integer types with exotic size.
Ty = parseTypeAtBeginning("i13", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 13);
ASSERT_TRUE(Read == 3);
// Check we properly parse floating point types.
Ty = parseTypeAtBeginning("float", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isFloatTy());
ASSERT_TRUE(Read == 5);
Ty = parseTypeAtBeginning("double", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isDoubleTy());
ASSERT_TRUE(Read == 6);
// Check we properly parse struct types.
// Named struct.
Ty = parseTypeAtBeginning("%st", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
ASSERT_TRUE(Read == 3);
// Check the details of the struct.
StructType *ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->getNumElements() == 2);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Ty = ST->getElementType(i);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
}
// Anonymous struct.
Ty = parseTypeAtBeginning("%0", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
ASSERT_TRUE(Read == 2);
// Check the details of the struct.
ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->getNumElements() == 4);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Ty = ST->getElementType(i);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
}
// Check we properly parse vector types.
Ty = parseTypeAtBeginning("<5 x i32>", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isVectorTy());
ASSERT_TRUE(Read == 9);
// Check the details of the vector.
auto *VT = cast<FixedVectorType>(Ty);
ASSERT_TRUE(VT->getNumElements() == 5);
ASSERT_TRUE(VT->getPrimitiveSizeInBits().getFixedSize() == 160);
Ty = VT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Opaque struct.
Ty = parseTypeAtBeginning("%opaque", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isStructTy());
ASSERT_TRUE(Read == 7);
ST = cast<StructType>(Ty);
ASSERT_TRUE(ST->isOpaque());
// Check we properly parse pointer types.
// One indirection.
Ty = parseTypeAtBeginning("i32*", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isPointerTy());
ASSERT_TRUE(Read == 4);
PointerType *PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Two indirections.
Ty = parseTypeAtBeginning("i32**", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isPointerTy());
ASSERT_TRUE(Read == 5);
PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isPointerTy());
PT = cast<PointerType>(Ty);
Ty = PT->getElementType();
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// Check that we reject types with garbage.
Ty = parseTypeAtBeginning("i32 garbage", Read, Error, M, &Mapping);
ASSERT_TRUE(Ty);
ASSERT_TRUE(Ty->isIntegerTy());
ASSERT_TRUE(Ty->getPrimitiveSizeInBits() == 32);
// We go to the next token, i.e., we read "i32" + ' '.
ASSERT_TRUE(Read == 4);
}
} // end anonymous namespace