llvm-for-llvmta/tools/clang/lib/StaticAnalyzer/Checkers/UninitializedObject/UninitializedObjectChecker.cpp

631 lines
20 KiB
C++

//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a checker that reports uninitialized fields in objects
// created after a constructor call.
//
// To read about command line options and how the checker works, refer to the
// top of the file and inline comments in UninitializedObject.h.
//
// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
// complexity of this file.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "UninitializedObject.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
using namespace clang;
using namespace clang::ento;
using namespace clang::ast_matchers;
/// We'll mark fields (and pointee of fields) that are confirmed to be
/// uninitialized as already analyzed.
REGISTER_SET_WITH_PROGRAMSTATE(AnalyzedRegions, const MemRegion *)
namespace {
class UninitializedObjectChecker
: public Checker<check::EndFunction, check::DeadSymbols> {
std::unique_ptr<BuiltinBug> BT_uninitField;
public:
// The fields of this struct will be initialized when registering the checker.
UninitObjCheckerOptions Opts;
UninitializedObjectChecker()
: BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}
void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
};
/// A basic field type, that is not a pointer or a reference, it's dynamic and
/// static type is the same.
class RegularField final : public FieldNode {
public:
RegularField(const FieldRegion *FR) : FieldNode(FR) {}
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
Out << "uninitialized field ";
}
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
virtual void printNode(llvm::raw_ostream &Out) const override {
Out << getVariableName(getDecl());
}
virtual void printSeparator(llvm::raw_ostream &Out) const override {
Out << '.';
}
};
/// Represents that the FieldNode that comes after this is declared in a base
/// of the previous FieldNode. As such, this descendant doesn't wrap a
/// FieldRegion, and is purely a tool to describe a relation between two other
/// FieldRegion wrapping descendants.
class BaseClass final : public FieldNode {
const QualType BaseClassT;
public:
BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) {
assert(!T.isNull());
assert(T->getAsCXXRecordDecl());
}
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
llvm_unreachable("This node can never be the final node in the "
"fieldchain!");
}
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
virtual void printNode(llvm::raw_ostream &Out) const override {
Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::";
}
virtual void printSeparator(llvm::raw_ostream &Out) const override {}
virtual bool isBase() const override { return true; }
};
} // end of anonymous namespace
// Utility function declarations.
/// Returns the region that was constructed by CtorDecl, or nullptr if that
/// isn't possible.
static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
CheckerContext &Context);
/// Checks whether the object constructed by \p Ctor will be analyzed later
/// (e.g. if the object is a field of another object, in which case we'd check
/// it multiple times).
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
CheckerContext &Context);
/// Checks whether RD contains a field with a name or type name that matches
/// \p Pattern.
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern);
/// Checks _syntactically_ whether it is possible to access FD from the record
/// that contains it without a preceding assert (even if that access happens
/// inside a method). This is mainly used for records that act like unions, like
/// having multiple bit fields, with only a fraction being properly initialized.
/// If these fields are properly guarded with asserts, this method returns
/// false.
///
/// Since this check is done syntactically, this method could be inaccurate.
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State);
//===----------------------------------------------------------------------===//
// Methods for UninitializedObjectChecker.
//===----------------------------------------------------------------------===//
void UninitializedObjectChecker::checkEndFunction(
const ReturnStmt *RS, CheckerContext &Context) const {
const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
Context.getLocationContext()->getDecl());
if (!CtorDecl)
return;
if (!CtorDecl->isUserProvided())
return;
if (CtorDecl->getParent()->isUnion())
return;
// This avoids essentially the same error being reported multiple times.
if (willObjectBeAnalyzedLater(CtorDecl, Context))
return;
const TypedValueRegion *R = getConstructedRegion(CtorDecl, Context);
if (!R)
return;
FindUninitializedFields F(Context.getState(), R, Opts);
std::pair<ProgramStateRef, const UninitFieldMap &> UninitInfo =
F.getResults();
ProgramStateRef UpdatedState = UninitInfo.first;
const UninitFieldMap &UninitFields = UninitInfo.second;
if (UninitFields.empty()) {
Context.addTransition(UpdatedState);
return;
}
// There are uninitialized fields in the record.
ExplodedNode *Node = Context.generateNonFatalErrorNode(UpdatedState);
if (!Node)
return;
PathDiagnosticLocation LocUsedForUniqueing;
const Stmt *CallSite = Context.getStackFrame()->getCallSite();
if (CallSite)
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
CallSite, Context.getSourceManager(), Node->getLocationContext());
// For Plist consumers that don't support notes just yet, we'll convert notes
// to warnings.
if (Opts.ShouldConvertNotesToWarnings) {
for (const auto &Pair : UninitFields) {
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_uninitField, Pair.second, Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
Context.emitReport(std::move(Report));
}
return;
}
SmallString<100> WarningBuf;
llvm::raw_svector_ostream WarningOS(WarningBuf);
WarningOS << UninitFields.size() << " uninitialized field"
<< (UninitFields.size() == 1 ? "" : "s")
<< " at the end of the constructor call";
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
for (const auto &Pair : UninitFields) {
Report->addNote(Pair.second,
PathDiagnosticLocation::create(Pair.first->getDecl(),
Context.getSourceManager()));
}
Context.emitReport(std::move(Report));
}
void UninitializedObjectChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
for (const MemRegion *R : State->get<AnalyzedRegions>()) {
if (!SR.isLiveRegion(R))
State = State->remove<AnalyzedRegions>(R);
}
}
//===----------------------------------------------------------------------===//
// Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//
FindUninitializedFields::FindUninitializedFields(
ProgramStateRef State, const TypedValueRegion *const R,
const UninitObjCheckerOptions &Opts)
: State(State), ObjectR(R), Opts(Opts) {
isNonUnionUninit(ObjectR, FieldChainInfo(ChainFactory));
// In non-pedantic mode, if ObjectR doesn't contain a single initialized
// field, we'll assume that Object was intentionally left uninitialized.
if (!Opts.IsPedantic && !isAnyFieldInitialized())
UninitFields.clear();
}
bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain,
const MemRegion *PointeeR) {
const FieldRegion *FR = Chain.getUninitRegion();
assert((PointeeR || !isDereferencableType(FR->getDecl()->getType())) &&
"One must also pass the pointee region as a parameter for "
"dereferenceable fields!");
if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
FR->getDecl()->getLocation()))
return false;
if (Opts.IgnoreGuardedFields && !hasUnguardedAccess(FR->getDecl(), State))
return false;
if (State->contains<AnalyzedRegions>(FR))
return false;
if (PointeeR) {
if (State->contains<AnalyzedRegions>(PointeeR)) {
return false;
}
State = State->add<AnalyzedRegions>(PointeeR);
}
State = State->add<AnalyzedRegions>(FR);
UninitFieldMap::mapped_type NoteMsgBuf;
llvm::raw_svector_ostream OS(NoteMsgBuf);
Chain.printNoteMsg(OS);
return UninitFields.insert({FR, std::move(NoteMsgBuf)}).second;
}
bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
FieldChainInfo LocalChain) {
assert(R->getValueType()->isRecordType() &&
!R->getValueType()->isUnionType() &&
"This method only checks non-union record objects!");
const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();
if (!RD) {
IsAnyFieldInitialized = true;
return true;
}
if (!Opts.IgnoredRecordsWithFieldPattern.empty() &&
shouldIgnoreRecord(RD, Opts.IgnoredRecordsWithFieldPattern)) {
IsAnyFieldInitialized = true;
return false;
}
bool ContainsUninitField = false;
// Are all of this non-union's fields initialized?
for (const FieldDecl *I : RD->fields()) {
const auto FieldVal =
State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
const auto *FR = FieldVal.getRegionAs<FieldRegion>();
QualType T = I->getType();
// If LocalChain already contains FR, then we encountered a cyclic
// reference. In this case, region FR is already under checking at an
// earlier node in the directed tree.
if (LocalChain.contains(FR))
return false;
if (T->isStructureOrClassType()) {
if (isNonUnionUninit(FR, LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
continue;
}
if (T->isUnionType()) {
if (isUnionUninit(FR)) {
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
} else
IsAnyFieldInitialized = true;
continue;
}
if (T->isArrayType()) {
IsAnyFieldInitialized = true;
continue;
}
SVal V = State->getSVal(FieldVal);
if (isDereferencableType(T) || V.getAs<nonloc::LocAsInteger>()) {
if (isDereferencableUninit(FR, LocalChain))
ContainsUninitField = true;
continue;
}
if (isPrimitiveType(T)) {
if (isPrimitiveUninit(V)) {
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
ContainsUninitField = true;
}
continue;
}
llvm_unreachable("All cases are handled!");
}
// Checking bases. The checker will regard inherited data members as direct
// fields.
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (!CXXRD)
return ContainsUninitField;
for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
const auto *BaseRegion = State->getLValue(BaseSpec, R)
.castAs<loc::MemRegionVal>()
.getRegionAs<TypedValueRegion>();
// If the head of the list is also a BaseClass, we'll overwrite it to avoid
// note messages like 'this->A::B::x'.
if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) {
if (isNonUnionUninit(BaseRegion, LocalChain.replaceHead(
BaseClass(BaseSpec.getType()))))
ContainsUninitField = true;
} else {
if (isNonUnionUninit(BaseRegion,
LocalChain.add(BaseClass(BaseSpec.getType()))))
ContainsUninitField = true;
}
}
return ContainsUninitField;
}
bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
assert(R->getValueType()->isUnionType() &&
"This method only checks union objects!");
// TODO: Implement support for union fields.
return false;
}
bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
if (V.isUndef())
return true;
IsAnyFieldInitialized = true;
return false;
}
//===----------------------------------------------------------------------===//
// Methods for FieldChainInfo.
//===----------------------------------------------------------------------===//
bool FieldChainInfo::contains(const FieldRegion *FR) const {
for (const FieldNode &Node : Chain) {
if (Node.isSameRegion(FR))
return true;
}
return false;
}
/// Prints every element except the last to `Out`. Since ImmutableLists store
/// elements in reverse order, and have no reverse iterators, we use a
/// recursive function to print the fieldchain correctly. The last element in
/// the chain is to be printed by `FieldChainInfo::print`.
static void printTail(llvm::raw_ostream &Out,
const FieldChainInfo::FieldChain L);
// FIXME: This function constructs an incorrect string in the following case:
//
// struct Base { int x; };
// struct D1 : Base {}; struct D2 : Base {};
//
// struct MostDerived : D1, D2 {
// MostDerived() {}
// }
//
// A call to MostDerived::MostDerived() will cause two notes that say
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
// we need an explicit namespace resolution whether the uninit field was
// 'D1::x' or 'D2::x'.
void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const {
if (Chain.isEmpty())
return;
const FieldNode &LastField = getHead();
LastField.printNoteMsg(Out);
Out << '\'';
for (const FieldNode &Node : Chain)
Node.printPrefix(Out);
Out << "this->";
printTail(Out, Chain.getTail());
LastField.printNode(Out);
Out << '\'';
}
static void printTail(llvm::raw_ostream &Out,
const FieldChainInfo::FieldChain L) {
if (L.isEmpty())
return;
printTail(Out, L.getTail());
L.getHead().printNode(Out);
L.getHead().printSeparator(Out);
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
CheckerContext &Context) {
Loc ThisLoc =
Context.getSValBuilder().getCXXThis(CtorDecl, Context.getStackFrame());
SVal ObjectV = Context.getState()->getSVal(ThisLoc);
auto *R = ObjectV.getAsRegion()->getAs<TypedValueRegion>();
if (R && !R->getValueType()->getAsCXXRecordDecl())
return nullptr;
return R;
}
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
CheckerContext &Context) {
const TypedValueRegion *CurrRegion = getConstructedRegion(Ctor, Context);
if (!CurrRegion)
return false;
const LocationContext *LC = Context.getLocationContext();
while ((LC = LC->getParent())) {
// If \p Ctor was called by another constructor.
const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(LC->getDecl());
if (!OtherCtor)
continue;
const TypedValueRegion *OtherRegion =
getConstructedRegion(OtherCtor, Context);
if (!OtherRegion)
continue;
// If the CurrRegion is a subregion of OtherRegion, it will be analyzed
// during the analysis of OtherRegion.
if (CurrRegion->isSubRegionOf(OtherRegion))
return true;
}
return false;
}
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern) {
llvm::Regex R(Pattern);
for (const FieldDecl *FD : RD->fields()) {
if (R.match(FD->getType().getAsString()))
return true;
if (R.match(FD->getName()))
return true;
}
return false;
}
static const Stmt *getMethodBody(const CXXMethodDecl *M) {
if (isa<CXXConstructorDecl>(M))
return nullptr;
if (!M->isDefined())
return nullptr;
return M->getDefinition()->getBody();
}
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State) {
if (FD->getAccess() == AccessSpecifier::AS_public)
return true;
const auto *Parent = dyn_cast<CXXRecordDecl>(FD->getParent());
if (!Parent)
return true;
Parent = Parent->getDefinition();
assert(Parent && "The record's definition must be avaible if an uninitialized"
" field of it was found!");
ASTContext &AC = State->getStateManager().getContext();
auto FieldAccessM = memberExpr(hasDeclaration(equalsNode(FD))).bind("access");
auto AssertLikeM = callExpr(callee(functionDecl(
hasAnyName("exit", "panic", "error", "Assert", "assert", "ziperr",
"assfail", "db_error", "__assert", "__assert2", "_wassert",
"__assert_rtn", "__assert_fail", "dtrace_assfail",
"yy_fatal_error", "_XCAssertionFailureHandler",
"_DTAssertionFailureHandler", "_TSAssertionFailureHandler"))));
auto NoReturnFuncM = callExpr(callee(functionDecl(isNoReturn())));
auto GuardM =
stmt(anyOf(ifStmt(), switchStmt(), conditionalOperator(), AssertLikeM,
NoReturnFuncM))
.bind("guard");
for (const CXXMethodDecl *M : Parent->methods()) {
const Stmt *MethodBody = getMethodBody(M);
if (!MethodBody)
continue;
auto Accesses = match(stmt(hasDescendant(FieldAccessM)), *MethodBody, AC);
if (Accesses.empty())
continue;
const auto *FirstAccess = Accesses[0].getNodeAs<MemberExpr>("access");
assert(FirstAccess);
auto Guards = match(stmt(hasDescendant(GuardM)), *MethodBody, AC);
if (Guards.empty())
return true;
const auto *FirstGuard = Guards[0].getNodeAs<Stmt>("guard");
assert(FirstGuard);
if (FirstAccess->getBeginLoc() < FirstGuard->getBeginLoc())
return true;
}
return false;
}
std::string clang::ento::getVariableName(const FieldDecl *Field) {
// If Field is a captured lambda variable, Field->getName() will return with
// an empty string. We can however acquire it's name from the lambda's
// captures.
const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());
if (CXXParent && CXXParent->isLambda()) {
assert(CXXParent->captures_begin());
auto It = CXXParent->captures_begin() + Field->getFieldIndex();
if (It->capturesVariable())
return llvm::Twine("/*captured variable*/" +
It->getCapturedVar()->getName())
.str();
if (It->capturesThis())
return "/*'this' capture*/";
llvm_unreachable("No other capture type is expected!");
}
return std::string(Field->getName());
}
void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();
const AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions();
UninitObjCheckerOptions &ChOpts = Chk->Opts;
ChOpts.IsPedantic = AnOpts.getCheckerBooleanOption(Chk, "Pedantic");
ChOpts.ShouldConvertNotesToWarnings = AnOpts.getCheckerBooleanOption(
Chk, "NotesAsWarnings");
ChOpts.CheckPointeeInitialization = AnOpts.getCheckerBooleanOption(
Chk, "CheckPointeeInitialization");
ChOpts.IgnoredRecordsWithFieldPattern =
std::string(AnOpts.getCheckerStringOption(Chk, "IgnoreRecordsWithField"));
ChOpts.IgnoreGuardedFields =
AnOpts.getCheckerBooleanOption(Chk, "IgnoreGuardedFields");
std::string ErrorMsg;
if (!llvm::Regex(ChOpts.IgnoredRecordsWithFieldPattern).isValid(ErrorMsg))
Mgr.reportInvalidCheckerOptionValue(Chk, "IgnoreRecordsWithField",
"a valid regex, building failed with error message "
"\"" + ErrorMsg + "\"");
}
bool ento::shouldRegisterUninitializedObjectChecker(const CheckerManager &mgr) {
return true;
}