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Abstract
While outlier detection has been intensively stud-
ied in many applications, interpretation is becom-
ing increasingly important to help people trust and
evaluate the developed detection models through
providing intrinsic reasons why the given outliers
are identified. It is a nontrivial task for interpret-
ing the abnormality of outliers due to the distinct
characteristics of different detection models, com-
plicated structures of data in certain applications,
and imbalanced distribution of outliers and normal
instances. In addition, contexts where outliers lo-
cate, as well as the relation between outliers and
the contexts, are usually overlooked in existing in-
terpretation frameworks. To tackle the issues, in
this paper, we propose a Contextual Outlier INter-
pretation (COIN) framework to explain the abnor-
mality of outliers spotted by detectors. The inter-
pretability of an outlier is achieved through three
aspects, i.e., outlierness score, attributes that con-
tribute to the abnormality, and contextual descrip-
tion of its neighborhoods. Experimental results on
various types of datasets demonstrate the flexibility
and effectiveness of the proposed framework.

1 Introduction
Outlier detection, which is to identify isolated instances
that are different from the majority, has become an ef-
fective computational tool in real-world applications such
as detecting spams [Liu et al., 2017b; Shah, 2017], dis-
ease outbreaks [Wong et al., 2002], and mis-behavioral IP
sources in networks [Tong and Lin, 2011]. Numerious al-
gorithms have been proposed for outlier detection, including
density-based [Breunig et al., 2000; Aggarwal and Yu, 2001;
Gao et al., 2010], distance-based [Knorr and Ng, 1999;
Liu et al., 2012] and model-based methods [He et al., 2003;
Tong and Lin, 2011; Li et al., 2017]. Some other work tack-
les the curse of dimensionality [Filzmoser et al., 2008], the
massive data volumn [Ramaswamy et al., 2000; Lucic et al.,
2016] and data heterogeneity [Chen et al., 2016]. However,
the essential factors that result in the outliers being detected
are usually ignored and cannot be revealed with the detection
outcome to end users.

Complementing existing work, enabling interpretability
could benefit outlier detection and analysis in several aspects.
First, interpretation helps bridge the gap between detecting
outliers and identifying domain-specific anomalies. Outlier
detection can output data instances with rare and noteworthy
patterns, but in many applications we still rely on domain ex-
perts to manually select domain-specific anomalies from out-
liers that they actually care about in the current application.
For example, in e-commerce website monitoring, outlier de-
tection can discover users or merchants with rare behaviors,
but administrators need to check the results to select those in-
volved in malicious activities such as fraud. Interpretation of
the detected outliers, which provides reasons for outlierness,
can significantly save the effort of such manual inspection.
Second, interpretation can be used in the evaluation process
to complement current metrics such as the area under ROC
curve (AUC) and nDCG [Davis and Goadrich, 2006] which
provide limited information about characteristics of the de-
tected outliers. Third, a detection method that works well in
one dataset or application is not guaranteed to have good per-
formance in others. Unlike supervised learning methods, out-
lier detection is usually performed using unsupervised meth-
ods and cannot be evaluated in the same way. Thus, effective
outlier interpretation would significantly facilitate the usabil-
ity of outlier detection techniques in real-world applications.

One straightforward way for outlier interpretation is to ap-
ply feature selection to identify a subset of features that dis-
tinguish outliers from normal instances [Knorr and Ng, 1999;
Micenková et al., 2013; Duan et al., 2014; Vinh et al., 2016;
Gao et al., 2017]. However, first it is difficult for some exist-
ing methods to efficiently handle datasets of large size or high
dimensions, or effectively obtain interpretations from com-
plex data types and distributions. Second, we measure the
outlierness score of outliers through interpretation, which is
important in many applications where some actions may be
taken to outliers with higher priority. Some detectors only
output binary labels indicating whether each data instance
is an outlier. Sometimes continuous outlier scores are pro-
vided, but they are usually in different scales for different de-
tection methods. A unified scoring mechanism by interpreta-
tion could facilitate the comparisons among various detectors.
Third, besides identifying the notable attributes of outliers,
we also analyze the context (e.g., contrastive neighborhood)
in which outliers are detected. “It takes two to tango.” Discov-
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ering the relations between an outlier and its context would
provide richer information before taking actions to deal with
the detected outliers in real applications.

To tackle the aforementioned challenges, in this paper, we
propose a novel Contextual Outlier INterpretation (COIN)
framework to provide explanations for outliers. We define
the interpretation of an outlier from three aspects: abnormal
attributes, the score of outlierness and the contrastive con-
text with respect to the outlier. The first two elements are
extracted from the relations between the outlier and its con-
text. COIN can also be applied to existing outlier detection
methods which already provide explanations for their results.
In addition, prior knowledge about the roles of attributes in
specific application scenarios can be easily incorporated with
interpretation results, in order to enable end users to filter the
given outliers and select the ones that are practically mean-
ingful for the application. The contributions of this paper are
summarized as follows:

• We define the interpretation of an outlier as three aspects:
abnormal attributes, outlierness score, and the identifica-
tion of the outlier’s local context.

• We propose a novel model-agnostic framework to interpret
outliers, as well as designing a concrete model within the
framework to extract interpretation information.

• Comprehensive evaluations on interpretation quality, as
well as case studies, are conducted through experiments
on both real-world and synthetic datasets.

2 Preliminaries

Interpretation is receiving increasing attention in many ma-
chine learning applications. Some recent work gives ex-
planation of the prediction results of classifiers [Ribeiro et
al., 2016; Koh and Liang, 2017]. Also, some outlier de-
tection methods provide explanation together with detection
results [Perozzi et al., 2014; Liu et al., 2017a; Liang and
Parthasarathy, 2016], but they cannot be simply adopted by
all detection methods.
Problem Definition Here we formally define the outlier in-
terpretation problem as follows. Given a dataset X = {xi ∈
RM |i ∈ [1, N ]} and the query outliers O detected therefrom,
the interpretation for each outlier oi ∈ O is defined as a com-
posite set: Ei = {Ai, d(oi),Ci = {Ci,l|l ∈ [1, L]} }. Here
Ci denotes the context (i.e., k-nearest normal instances) of
the outlier, Ci,1,Ci,2, ...,Ci,L are clusters in Ci, and L is the
number of clusters. Ai represents the abnormal attributes of
oi in contrast to Ci. We use “inliers” and “normal instances”
interchangeably in this paper. d(oi) ∈ R≥0 is the outlierness
score of oi. The reason for clustering the context is illustrated
in Figure 1. There are three clusters, each of which represents
images of a digit. Red points are the detected outliers. Clus-
ters of digit “2” and “5” compose the context of outlier o1.
The interpretation of o1 can be obtained by comparing it with
the two clusters respectively. However, it would be difficult
to explain the outlierness of o1 if clusters of digit “2” and “5”
are not differentiated.

o1

o3

o2

w1,1

w1,2

w3,1

dim 1

dim 2

Figure 1: A toy example of outlier interpretation after resolving its
context into clusters.

3 Contextual Outlier Interpretation
Framework

The general framework of Contextual Outlier INterpretation
(COIN) is illustrated in Figure 2. Given a dataset X and a set
of outliers O, we map the interpretation task to a classification
problem. Then, the classification problem over the whole data
is partitioned to a series of regional problems around each
outlier query. Finally, interpretation is obtained from regional
classification models.

3.1 Explaining Outlier Detector Using Classifiers
In this subsection, we establish the correlation between out-
lier detection and traditional supervised classification prob-
lems. Formally, an outlier detector can be denoted as
h(x|θ,X), where θ denotes the parameters. Here X is also
treated as parameters since data instances affect the outlier-
ness of each other. The abnormality of input x is typically
represented by either a binary or continuous score, while the
latter case can be easily transformed to the former if a thresh-
old is set to separate inliers and outliers. This motivates us
to explain outlier detectors using classification models. Al-
though outlier detection is usually tackled as an unsupervised
learning problem, there exists an imaginary hyperplane spec-
ified by certain decision function f(x|θ′) : RM → {0, 1} that
separates outliers from normal instances. Here θ′ represents
the parameters of f . An example can be found in Step 1 of
Figure 2. Blue points and red points are normal instances and
outliers, respectively, while dotted curves indicate the deci-
sion boundaries. The problem of building the decision func-
tion f is formulated as below,

min
f
L(h, f ;O,X− O), (1)

where L is the loss function including classification error and
regularization terms. O and X−O represent outlier class and
inlier class, respectively.

By utilizing the isolation property of outliers, we can fur-
ther decompose the problem in Equation (1) into multiple re-
gional tasks of explaining individual outliers:

min
f
L(h, f ;O,X− O)⇒ min

f

∑
i

L(h, f ; oi,Ci)

⇒
∑
i

min
gi
L(h, gi; oi,Ci)⇒

∑
i

min
gi
L(h, gi;Oi,Ci).

(2)
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Figure 2: The Framework for Contextual Outlier Interpretation

In this way, the original problem is transformed to explaining
each outlier oi with respect to its context counterpart Ci. Note
that it is computationally efficient, given that the number of
outliers is usually small. Here gi represents the local parts of
f exclusively for classifying oi and Ci. In Figure 2, for ex-
ample, gi is highlighted by the bold boundaries around o1 in
Step 1, and Ci consists of the normal instances enclosed in the
yellow circle in Step 2. Since there is a data imbalance be-
tween the two classes, we adopt synthetic sampling [He and
Garcia, 2009] to expand oi to an outlier class Oi with com-
parable size to Ci. Local interpretation, encoded in gi, can be
obtained by approximating the local behavior of h between
Oi and Ci.

3.2 Resolving Context for Outlier Explanations
Now we focus on interpreting each single outlier oi by solv-
ing gi, from which we can extract interpretation results. Let
pOi

(x) and pCi
(x) denote the probability density functions of

the outlier class and inlier context class, respectively. Since
the context Ci may contain complex cluster structures as
shown in Figure 1, it is difficult to directly measure the degree
of separation between Oi and Ci or to discover the attributes
that discriminate the two classes. Therefore, we further de-
compose L(h, gi;Oi,Ci) to a set of simpler problems. Ac-
cording to Bayesian decision theory, the error of classifying
between Oi and Ci is

P err(Oi,Ci) = P (Oi)

∫
Ci

p(x|Oi)dx + P (Ci)

∫
Oi

p(x|Ci)dx

≈
( ∑
l∈[1,L]

P (Oi)

∫
Ci,l

p(x|Oi)dx
)
+
( ∑
l∈[1,L]

P (Ci,l)

∫
Oi

p(x|Ci,l)dx
)

=
∑

l∈[1,L]

(
P (Oi)

∫
Ci,l

p(x|Oi)dx + P (Ci,l)

∫
Oi

p(x|Ci,l)dx
)

≈
∑

l∈[1,L]

P err(Oi,l,Ci,l). (3)

Suppose we can split the context Ci into multiple clusters
{Ci,l|l ∈ [1, L]} that are well separated from each other, then
each term in the summation can be treated as an independent
sub-problem without mutual inference. Oi,l is a subset of Oi
close to Ci,l. By combining Equation (2) and Equation (3),
our final interpretation task is formulated as:

min
f
L(h, f ;O,X− O)⇒ min

gi,l

∑
i

∑
l

L(h, gi,l;Oi,l,Ci,l). (4)

By now we are able to classify Oi,l and Ci,l with a simple
and explainable model gi,l such as linear models and deci-
sion trees, where the abnormal attributes Ai,l can be extracted
from model parameters. The overall interpretation for oi is
obtained by integrating the results across all Ci,l, l ∈ [1, L].

The estimated time complexity for implementing the
framework above is O(|O| × L × Tg), where Tg is the av-
erage time cost of constructing gi,l. Due to the scarcity of
outliers, |O| is expected to be small. Each gi,l involves Oi,l
and Ci,l. Tg is also expected to be small since Ci,l and Oi,l
are of small sizes. Moreover, the interpretation processes of
different outliers are independent of each other, thus can be
implemented in parallel to further reduce the time cost.

4 Distilling Interpretation from Models
After introducing the general framework of mapping outlier
interpretation into a collection of classification tasks around
individual outliers, in this section, we propose a concrete
model to explain each outlier, including discovering its ab-
normal attributes and measuring the outlierness score.

4.1 Context Identification and Clustering
Given an outlier oi spotted by the detector h, first we need
to identify its context Ci in the data space. As introduced
in Section 2, Ci consists of the nearest neighbors of oi. Here
we use Euclidean distance as the point-to-point distance mea-
sure. The neighbors are chosen only from normal instances.
The instances in Ci are regarded as the representatives for the
local background around the outlier. Although Ci contains
only a small number of data instances compared to the size of
the whole dataset, they constitute the border regions of the in-
lier class and thus are adequate to discriminate between inlier
and outlier classes, as shown in the Step 2 of Figure 2.

As local context may indicate some interesting structures
(e.g., instances with similar semantics are located close to
each other in the attribute space), we further segment Ci into
multiple disjoint clusters. To determine the number of clus-
tersL in Ci, we adopt the measure of prediction strength [Tib-
shirani and Walther, 2005] which shows good performance
even when dealing with high-dimensional data. After choos-
ing the value of L, common clustering algorithms such as
K-means or hierarchical clustering are applied to divide Ci
into multiple clusters as Ci = {Ci,1,Ci,2, · · · ,Ci,L}. Clus-
ters of small size, i.e., |Ci,l| ≤ 0.03 · |Ci|, are abandoned in
subsequent procedures.
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Figure 3: Outlier Interpretation from SVM Parameters

4.2 Maximal-Margin Linear Explanations
The concrete type of models chosen for gi,l should have the
following properties. First, it is desirable to keep g ∈ G sim-
ple in form. For example, we may expect the number of non-
zero weights to be small for linear models, or the rules to be
concise in decision trees [Ribeiro et al., 2016]. Here we let
g ∈ G belong to linear models, i.e., g(x) = wT x. We impose
the l1-norm constraint on w, where attributes am that corre-
spond to large |w[m]| values are regarded as abnormal. Sec-
ond, since outliers are usually highly isolated from their con-
text, there could be multiple solutions all of which could clas-
sify the outliers and inliers almost perfectly, but we want to
choose the one that best reflects such isolation property. This
motivates us to choose l1 norm support vector machine [Zhu
et al., 2004] to build g. The local loss L(h, gi,l;Oi,l,Ci,l) to
be minimized in Equation (4) is thus as below:

Ni,l∑
n=1

(1− yng(xn)− ξn)+ + c

Ni,l∑
n=1

ξn,

s.t. ξn ≥ 0, ‖w‖1 ≤ b

(5)

where Ni,l = |Oi,l ∪ Ci,l|, (.)+ is the hinge loss, ξn is the
slack variable, b and c are the parameters. Here yn = 1 if
xn ∈ Ci,l and yn = −1 if xn ∈ Oi,l.

From the parameters of the local model gi,l, we can find the
abnormal attributes and compute the outlierness score with
respect to Ci,l. Let wi,l denote the weight vector of gi,l, the
importance of attribute am with respect to the context of Ci,l
is thus defined as si,l(am) = |wi,l[m]|/γmi,l. Here γmi,l denotes
the resolution of attribute am in Ci,l, i.e., the average distance
along the mth axis between an instance in Ci,l and its closest
neighbors. The overall score of am for oi is

si(am) = (1/|Ci|)
∑
l

|Ci,l|si,l(am), (6)

which is the weighted average score for am over all L clus-
ters. Attributes am with large si(am) are regarded as the ab-
normal attributes for oi (i.e., am ∈ Ai). For the outlierness
score d(oi), we define it as:

dl(oi) = |gi,l(oi)|/‖wi,l‖2. (7)

This measure is robust to high dimensional data, as w is
sparse and dl(oi) is calculated in a low dimensional space.
An example is shown in Figure 3, where abnormal attributes
are indicated from weight vector w and the outlierness score

is shown. The overall outlierness score for oi across all con-
text clusters is:

d(oi) = (1/|Ci|)
∑
l

|Ci,l| dl(oi)/γi,l, (8)

which is the weighted summation over different context clus-
ters. Here the normalization term γi,l is the average dis-
tance from an instance to its closest neighbor in Ci,l. Now
we have obtained all of the three aspects of interpretation
Ei = {Ai, d(oi),Ci = {Ci,l|l ∈ [1, L]} }.

4.3 Filtering Outliers with Interpretation and
Prior Knowledge

In real-world applications, the importance of different at-
tributes varies according to different scenarios [Yang et al.,
2011; Ntoulas et al., 2006]. Take social network spammer
detection as an example. We have two account attributes: the
number of followers (Nfer) and the ratio of tweets posted
by API (RAPI ). A spammer account tends to have a small
Nfer value as it is socially inactive, but large RAPI to conve-
niently generate malevolent content. However, it is easy for
spammers to intentionally increase their Nfer by purchasing
followers, but manually decreasing RAPI is more difficult
due to expensive human labors. In this sense, RAPI is more
robust than Nfer in translating detected outliers as spam-
mers. Therefore, we introduce two vectors β and p, where
βm ∈ R≥0 denotes the prior knowledge about the robust-
ness of am, and pm ∈ {−1, 0, 1} denotes the expected per-
turbation direction of a abnormal attribute. pm = −1 means
we expect outliers to have small value for am (e.g., Nfer),
pm = 1 means the opposite (e.g., RAPI ), while pm = 0
means there is no preference. Thus, the outlierness score of
oi with respect to Ci,l is refined as:

dl(oi) = ‖
|gi,l(oi)|
‖wi,l‖2

w′
i,l

‖wi,l‖2
◦ β‖, (9)

where the operator ◦ denotes element-wise multiplication,
w′[m] = min(0, w[m]) if pm = 1, and w′[m] =
max(0, w[m]) if pm = −1. If we label outliers with 1 and
inliers with −1, the sign of p is reversed. The reason for in-
troducing w′ is that, if interpretation does not conform with
the prior knowledge, such as an outlier in spammer detection
is interpreted as having low RAPI , then the outlierness score
of the outlier should be deducted.

5 Experiments
In this section, we present evaluation results to assess the ef-
fectiveness of our framework. We try to answer the follow-
ing questions: 1) How accurate is the proposed framework
in identifying abnormal attributes of given outliers? 2) Can
we accurately measure the outlierness score of outliers? 3)
How effective is the prior knowledge of attributes in refining
outlier detection results?

5.1 Datasets
We use both real and synthetic datasets in experiments. We
follow the procedures in [Keller et al., 2012] and create two
synthetic datasets with ground-truth abnormal attributes for
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SYN1 SYN2 WBC Twitter MNIST
N 405 405 458 11,000 42,000
M 15 15 9 16 150
|O| 30 30 25 1,000 1,000

Table 1: Details of the datasets in experiments

each outlier. In the first synthetic dataset, each outlier is
close to only one normal cluster and far away from the oth-
ers. In the second synthetic dataset, each outlier is in the
vicinity of several normal clusters simultaneously, so the sce-
nario is more complicated. The real-world datasets used in
our experiments include Wisconsin Breast Cancer (WBC)
dataset [Asuncion and Newman, 2007], MNIST dataset and
Twitter spammer dataset [Yang et al., 2011]. WBC dataset
records the measurements for breast cancer cases with two
classes, i.e. benign and malignant. The former class is
considered as normal, while we downsampled 25 malignant
cases as the outliers. MNIST dataset includes a collection
of 28 × 28 images of handwritten digits. Here we use the
training set which contains 42,000 examples. Instead of us-
ing raw pixels as attributes, we build a Restricted Boltzmann
Machine (RBM) with 150 latent units to map images to a low-
dimensional space which is more proper for interpretation
than raw pixels. A multi-label logistic classifier is then built
to classify digits, and the ground-truth outliers are selected as
the misclassified instances downsampled to 1, 000. The Twit-
ter dataset contains information of normal users and spam-
mers crawled from Twitter. Following [Yang et al., 2011],
we divide attributes into two categories according to whether
they are robust to the spammers in disguise. Attributes of low
robustness refer to those which can be easily controlled by
spammers to avoid being detected, while attributes of high
robustness are the opposite.

5.2 Baseline Methods
We include some recent outlying-aspect mining and classifier
interpretation methods as baseline methods:

• CA-lasso (CAL) [Micenková et al., 2013]: An interpreta-
tion method that analyzes the separability between outlier
and inliers as a linear classification problem solved with
LASSO, without further clustering the context of outliers.

• IPS-BS [Vinh et al., 2016]: An interpretation method that
applies isolation path score to measure outlierness. Beam
Search is then applied to look for the abnormal attributes.

• LIME [Ribeiro et al., 2016]: A global classifier is first con-
structed to classify outliers and inliers. Then the abnormal
attributes for each outlier is identified by locally interpret-
ing the classification model around the outlier. A neural
network is used as the global classifier for MNIST data,
and SVMs with RBF kernel are used for other datasets.

5.3 Abnormal Attributes Evaluation
The goal of this experiment is to verify that the identified at-
tributes indeed explain the abnormality. Since ground-truth
abnormal attributes of real-world datasets are not available,
we append M Gaussian-noise attributes to all real-world data
instances. Noise attributes are not expected to be identified

COIN CAL IPS-BS LIME

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

SYN1 0.97 0.89 0.93 0.89 0.81 0.84 0.87 0.44 0.58 0.82 0.79 0.80
SYN2 0.99 0.90 0.94 0.92 0.70 0.80 1.00 0.37 0.54 0.91 0.70 0.79
WBC 0.86 0.37 0.52 0.84 0.37 0.51 0.90 0.15 0.26 0.35 0.39 0.37
Twitter 0.91 0.33 0.48 0.75 0.34 0.47 0.72 0.29 0.41 0.60 0.67 0.63

Table 2: Performance of abnormal attributes identification

as abnormal as they are of small magnitudes. In our experi-
ments, we choose 0.08 × N nearest neighbors of an outlier
oi as its context Ci. The radius of synthetic sampling for
building the outlier class Oi is set as half of the average dis-
tance to the inlier class Ci to avoid overlap between Oi and
Ci. The parameters of SVMs are tuned by validation, where
some samples from Oi and Ci are randomly selected as the
validation set. The same parameter values are used for all
outliers in the same dataset. We report the Precision, Recall
and F1 score averaged over all the outliers in Table 2. Besides
finding that COIN shows relatively better performance, some
observations can be made as follows:

• In general, the Recall value of SYN2 is lower than that
of SYN1, because the context of each outlier in SYN2
has several clusters, and the true abnormal attributes vary
among different clusters. In this case, retrieving all ground-
truth attributes is more challenging.

• IPS-BS is more cautious in making decisions. It tends
to stop early if the discovered abnormal attributes already
make the outlier query well isolated. Therefore, IPS-BS
has high Precision, but only a small portion of true at-
tributes are discovered (low Recall).

• The Recall scores are low for real-world data since we treat
all original attributes to be the ground truth, so low Recall
values do not necessarily mean bad performances.

5.4 Outlierness Score Evaluation

We evaluate if interpretation methods are able to accurately
measure the outlierness score of outlier queries. For each
dataset, we randomly sample the same number of inliers as
the outliers, and use them together as queries to interpreters.
The label is 1 for each true outlier, and 0 for each inlier. For
each query, interpreters are asked to estimate its outlierness
score. After that, we rank the instances in a descending or-
der with respect to their outlierness scores. Since true outliers
are more isolated, an effective interpreter should convert such
isolation degree to larger scores.

We report the results in Table 3 with AUC as the evaluation
metric. The proposed method achieves better performance
than the baseline methods especially on SYN2 and MNIST.
This can be explained by the more complex structures in these
datasets, where an outlier may be close to several neighboring
clusters. COIN resolves the contextual clusters around each
outlier, so it can handle such scenario. This also explains
why IPS BS is also more effective in complex datasets than
the other two baseline methods. The isolation tree used in
IPS BS can handle complex cluster structures.
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AUC SYN1 SYN2 WBC Twitter MNIST
COIN 0.78 0.93 0.96 0.85 0.87
CAL 0.71 0.63 0.94 0.81 0.76

IPS BS 0.69 0.91 0.90 0.79 0.82
LIME 0.74 0.62 0.94 0.83 0.78

Table 3: Outlierness score ranking performance

5.5 Filtering Outliers with Prior Knowledge
In this experiment, we discuss if interpretations, together with
prior knowledge, can help filtering existing outliers to satisfy
the demand of specific applications.

The experiment has two parts. In the first part, we append
M new noise attributes to data instances, so each instance is
augmented to x ∈ R2M . Different from the noise attributes
in Section 5.3 that are of small magnitude, the attributes here
may turn inliers to “outliers”. However, these new outliers are
irrelevant to the ground truth. We sample 0.5 × |O| inliers,
together with ground-truth outliers, as queries fed into COIN.
We set p to be zero and run COIN with different β values.
The weights corresponding to original attributes are fixed to 1
(βm = 1,m ∈ [1,M ]), and we only vary the weights of noise
attributes (βm = β,m ∈ [M + 1, 2M ]). Similar to Section
5.4, we obtain the outlierness score for all queries and rank
them in a descending order according to the score. Ground-
truth outliers are expected to rank higher. The ranking perfor-
mance is reported in Figure 4a. The plot indicates that as we
increase the weights of noise attributes, the performance of
the interpreter degrades for all datasets, because it is more dif-
ficult to distinguish between real outliers and noisy instances.
From the opposite perspective, assigning large weights to im-
portant attributes will filter out mis-detected outliers.

The second part of the experiment uses the Twitter dataset
in which features extracted from user profiles, posts and
graph structures are used as attributes. According to [Yang et
al., 2011], the robustness level varies for different attributes.
Some attributes, such as the number of followers, hashtage
ratio and reply ratio, can be easily controlled by spammers
to avoid being captured, so they are of low robustness, while
some other attributes such as account age, API ratio and URL
ratio have high robustness. In this experiment, we fix the
weight of low-robustness attributes to 1, and vary the weight
βm of high-robustness attributes. The remaining procedures
are the same as first part of the experiment discussed above.
The result of outlierness ranking is reported in Figure 4b. The
rising curve shows that as more emphasis is put on high-
robust attributes, we are able to refine the performance of
spammer identification. The experiment result indicates that
by resorting to the interpretation of outliers, we can gain more
insights on their characteristics, and adaptively select those
that are in accordance with the specific application.

5.6 Case Studies
We conduct some case studies to illustrate interpretation re-
sults on MNIST. The attributes are the hidden features ex-
tracted by the RBM instead of raw pixels. The case study
results are shown in Figure 5. There are three query outlier
images shown in the first row. We choose two neighboring
clusters for each query, and compute the average image of
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Figure 4: The influence of the prior knowledge on outlierness score.
Results averaged over 20 runs, bars depict 25-75%.

Figure 5: Visualization of outlier interpretation on MNIST dataset.

each cluster, as shown in the second row. The average images
can be seen as part of the contexts of outliers. Clear hand-
written digits can be seen from the average images, so that
the clusters are internally coherent. The third and fourth rows
together indicate the noteworthy attributes of the query im-
age with respect to the corresponding average images. The
black strokes enclosed by red circles in third-row images rep-
resent positive abnormal attributes, i.e., the query image is
regarded as an outlier instance because it possesses these at-
tributes. The strokes enclosed by blue circles in fourth-row
images are negative abnormal attributes, as the query outlier
digit does not include them. These negative attributes, how-
ever, commonly appear in the neighbor images of the outlier.
The positive and negative attributes together explain why the
outlier image is different from its nearby normal images.

6 Conclusion and Future Work
In this paper, we propose a model-agnostic outlier interpreta-
tion framework by resolving outliers’ local context. We de-
fine the interpretation of an outlier from three aspects includ-
ing the abnormal attributes, outlierness score and the outlier’s
context. Interpretation is distilled from the results of a se-
ries of classification tasks. Prior knowledge in different ap-
plications can be incorporated with interpretation results to
refine the outlier detection result. Interesting extensions in-
clude applying hierarchical clustering to accurately partition
the whole data space, considering heterogeneous data sources
and incoporating deep models [He et al., 2017].
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