631 lines
20 KiB
C++
631 lines
20 KiB
C++
//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a checker that reports uninitialized fields in objects
|
|
// created after a constructor call.
|
|
//
|
|
// To read about command line options and how the checker works, refer to the
|
|
// top of the file and inline comments in UninitializedObject.h.
|
|
//
|
|
// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
|
|
// complexity of this file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "UninitializedObject.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/Driver/DriverDiagnostic.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::ento;
|
|
using namespace clang::ast_matchers;
|
|
|
|
/// We'll mark fields (and pointee of fields) that are confirmed to be
|
|
/// uninitialized as already analyzed.
|
|
REGISTER_SET_WITH_PROGRAMSTATE(AnalyzedRegions, const MemRegion *)
|
|
|
|
namespace {
|
|
|
|
class UninitializedObjectChecker
|
|
: public Checker<check::EndFunction, check::DeadSymbols> {
|
|
std::unique_ptr<BuiltinBug> BT_uninitField;
|
|
|
|
public:
|
|
// The fields of this struct will be initialized when registering the checker.
|
|
UninitObjCheckerOptions Opts;
|
|
|
|
UninitializedObjectChecker()
|
|
: BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}
|
|
|
|
void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
|
|
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
|
|
};
|
|
|
|
/// A basic field type, that is not a pointer or a reference, it's dynamic and
|
|
/// static type is the same.
|
|
class RegularField final : public FieldNode {
|
|
public:
|
|
RegularField(const FieldRegion *FR) : FieldNode(FR) {}
|
|
|
|
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
|
|
Out << "uninitialized field ";
|
|
}
|
|
|
|
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
|
|
|
|
virtual void printNode(llvm::raw_ostream &Out) const override {
|
|
Out << getVariableName(getDecl());
|
|
}
|
|
|
|
virtual void printSeparator(llvm::raw_ostream &Out) const override {
|
|
Out << '.';
|
|
}
|
|
};
|
|
|
|
/// Represents that the FieldNode that comes after this is declared in a base
|
|
/// of the previous FieldNode. As such, this descendant doesn't wrap a
|
|
/// FieldRegion, and is purely a tool to describe a relation between two other
|
|
/// FieldRegion wrapping descendants.
|
|
class BaseClass final : public FieldNode {
|
|
const QualType BaseClassT;
|
|
|
|
public:
|
|
BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) {
|
|
assert(!T.isNull());
|
|
assert(T->getAsCXXRecordDecl());
|
|
}
|
|
|
|
virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
|
|
llvm_unreachable("This node can never be the final node in the "
|
|
"fieldchain!");
|
|
}
|
|
|
|
virtual void printPrefix(llvm::raw_ostream &Out) const override {}
|
|
|
|
virtual void printNode(llvm::raw_ostream &Out) const override {
|
|
Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::";
|
|
}
|
|
|
|
virtual void printSeparator(llvm::raw_ostream &Out) const override {}
|
|
|
|
virtual bool isBase() const override { return true; }
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
// Utility function declarations.
|
|
|
|
/// Returns the region that was constructed by CtorDecl, or nullptr if that
|
|
/// isn't possible.
|
|
static const TypedValueRegion *
|
|
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
|
|
CheckerContext &Context);
|
|
|
|
/// Checks whether the object constructed by \p Ctor will be analyzed later
|
|
/// (e.g. if the object is a field of another object, in which case we'd check
|
|
/// it multiple times).
|
|
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
|
|
CheckerContext &Context);
|
|
|
|
/// Checks whether RD contains a field with a name or type name that matches
|
|
/// \p Pattern.
|
|
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern);
|
|
|
|
/// Checks _syntactically_ whether it is possible to access FD from the record
|
|
/// that contains it without a preceding assert (even if that access happens
|
|
/// inside a method). This is mainly used for records that act like unions, like
|
|
/// having multiple bit fields, with only a fraction being properly initialized.
|
|
/// If these fields are properly guarded with asserts, this method returns
|
|
/// false.
|
|
///
|
|
/// Since this check is done syntactically, this method could be inaccurate.
|
|
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for UninitializedObjectChecker.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void UninitializedObjectChecker::checkEndFunction(
|
|
const ReturnStmt *RS, CheckerContext &Context) const {
|
|
|
|
const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
|
|
Context.getLocationContext()->getDecl());
|
|
if (!CtorDecl)
|
|
return;
|
|
|
|
if (!CtorDecl->isUserProvided())
|
|
return;
|
|
|
|
if (CtorDecl->getParent()->isUnion())
|
|
return;
|
|
|
|
// This avoids essentially the same error being reported multiple times.
|
|
if (willObjectBeAnalyzedLater(CtorDecl, Context))
|
|
return;
|
|
|
|
const TypedValueRegion *R = getConstructedRegion(CtorDecl, Context);
|
|
if (!R)
|
|
return;
|
|
|
|
FindUninitializedFields F(Context.getState(), R, Opts);
|
|
|
|
std::pair<ProgramStateRef, const UninitFieldMap &> UninitInfo =
|
|
F.getResults();
|
|
|
|
ProgramStateRef UpdatedState = UninitInfo.first;
|
|
const UninitFieldMap &UninitFields = UninitInfo.second;
|
|
|
|
if (UninitFields.empty()) {
|
|
Context.addTransition(UpdatedState);
|
|
return;
|
|
}
|
|
|
|
// There are uninitialized fields in the record.
|
|
|
|
ExplodedNode *Node = Context.generateNonFatalErrorNode(UpdatedState);
|
|
if (!Node)
|
|
return;
|
|
|
|
PathDiagnosticLocation LocUsedForUniqueing;
|
|
const Stmt *CallSite = Context.getStackFrame()->getCallSite();
|
|
if (CallSite)
|
|
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
|
|
CallSite, Context.getSourceManager(), Node->getLocationContext());
|
|
|
|
// For Plist consumers that don't support notes just yet, we'll convert notes
|
|
// to warnings.
|
|
if (Opts.ShouldConvertNotesToWarnings) {
|
|
for (const auto &Pair : UninitFields) {
|
|
|
|
auto Report = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_uninitField, Pair.second, Node, LocUsedForUniqueing,
|
|
Node->getLocationContext()->getDecl());
|
|
Context.emitReport(std::move(Report));
|
|
}
|
|
return;
|
|
}
|
|
|
|
SmallString<100> WarningBuf;
|
|
llvm::raw_svector_ostream WarningOS(WarningBuf);
|
|
WarningOS << UninitFields.size() << " uninitialized field"
|
|
<< (UninitFields.size() == 1 ? "" : "s")
|
|
<< " at the end of the constructor call";
|
|
|
|
auto Report = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
|
|
Node->getLocationContext()->getDecl());
|
|
|
|
for (const auto &Pair : UninitFields) {
|
|
Report->addNote(Pair.second,
|
|
PathDiagnosticLocation::create(Pair.first->getDecl(),
|
|
Context.getSourceManager()));
|
|
}
|
|
Context.emitReport(std::move(Report));
|
|
}
|
|
|
|
void UninitializedObjectChecker::checkDeadSymbols(SymbolReaper &SR,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
for (const MemRegion *R : State->get<AnalyzedRegions>()) {
|
|
if (!SR.isLiveRegion(R))
|
|
State = State->remove<AnalyzedRegions>(R);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for FindUninitializedFields.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FindUninitializedFields::FindUninitializedFields(
|
|
ProgramStateRef State, const TypedValueRegion *const R,
|
|
const UninitObjCheckerOptions &Opts)
|
|
: State(State), ObjectR(R), Opts(Opts) {
|
|
|
|
isNonUnionUninit(ObjectR, FieldChainInfo(ChainFactory));
|
|
|
|
// In non-pedantic mode, if ObjectR doesn't contain a single initialized
|
|
// field, we'll assume that Object was intentionally left uninitialized.
|
|
if (!Opts.IsPedantic && !isAnyFieldInitialized())
|
|
UninitFields.clear();
|
|
}
|
|
|
|
bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain,
|
|
const MemRegion *PointeeR) {
|
|
const FieldRegion *FR = Chain.getUninitRegion();
|
|
|
|
assert((PointeeR || !isDereferencableType(FR->getDecl()->getType())) &&
|
|
"One must also pass the pointee region as a parameter for "
|
|
"dereferenceable fields!");
|
|
|
|
if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
|
|
FR->getDecl()->getLocation()))
|
|
return false;
|
|
|
|
if (Opts.IgnoreGuardedFields && !hasUnguardedAccess(FR->getDecl(), State))
|
|
return false;
|
|
|
|
if (State->contains<AnalyzedRegions>(FR))
|
|
return false;
|
|
|
|
if (PointeeR) {
|
|
if (State->contains<AnalyzedRegions>(PointeeR)) {
|
|
return false;
|
|
}
|
|
State = State->add<AnalyzedRegions>(PointeeR);
|
|
}
|
|
|
|
State = State->add<AnalyzedRegions>(FR);
|
|
|
|
UninitFieldMap::mapped_type NoteMsgBuf;
|
|
llvm::raw_svector_ostream OS(NoteMsgBuf);
|
|
Chain.printNoteMsg(OS);
|
|
|
|
return UninitFields.insert({FR, std::move(NoteMsgBuf)}).second;
|
|
}
|
|
|
|
bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
|
|
FieldChainInfo LocalChain) {
|
|
assert(R->getValueType()->isRecordType() &&
|
|
!R->getValueType()->isUnionType() &&
|
|
"This method only checks non-union record objects!");
|
|
|
|
const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();
|
|
|
|
if (!RD) {
|
|
IsAnyFieldInitialized = true;
|
|
return true;
|
|
}
|
|
|
|
if (!Opts.IgnoredRecordsWithFieldPattern.empty() &&
|
|
shouldIgnoreRecord(RD, Opts.IgnoredRecordsWithFieldPattern)) {
|
|
IsAnyFieldInitialized = true;
|
|
return false;
|
|
}
|
|
|
|
bool ContainsUninitField = false;
|
|
|
|
// Are all of this non-union's fields initialized?
|
|
for (const FieldDecl *I : RD->fields()) {
|
|
|
|
const auto FieldVal =
|
|
State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
|
|
const auto *FR = FieldVal.getRegionAs<FieldRegion>();
|
|
QualType T = I->getType();
|
|
|
|
// If LocalChain already contains FR, then we encountered a cyclic
|
|
// reference. In this case, region FR is already under checking at an
|
|
// earlier node in the directed tree.
|
|
if (LocalChain.contains(FR))
|
|
return false;
|
|
|
|
if (T->isStructureOrClassType()) {
|
|
if (isNonUnionUninit(FR, LocalChain.add(RegularField(FR))))
|
|
ContainsUninitField = true;
|
|
continue;
|
|
}
|
|
|
|
if (T->isUnionType()) {
|
|
if (isUnionUninit(FR)) {
|
|
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
|
|
ContainsUninitField = true;
|
|
} else
|
|
IsAnyFieldInitialized = true;
|
|
continue;
|
|
}
|
|
|
|
if (T->isArrayType()) {
|
|
IsAnyFieldInitialized = true;
|
|
continue;
|
|
}
|
|
|
|
SVal V = State->getSVal(FieldVal);
|
|
|
|
if (isDereferencableType(T) || V.getAs<nonloc::LocAsInteger>()) {
|
|
if (isDereferencableUninit(FR, LocalChain))
|
|
ContainsUninitField = true;
|
|
continue;
|
|
}
|
|
|
|
if (isPrimitiveType(T)) {
|
|
if (isPrimitiveUninit(V)) {
|
|
if (addFieldToUninits(LocalChain.add(RegularField(FR))))
|
|
ContainsUninitField = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("All cases are handled!");
|
|
}
|
|
|
|
// Checking bases. The checker will regard inherited data members as direct
|
|
// fields.
|
|
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
|
|
if (!CXXRD)
|
|
return ContainsUninitField;
|
|
|
|
for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
|
|
const auto *BaseRegion = State->getLValue(BaseSpec, R)
|
|
.castAs<loc::MemRegionVal>()
|
|
.getRegionAs<TypedValueRegion>();
|
|
|
|
// If the head of the list is also a BaseClass, we'll overwrite it to avoid
|
|
// note messages like 'this->A::B::x'.
|
|
if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) {
|
|
if (isNonUnionUninit(BaseRegion, LocalChain.replaceHead(
|
|
BaseClass(BaseSpec.getType()))))
|
|
ContainsUninitField = true;
|
|
} else {
|
|
if (isNonUnionUninit(BaseRegion,
|
|
LocalChain.add(BaseClass(BaseSpec.getType()))))
|
|
ContainsUninitField = true;
|
|
}
|
|
}
|
|
|
|
return ContainsUninitField;
|
|
}
|
|
|
|
bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
|
|
assert(R->getValueType()->isUnionType() &&
|
|
"This method only checks union objects!");
|
|
// TODO: Implement support for union fields.
|
|
return false;
|
|
}
|
|
|
|
bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
|
|
if (V.isUndef())
|
|
return true;
|
|
|
|
IsAnyFieldInitialized = true;
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for FieldChainInfo.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool FieldChainInfo::contains(const FieldRegion *FR) const {
|
|
for (const FieldNode &Node : Chain) {
|
|
if (Node.isSameRegion(FR))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Prints every element except the last to `Out`. Since ImmutableLists store
|
|
/// elements in reverse order, and have no reverse iterators, we use a
|
|
/// recursive function to print the fieldchain correctly. The last element in
|
|
/// the chain is to be printed by `FieldChainInfo::print`.
|
|
static void printTail(llvm::raw_ostream &Out,
|
|
const FieldChainInfo::FieldChain L);
|
|
|
|
// FIXME: This function constructs an incorrect string in the following case:
|
|
//
|
|
// struct Base { int x; };
|
|
// struct D1 : Base {}; struct D2 : Base {};
|
|
//
|
|
// struct MostDerived : D1, D2 {
|
|
// MostDerived() {}
|
|
// }
|
|
//
|
|
// A call to MostDerived::MostDerived() will cause two notes that say
|
|
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
|
|
// we need an explicit namespace resolution whether the uninit field was
|
|
// 'D1::x' or 'D2::x'.
|
|
void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const {
|
|
if (Chain.isEmpty())
|
|
return;
|
|
|
|
const FieldNode &LastField = getHead();
|
|
|
|
LastField.printNoteMsg(Out);
|
|
Out << '\'';
|
|
|
|
for (const FieldNode &Node : Chain)
|
|
Node.printPrefix(Out);
|
|
|
|
Out << "this->";
|
|
printTail(Out, Chain.getTail());
|
|
LastField.printNode(Out);
|
|
Out << '\'';
|
|
}
|
|
|
|
static void printTail(llvm::raw_ostream &Out,
|
|
const FieldChainInfo::FieldChain L) {
|
|
if (L.isEmpty())
|
|
return;
|
|
|
|
printTail(Out, L.getTail());
|
|
|
|
L.getHead().printNode(Out);
|
|
L.getHead().printSeparator(Out);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const TypedValueRegion *
|
|
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
|
|
CheckerContext &Context) {
|
|
|
|
Loc ThisLoc =
|
|
Context.getSValBuilder().getCXXThis(CtorDecl, Context.getStackFrame());
|
|
|
|
SVal ObjectV = Context.getState()->getSVal(ThisLoc);
|
|
|
|
auto *R = ObjectV.getAsRegion()->getAs<TypedValueRegion>();
|
|
if (R && !R->getValueType()->getAsCXXRecordDecl())
|
|
return nullptr;
|
|
|
|
return R;
|
|
}
|
|
|
|
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
|
|
CheckerContext &Context) {
|
|
|
|
const TypedValueRegion *CurrRegion = getConstructedRegion(Ctor, Context);
|
|
if (!CurrRegion)
|
|
return false;
|
|
|
|
const LocationContext *LC = Context.getLocationContext();
|
|
while ((LC = LC->getParent())) {
|
|
|
|
// If \p Ctor was called by another constructor.
|
|
const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(LC->getDecl());
|
|
if (!OtherCtor)
|
|
continue;
|
|
|
|
const TypedValueRegion *OtherRegion =
|
|
getConstructedRegion(OtherCtor, Context);
|
|
if (!OtherRegion)
|
|
continue;
|
|
|
|
// If the CurrRegion is a subregion of OtherRegion, it will be analyzed
|
|
// during the analysis of OtherRegion.
|
|
if (CurrRegion->isSubRegionOf(OtherRegion))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern) {
|
|
llvm::Regex R(Pattern);
|
|
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
if (R.match(FD->getType().getAsString()))
|
|
return true;
|
|
if (R.match(FD->getName()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const Stmt *getMethodBody(const CXXMethodDecl *M) {
|
|
if (isa<CXXConstructorDecl>(M))
|
|
return nullptr;
|
|
|
|
if (!M->isDefined())
|
|
return nullptr;
|
|
|
|
return M->getDefinition()->getBody();
|
|
}
|
|
|
|
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State) {
|
|
|
|
if (FD->getAccess() == AccessSpecifier::AS_public)
|
|
return true;
|
|
|
|
const auto *Parent = dyn_cast<CXXRecordDecl>(FD->getParent());
|
|
|
|
if (!Parent)
|
|
return true;
|
|
|
|
Parent = Parent->getDefinition();
|
|
assert(Parent && "The record's definition must be avaible if an uninitialized"
|
|
" field of it was found!");
|
|
|
|
ASTContext &AC = State->getStateManager().getContext();
|
|
|
|
auto FieldAccessM = memberExpr(hasDeclaration(equalsNode(FD))).bind("access");
|
|
|
|
auto AssertLikeM = callExpr(callee(functionDecl(
|
|
hasAnyName("exit", "panic", "error", "Assert", "assert", "ziperr",
|
|
"assfail", "db_error", "__assert", "__assert2", "_wassert",
|
|
"__assert_rtn", "__assert_fail", "dtrace_assfail",
|
|
"yy_fatal_error", "_XCAssertionFailureHandler",
|
|
"_DTAssertionFailureHandler", "_TSAssertionFailureHandler"))));
|
|
|
|
auto NoReturnFuncM = callExpr(callee(functionDecl(isNoReturn())));
|
|
|
|
auto GuardM =
|
|
stmt(anyOf(ifStmt(), switchStmt(), conditionalOperator(), AssertLikeM,
|
|
NoReturnFuncM))
|
|
.bind("guard");
|
|
|
|
for (const CXXMethodDecl *M : Parent->methods()) {
|
|
const Stmt *MethodBody = getMethodBody(M);
|
|
if (!MethodBody)
|
|
continue;
|
|
|
|
auto Accesses = match(stmt(hasDescendant(FieldAccessM)), *MethodBody, AC);
|
|
if (Accesses.empty())
|
|
continue;
|
|
const auto *FirstAccess = Accesses[0].getNodeAs<MemberExpr>("access");
|
|
assert(FirstAccess);
|
|
|
|
auto Guards = match(stmt(hasDescendant(GuardM)), *MethodBody, AC);
|
|
if (Guards.empty())
|
|
return true;
|
|
const auto *FirstGuard = Guards[0].getNodeAs<Stmt>("guard");
|
|
assert(FirstGuard);
|
|
|
|
if (FirstAccess->getBeginLoc() < FirstGuard->getBeginLoc())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::string clang::ento::getVariableName(const FieldDecl *Field) {
|
|
// If Field is a captured lambda variable, Field->getName() will return with
|
|
// an empty string. We can however acquire it's name from the lambda's
|
|
// captures.
|
|
const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());
|
|
|
|
if (CXXParent && CXXParent->isLambda()) {
|
|
assert(CXXParent->captures_begin());
|
|
auto It = CXXParent->captures_begin() + Field->getFieldIndex();
|
|
|
|
if (It->capturesVariable())
|
|
return llvm::Twine("/*captured variable*/" +
|
|
It->getCapturedVar()->getName())
|
|
.str();
|
|
|
|
if (It->capturesThis())
|
|
return "/*'this' capture*/";
|
|
|
|
llvm_unreachable("No other capture type is expected!");
|
|
}
|
|
|
|
return std::string(Field->getName());
|
|
}
|
|
|
|
void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
|
|
auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();
|
|
|
|
const AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions();
|
|
UninitObjCheckerOptions &ChOpts = Chk->Opts;
|
|
|
|
ChOpts.IsPedantic = AnOpts.getCheckerBooleanOption(Chk, "Pedantic");
|
|
ChOpts.ShouldConvertNotesToWarnings = AnOpts.getCheckerBooleanOption(
|
|
Chk, "NotesAsWarnings");
|
|
ChOpts.CheckPointeeInitialization = AnOpts.getCheckerBooleanOption(
|
|
Chk, "CheckPointeeInitialization");
|
|
ChOpts.IgnoredRecordsWithFieldPattern =
|
|
std::string(AnOpts.getCheckerStringOption(Chk, "IgnoreRecordsWithField"));
|
|
ChOpts.IgnoreGuardedFields =
|
|
AnOpts.getCheckerBooleanOption(Chk, "IgnoreGuardedFields");
|
|
|
|
std::string ErrorMsg;
|
|
if (!llvm::Regex(ChOpts.IgnoredRecordsWithFieldPattern).isValid(ErrorMsg))
|
|
Mgr.reportInvalidCheckerOptionValue(Chk, "IgnoreRecordsWithField",
|
|
"a valid regex, building failed with error message "
|
|
"\"" + ErrorMsg + "\"");
|
|
}
|
|
|
|
bool ento::shouldRegisterUninitializedObjectChecker(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|