RTSA-lab01-CacheAnalysis/include/AbstractCache.h

233 lines
6.3 KiB
C++

#ifndef ABSTRACHTCACHESTATE_H
#define ABSTRACHTCACHESTATE_H
#include <cassert>
#include <cstddef>
#include <fstream>
#include <iostream>
#include <list>
#include <map>
#include <ostream>
#include <utility>
#include <llvm/IR/BasicBlock.h>
#include <llvm/Support/raw_ostream.h>
#include "AbstractState.h"
#include "Address.h"
#include "ConcreteState.h"
// Forward declarations
namespace cacheAnaPass {
class AbstractCache;
} // namespace cacheAnaPass
class AbstractCache {
public: // everything is public, because IDGAF
// map keys are instruction Addresses.
std::map<unsigned int, std::list<unsigned int>> Edges;
std::map<unsigned int, AbstractState> Nodes;
unsigned int NumberOfNodes = 0;
AbstractCache() {}
/**
* @brief Add an Edge to the Abstract Cache
*
* @param Pre Predecessor Address
* @param Suc Successor Address
*/
void addEdge(unsigned int Pre, unsigned int Suc) {
Edges[Pre].push_back(Suc);
Nodes[Pre].Successors.push_back(Suc);
Nodes[Suc].Predecessors.push_back(Pre);
}
unsigned int addEmptyNode(unsigned int NodeAddr) {
Nodes[NumberOfNodes++] = AbstractState(NodeAddr);
return NumberOfNodes;
}
/**
* @brief Unroll Loops.
*
* @param NodeNr
*/
void unrollLoops() {
for (auto NodePair : Nodes) {
unsigned int NodeNr = NodePair.first;
if (NodeNr == 34) {
llvm::outs() << "HI\n";
}
bool IsLoopHead = false;
bool FoundLoopBody = false;
bool Verbose = true;
std::list<unsigned int> LoopBody;
if (Nodes[NodeNr].Predecessors.size() > 1) {
IsLoopHead = true;
// is loop head?
for (unsigned int Pre : Nodes[NodeNr].Predecessors) {
if (Pre > NodeNr) {
// Might be loop head.
// check if all States between Pre and NodeNr are a coherent set.
for (uint I = NodeNr; I < Pre; I++) {
LoopBody.push_back(I);
for (uint Succ : Nodes[I].Successors) {
if (Succ > Pre) {
// Set is not coherent
IsLoopHead = false;
break;
}
}
FoundLoopBody = true;
}
LoopBody.push_back(Pre);
} else if (!FoundLoopBody) {
// If no coherent Loopbody exist we cannot unroll.
LoopBody.clear();
IsLoopHead = false;
}
}
}
if (IsLoopHead && Verbose) {
llvm::outs() << "Found LoopHead @: " << NodeNr << "\n";
llvm::outs() << "With Body: {\n";
int I = 1;
for (auto Node : LoopBody) {
llvm::outs() << Node << ", ";
if (!(I++ % 5)) {
llvm::outs() << "\n";
}
}
llvm::outs() << "}\n";
}
// Found Loop Head and Body!
// TODO: Now unroll
// Add empty unrolled Nodes
// Map points from OrigNode To Unrolled Node.
std::map<unsigned int, unsigned int> OrigNodeToUnrolledNode;
for (auto Node : LoopBody) {
// Node to unroll
AbstractState UnrolledNode(Nodes[Node]);
UnrolledNode.setUnrolled(1);
Nodes[NumberOfNodes++] = UnrolledNode;
OrigNodeToUnrolledNode[Node] = NumberOfNodes;
}
unsigned int LoopHead = LoopBody.front();
LoopBody.pop_front();
unsigned int LoopTail = LoopBody.back();
LoopBody.pop_back();
for (auto Node : LoopBody) {
for (auto Succ : Nodes[Node].Successors) {
// Add All successors to unrolled Node
Nodes[OrigNodeToUnrolledNode[Node]].Successors.push_back(
OrigNodeToUnrolledNode[Succ]);
}
for (auto Pre : Nodes[Node].Predecessors) {
// Add All predecessors to unrolled Node
Nodes[OrigNodeToUnrolledNode[Node]].Successors.push_back(
OrigNodeToUnrolledNode[Pre]);
}
}
}
return;
}
/**
* @brief Idea fill the graph with the node and perform loop unrolling.
*
* @param NodeNr
*/
void fillAbstractCache(unsigned int NodeNr) {
// if(isLoopHead(NodeNr))
// unrollLoop(NodeNr);
Nodes[NodeNr].Computed = true;
for (unsigned int SuccNr : Nodes[NodeNr].Successors) {
Nodes[SuccNr];
if (Nodes[SuccNr].Computed) {
// Join don't call
// TODO fix Join
Nodes[SuccNr].mustJoin(Nodes[NodeNr]); // maybe fill
Nodes[SuccNr].mustJoin(AbstractState(NodeNr));
} else {
// Update and fill Succ
Nodes[SuccNr].fill(Nodes[NodeNr], NodeNr);
fillAbstractCache(SuccNr);
}
}
return;
}
unsigned int collectHits() {
unsigned int Hits = 0;
for (auto const &E : Edges) {
auto Predecessor = Nodes[E.first];
for (unsigned int SuccessorAddr : E.second) {
// When successors Address is in predecessor, we have a Hit.
Hits += Predecessor.isHit(Address(SuccessorAddr)) ? 1 : 0;
}
}
return Hits;
}
unsigned int collectMisses() {
unsigned int Misses = 0;
for (auto const &E : Edges) {
auto Predecessor = Nodes[E.first];
for (unsigned int SuccessorAddr : E.second) {
// When successors Address is in predecessor, we have a Hit.
Misses += Predecessor.isHit(Address(SuccessorAddr)) ? 0 : 1;
}
}
return Misses;
}
void dumpEdges() {
llvm::outs() << "Dumping Edges:\n";
for (auto const &E : Edges) {
llvm::outs() << E.first;
bool FirstPrint = true;
for (unsigned int To : E.second) {
if (FirstPrint) {
llvm::outs() << " -> " << To;
FirstPrint = false;
} else {
llvm::outs() << ", " << To;
}
}
llvm::outs() << "\n";
}
}
void dumpDotFile() {
bool PrintOld = true;
std::ofstream DotFile;
DotFile.open("out.dot");
DotFile << "digraph g {"
<< "\n";
for (auto const &E : Edges) {
for (unsigned int To : E.second) {
if (PrintOld) {
DotFile << E.first << " -> " << To << "\n";
} else {
DotFile << Nodes[E.first].Addr << "." << Nodes[E.first].Unrolled
<< " -> " << Nodes[To].Addr << "." << Nodes[To].Unrolled
<< "\n";
}
}
}
DotFile << "}\n";
DotFile.close();
}
void dumpNodes() {
for (auto const &E : Edges) {
Nodes[E.first].dump();
}
}
}; // namespace
#endif // ABSTRACHTCACHESTATE_H