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Abstract

Anomaly detection (AD) task corresponds to identifying the true anomalies from a
given set of data instances. AD algorithms score the data instances and produce a ranked
list of candidate anomalies, which are then analyzed by a human to discover the true
anomalies. However, this process can be laborious for the human analyst when the number
of false-positives is very high. Therefore, in many real-world AD applications including
computer security and fraud prevention, the anomaly detector must be configurable by the
human analyst to minimize the effort on false positives. One important way to configure
the detector is by providing true labels (nominal or anomaly) for a few instances.

In this paper, we study the problem of active learning to automatically tune ensemble
of anomaly detectors to maximize the number of true anomalies discovered. We make
four main contributions towards this goal. First, we present an important insight that
explains the practical successes of AD ensembles and how ensembles are naturally suited
for active learning. This insight also allows us to relate the greedy query selection strategy
to uncertainty sampling, with implications for label-efficient learning. Second, we present
several algorithms for active learning with tree-based AD ensembles. A novel formalism
called compact description (CD) is developed to describe the discovered anomalies. We
propose algorithms based on the CD formalism to improve the diversity of discovered
anomalies and to generate rule sets for improved interpretability of anomalous instances.
To handle streaming data setting, we present a novel data drift detection algorithm that
not only detects the drift robustly, but also allows us to take corrective actions to adapt
the detector in a principled manner. Third, we present a novel algorithm called GLocalized
Anomaly Detection (GLAD) for active learning with generic AD ensembles and an approach
to generate succinct explanations from the resulting models. GLAD allows end-users to
retain the use of simple and understandable global anomaly detectors by automatically
learning their local relevance to specific data instances using label feedback. Fourth, we
present extensive experiments to evaluate our insights and algorithms with tree-based AD
ensembles in both batch and streaming settings. Our results show that in addition to
discovering significantly more anomalies than state-of-the-art unsupervised baselines, our
active learning algorithms under the streaming-data setup are competitive with the batch
setup. Experiments using GLAD show its effectiveness in learning the local relevance of
ensemble members to discover more anomalies when compared to baseline methods.

1. Introduction

We consider the problem of anomaly detection (AD), where the goal is to detect unusual but
interesting data (referred to as anomalies) among the regular data (referred to as nominals).
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This problem has many real-world applications including credit card transactions, medical
diagnostics, computer security, etc., where anomalies point to the presence of phenomena
such as fraud, disease, malpractices, or novelty which could have a large impact on the
domain, making their timely detection crucial.

Anomaly detection poses severe challenges that are not seen in traditional learning prob-
lems. First, anomalies are significantly fewer in number than nominal instances. Second,
unlike classification problems, no hard decision boundary exists to separate anomalies and
nominals. Instead, anomaly detection algorithms train models to compute scores for all
instances, and report instances which receive the highest scores as anomalies. The candi-
date anomalies in the form of top-ranked data instances are analyzed by a human analyst
to identify the true anomalies. Since most of the AD algorithms (Chandola, Banerjee, &
Kumar, 2009) only report technical outliers (i.e., data instances which do not fit a nor-
mal model as anomalies), the candidate set of anomalies may contain many false-positives,
which will significantly increase the effort of human analyst in discovering true anomalies.

In this paper, we consider a human-in-the-loop learning framework for discovering
anomalies via ensemble of detectors, where a human analyst provides label feedback (nom-
inal or anomaly) for one or more data instances during each round of interaction. This
feedback is used by the anomaly detector to change the scoring mechanism of data in-
stances towards the goal of increasing the true anomalies appearing at the top of the ranked
list. Our learning framework exploits the inherent strengths of ensembles for anomaly de-
tection. Ensemble of anomaly detectors are shown to perform well in both unsupervised
and active learning settings, but their characteristics leading to good performance are not
well-understood (Aggarwal, 2013; Zimek, Campello, & Sander, 2013). Additionally, prior
work on active learning for anomaly detection (Das, Wong, Dietterich, Fern, & Emmott,
2016; Siddiqui, Fern, Dietterich, Wright, Theriault, & Archer, 2018) greedily selects the
top-scoring data instance to query the human analyst and obtained good results. How-
ever, there is no principle behind this design choice. We investigate these two fundamental
questions related to ensembles and active learning for anomaly detection in this paper.

• Why does the average score across ensemble members perform best in most cases
(Chiang & Yeh, 2015) instead of other score combination strategies (e.g., min, max,
median etc.)?

• Why does the greedy query selection strategy for active learning almost always per-
form best?

Prior work on anomaly detection has four main shortcomings as explained in the related
work section. First, many algorithms are unsupervised in nature and do not provide a
way to configure the anomaly detector by the human analyst to minimize the effort on
false-positives. There is very little work on principled active learning algorithms. Second,
algorithmic work on enhancing the diversity of discovered anomalies is lacking (Görnitz,
Kloft, Rieck, & Brefeld, 2013). Third, most algorithms are designed to handle batch data
well, but there are few principled algorithms to handle streaming data setting. Fourth,
there is little to no work on interpretability and explainability in the context of anomaly
detection tasks (Macha & Akoglu, 2018).
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Contributions. We study label-efficient active learning algorithms to improve unsuper-
vised anomaly detector ensembles and address the above shortcomings of prior work in a
principled manner:

• We present an important insight into how anomaly detector ensembles are naturally
suited for active learning, and why the greedy querying strategy of seeking labels for
instances with the highest anomaly scores is efficient.

• A novel formalism called compact description (CD) is developed to describe the dis-
covered anomalies using tree-based ensembles. We show that CD can be employed to
improve the diversity and interpretability of discovered anomalies.

• We develop a novel algorithm to robustly detect drift in data streams and design asso-
ciated algorithms to adapt the anomaly detector for streaming setting in a principled
manner.

• The key insight behind ensembles is employed to devise a new algorithm referred as
GLocalized Anomaly Detection (GLAD), which can be used to discover anomalies
via label feedback with generic (homogenoeus or heterogeneous) ensembles. We also
provide an approach to generate explanations from GLAD based models.

• We present extensive empirical evidence in support of our insights and algorithms on
several benchmark datasets.

Code and Data. Our code and data are publicly available1.

Outline of the Paper. The remainder of the paper is organized as follows. In Section 2,
we discuss the prior work related to this paper. We introduce our problem setup and give a
high-level overview of our human-in-the-loop learning framework in Section 3. In Section 4,
we describe the main reason for the practical success of anomaly detector ensembles and
state the property that makes them uniquely suitable for label-efficient active anomaly
detection. We present a series of algorithms for active learning with tree-based ensemble of
anomaly detectors in Section 5. In Section 6, we discuss the GLocalized anomaly detection
algorithm for active learning with generic ensemble of detectors. Section 7 presents our
experimental results and finally Section 8 provides summary and directions for future work.

2. Related Work

Unsupervised anomaly detection algorithms are trained without labeled data, and
have assumptions baked into the model about what defines an anomaly or a nominal (Bre-
unig, Kriegel, Ng, & Sander, 2000; Liu, Ting, & Zhou, 2008; Pevný, 2016; Emmott, Das,
Dietterich, Fern, & Wong, 2015). They typically cannot change behavior to correct for the
false positives after they have been deployed. Ensembles of unsupervised anomaly detectors
(Aggarwal & Sathe, 2017) try to guard against the bias induced by a single detector by in-
corporating decisions from multiple detectors. The potential advantage of ensembles is that
when the data is seen from multiple views by more than one detector, the set of anomalies
reported by their joint consensus is more reliable and has fewer false positives. Different

1. https://github.com/shubhomoydas/ad_examples
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methods of creating ensembles include collection of heterogeneous detectors (Ted, Gold-
berg, Memory, Young, Rees, Pierce, Huang, Reardon, Bader, Chow, et al., 2013), feature
bagging (Lazarevic & Kumar, 2005), varying the parameters of existing detectors such as
the number of clusters in a Gaussian Mixture Model (Emmott et al., 2015), sub-sampling,
bootstrap aggregation etc. Some unsupervised detectors such as Loda (Pevný, 2016) are
not specifically designed as ensembles, but may be treated as such because of their internal
structure. Isolation forest (Liu et al., 2008) is a state-of-the-art ensemble anomaly detector.

Active learning corresponds to the setup where the learning algorithm can selectively
query a human analyst for labels of input instances to improve its prediction accuracy.
The overall goal is to minimize the number of queries to reach the target performance.
There is a significant body of work on both theoretical analysis (Freund, Seung, Shamir, &
Tishby, 1997; Balcan, Broder, & Zhang, 2007; Balcan & Feldman, 2015; Monteleoni, 2006;
Dasgupta, Kalai, & Monteleoni, 2009; Yan & Zhang, 2017) and applications (Settles, 2012)
of active learning.

Active learning for anomaly detection has recently gained prominence (Das, Wong,
Fern, Dietterich, & Siddiqui, 2017; Siddiqui et al., 2018; Veeramachaneni, Arnaldo, Ko-
rrapati, Bassias, & Li, 2016; Das et al., 2016; Guha, Mishra, Roy, & Schrijvers, 2016;
Nissim, Cohen, Moskovitch, Shabtai, Edry, Bar-Ad, & Elovici, 2014; Stokes, Platt, Kravis,
& Shilman, 2008; He & Carbonell, 2007; Almgren & Jonsson, 2004; Abe, Zadrozny, &
Langford, 2006) due to significant rise in the volume of data in real-world settings, which
made reduction in false-positives much more critical. In this setting, the human analyst
provides feedback to the algorithm on true labels (nominal or anomaly). If the algorithm
makes wrong predictions, it updates its model parameters to be consistent with the an-
alyst’s feedback. Some of these methods are based on ensembles and support streaming
data (Veeramachaneni et al., 2016; Stokes et al., 2008) but maintain separate models for
anomalies and nominals internally, and do not exploit the inherent strength of the ensemble
in a systematic manner.

Our proposed algorithm BAL and recent work on feedback-guided anomaly detection
via online optimization (Feedback-guided Online) (Siddiqui et al., 2018) both build upon
the same tree-based model proposed by Das et al., (Das et al., 2017). Therefore, there is no
fundamental difference in their performance (See Appendix B). The uniform initialization
of weights employed by both BAL and Feedback-guided Online plays a critical role in
their overall effectiveness. Feedback-guided Online also adopts the greedy query selection
strategy mainly because it works well in practice. In this work, we present the fundamental
reason why greedy query selection strategy is label-efficient for active learning with anomaly
detection ensembles.

Explanations and Interpretability. Explanations and interpretability for machine learn-
ing algorithms are very active areas of research with a vast amount of literature published
in just the last half-a-decade (Doshi-Velez & Kim, 2017). While these terms are sometimes
used interchangeably, we will treat them as separate in the context of anomaly detection.
However, we will use description and interpretability interchangeably. For prediction tasks,
“explanation” refers to the most important reason(s) that influenced the algorithm’s pre-
dicted output. Explanations are useful for debugging, and a good explanation can inspire
confidence in end-users. On the other hand, “interpretability” refers to the representation
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of predictions in a concise and easy-to-understand manner. To further illustrate the dif-
ference, consider the following example. Suppose that an algorithm rejects the home loan
application for Person A. When asked for an explanation, the algorithm might report that
Person A has Low credit score. When asked to interpret (or describe) its predictions, the
algorithm might report: If credit score = ‘Low’ or (employed = False and savings

= ‘Low’) Then approve loan = False. This is an example of a description in disjunc-
tive normal form (DNF). Traditionally, rule set based descriptions (such as in DNF) have
been popular because these are easy for users to understand (Letham, Rudin, McCormick,
& Madigan, 2015; Goh & Rudin, 2014). There is extensive literature on generating rules
and we refer the reader to the book by Furnkranz et al., (Fürnkranz, Gamberger, & Lavrac,
2012). Building an optimal rule set from the data is computationally expensive (Wang,
Rudin, Doshi-Velez, Liu, Klampfl, & MacNeille, 2016). To reduce the computational cost,
some techniques start with a candidate set of rules and then select a subset which describes
the predictions with a balance between interpretability and accuracy (Wang et al., 2016).

Model-agnostic techniques such as LIME (Ribeiro, Singh, & Guestrin, 2016), Anchors
(Ribeiro, Singh, & Guestrin, 2018), and x-PACS (Macha & Akoglu, 2018), generate expla-
nations for any pre-trained model. These explanations can be employed when the original
model is either too complex or too opaque. x-PACS describes anomalies using “hyper-
ellipsoids”. LIME first finds a substitute model approximating the original model and then
derives an explanation from the substitute model. Anchors finds explanations as if-then
rules which “anchor” the predictions locally such that changes to the rest of the feature
values of the instance do not matter.

Our proposed approach BAL, which is based on tree-based anomaly detection ensembles,
can naturally generate descriptions in DNF (Quinlan, 1987) form. Since these descriptions
directly reflect the model structure, they also help explain/diagnose BAL’s predictions
and can also be employed to incorporate feedback. On the other hand, model-agnostic
techniques can be applied to GLAD — our proposed active anomaly detection algorithm
for generic ensembles. GLAD first identifies the most relevant ensemble member for an
anomaly instance. Subsequently, the model-agnostic techniques can be employed to explain
or describe the predictions of that detector.

3. Problem Setup

We are given a dataset D = {x1, ...,xn}, where xi ∈ Rd is a data instance that is associated
with a hidden label yi ∈ {−1,+1}. Instances labeled +1 represent the anomaly class and are
at most a small fraction τ of all instances. The label −1 represents the nominal class. We
also assume the availability of an ensemble E of m anomaly detectors which assigns scores
z = {z1, ..., zm} to each instance x such that instances labeled +1 tend to have scores higher
than instances labeled −1. We denote the ensemble score matrix for all unlabeled instances
by H. The score matrix for the set of instances labeled +1 is denoted by H+, and the
matrix for those labeled −1 is denoted by H−.

We setup a scoring function Score(x) to score data instances, which is parametrized
by Θ and ensemble of detectors E . For example, with tree-based ensembles, we consider
a linear model with weights w ∈ Rm (where w ≡ Θ) that will be used to combine the
scores of m anomaly detectors as follows: Score(x) = w · z, where z ∈ Rm corresponds
to the scores from anomaly detectors for instance x. This linear hyperplane separates
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Labeled data ℒ
and 

Unlabeled data 𝒰

Active 
Learner

Query instance(s)

Interpretations / 
Explanations

Label Feedback
(nominal or anomaly)

Update model
(weights of 

scoring function)

GOAL: Maximize the number of true anomalies presented to the user.

Figure 1: High-level overview of the active learning framework for anomaly detection.

anomalies from nominals. We will denote the optimal weight vector by w∗. Similarly,
with generic (homogeneous or heterogeneous) ensemble of detectors, we combine the scores
of anomaly detectors as follows: Score(x) =

∑m
i=1 pi(x) · si(x), where si(x) is the score

assigned by the ith detector and pi(x) ∈ [0, 1] denotes the relevance of the ith ensemble
member (via a neural network with parameters Θ) for a data instance x. More generally,
we can treat both Score(x) formulations in an equivalent manner with wi ≡ pi(x) and
zi ≡ si(x). If we have control over how the ensemble of detectors is trained, then we
should learn a model that assigns scores si(x) at the highest level of granularity for the best
adaptability (e.g., tree-based model). On the other hand, if we do not have any control
over the construction/training of ensemble, then we cannot guarantee that the model will
assign scores at a sufficient level of granularity. In either case, pi(x) can be used to adapt
the ensemble based model to the data that does not fit the model assumptions. We need
to instantiate the scoring function and initialize the parameters Θ appropriately in order
to improve the label-efficiency of active learning.

Our active learning framework A assumes the availability of an analyst who can provide
the true label for any instance in an interactive loop as shown in Figure 1. In each iteration
of active learning loop, we perform the following steps: 1) Select one or more unlabeled
instances from the input dataset D according to a query selection strategy QS; 2) Query
the human analyst for labels of selected instances by providing additional information in
the form of interpretable rules or explanations; and 3) Update the weights of the scoring
function based on the aggregate set of labeled and unlabeled instances. The goal of A is to
learn optimal weights for maximizing the number of true anomalies shown to the analyst.

We provide algorithmic solutions for key elements of this active learning framework:

• Initializing the parameters Θ of the scoring function Score(x) based on a novel insight
for anomaly detection ensembles.

6
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(a) C1: Common case (b) C2: Similar to Active Learning theory (c) C3: IFOR case
Figure 2: Illustration of candidate score distributions from an ensemble in 2D. The two axes represent
two different ensemble members.

• Query selection strategies to improve the effectiveness of active learning.

• Updating the weights of scoring function based on label feedback.

• Updating ensemble members as needed to support the streaming data setting.

• Generating interpretations and explanations for anomalous instances to improve the
usability of human-in-the-loop anomaly detection systems.

4. Insights: Suitability of Ensembles for Active Learning

In this section, we show how anomaly detection ensembles are naturally suited for active
learning as motivated by the active learning theory for standard classification. The key
insights presented here are in the context of a linear combination of ensemble scores.

Without loss of generality, we assume that all scores from the members of an ensemble
of anomaly detectors are normalized (i.e., they lie in [−1, 1] or [0, 1]), with higher scores
implying more anomalous. For the following discussion, wunif ∈ Rm represents a vector
of equal values, and ||wunif || = 1. Figure 2 illustrates a few possible distributions of
normalized scores from the ensemble members in 2D. When ensemble members are “good”,
they assign higher scores to anomalies and push them to an extreme region of the score
space as illustrated in case C1 in Figure 2a. This makes it easier to separate anomalies from
nominals by a hyperplane. Most theoretical research on active learning for classification
(Kearns, 1998; Balcan et al., 2007; Kalai, Klivans, Mansour, & Servedio, 2008; Dasgupta
et al., 2009; Balcan & Feldman, 2015) makes simplifying assumptions such as uniform data
distribution over a unit sphere and with homogeneous (i.e., passing through the origin)
hyperplanes. However, for anomaly detection, arguably, the idealized setup is closer to
case C2 (Figure 2b), where non-homogeneous decision boundaries are more important. We
present empirical evidence (Section 7), which shows that scores from the state-of-the-art
Isolation Forest (IFOR) detector are distributed in a similar manner as case C3 (Figure 2c).
C3 and C2 are similar in theory (for active learning) because both involve searching for the
optimum non-homogeneous decision boundary. In all cases, the common theme is that when
the ensemble members are ideal, then the scores of true anomalies tend to lie in the farthest
possible location in the positive direction of the uniform weight vector wunif by design.
Consequently, the average score for an instance across all ensemble members works well for
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(a) Toy dataset (b) Anomaly scores (c) Angles
Figure 3: Isolation Tree. (a) Toy dataset (Das et al., 2017) which will be used as the running
example through out the text to illustrate the ideas. Red points are anomalies and black points are
nominals. (b) Anomaly scores assigned by IFOR to the Toy dataset. (c) Histogram distribution
of the angles between score vectors from IFOR and wunif . The red and green histograms show the
angle distributions for anomalies and nominals respectively. Since the red histograms are closer to
the left, anomalies are aligned closer to wunif .

anomaly detection. However, not all ensemble members are ideal in practice, and the true
weight vector (w∗) is displaced by an angle θ from wunif . Figure 3c shows an illustration of
this scenario on a Toy dataset. In large datasets, even a small misalignment between wunif

and w∗ results in many false positives. While the performance of ensemble on the basis of
the AUC metric may be high, the detector could still be impractical for use by analysts.

The property, that the misalignment is usually small, can be leveraged by active learning
to learn the optimal weights efficiently. To understand this, observe that the top-ranked
instances are close to the decision boundary and are therefore, in the uncertainty region.
The key idea is to design a hyperplane that passes through the uncertainty region which then
allows us to select query instances by uncertainty sampling. Selecting instances on which
the model is uncertain for labeling is efficient for active learning (Cohn, Atlas, & Ladner,
1994; Balcan et al., 2007). Specifically, greedily selecting instances with the highest scores
is first of all more likely to reveal anomalies (i.e., true positives), and even if the selected
instance is nominal (i.e., false positive), it still helps in learning the decision boundary
efficiently. This is an important insight and has significant practical implications.

Summary. When detecting anomalies with an ensemble of detectors:

1. It is compelling to always apply active learning.

2. The greedy strategy of querying the labels for top ranked instances is efficient, and is
therefore a good yardstick for evaluating the performance of other querying strategies
as well.

3. Learning a decision boundary with active learning that generalizes to unseen data
helps in limited-memory or streaming data settings.

The second point will be particularly significant when we evaluate a different querying
strategy to enhance the diversity of discovered anomalies as part of this work. In the
above discussion, we presented the insight related to the uniform prior in the context of
linear score combinations only. However, we leverage the same insight in the context of a
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Select a random feature 
at each node, and a 

random split point for that 
feature
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Shallower leaf nodes 
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< ≥

Figure 4: Illustration of Isolation tree from (Das et al., 2017).

more general combination strategy as part of our GLocalized Anomaly Detection (GLAD)
algorithm (Section 6).

5. Active Learning Algorithms for Tree-based Ensembles

In this section, we describe a series of algorithms for active learning with tree-based ensem-
bles. First, we present the strengths of tree-based anomaly detector ensembles and describe
one such algorithm referred as Isolation Forest in more depth (Section 5.1). Second, we
present a novel formalism called compact description that describes groups of instances
compactly using a tree-based model, and apply it to improve the diversity of instances
selected for labeling and to generate succinct interpretable rules (Section 5.2). Third, we
describe an algorithm to update the weights of the scoring function based on label feedback
in the batch setting, where the entire data is available at the outset (Section 5.3). Fourth,
we describe algorithms to support streaming setting, where the data comes as a continuous
stream (Section 5.4).

5.1 Tree-based Anomaly Detection Ensembles

Ensemble of tree-based anomaly detectors have several attractive properties that make them
an ideal candidate for active learning:

• They can be employed to construct large ensembles inexpensively.

• Treating the nodes of tree as ensemble members allows us to both focus our feedback
on fine-grained subspaces as well as increase the capacity of the model in terms of
separating anomalies from nominals.

• Since some of the tree-based models such as Isolation Forest (IFOR) (Liu et al., 2008),
HS Trees (HST) (Tan, Ting, & Liu, 2011), and RS Forest (RSF) (Wu, Zhang, Fan,
Edwards, & Yu, 2014) are state-of-the-art unsupervised detectors (Emmott et al.,
2015; Domingues, Filippone, Michiardi, & Zouaoui, 2018), it is a significant gain if
their performance can be improved with minimal label feedback.

In this work, we will focus mainly on IFOR because it performed best across all datasets
(Emmott et al., 2015). However, we also present results on HST and RSF wherever appli-
cable.
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(b) Scores from one tree
Figure 5: Illustration of Isolation Tree on simple data. (a) A single isolation tree for the Toy dataset
(Figure 3a). (b) Regions having deeper red belong to leaf nodes which have shorter path lengths
from the root and correspondingly, higher anomaly scores. Regions having deeper blue correspond
to longer path lengths and lower anomaly scores.

(a) IFOR (b) HST (depth=15) (c) HST (depth=8)
Figure 6: Illustration of differences among different tree-based ensembles. The red rectangles show
the union of the 5 most anomalous subspaces across each of the 15 most anomalous instances
(blue). These subspaces have the highest influence in propagating feedback across instances through
gradient-based learning under our model. HST has fixed depth which needs to be high for accuracy
(recommended 15 (Tan et al., 2011)). IFOR has adaptive height and most anomalous subspaces are
shallow. Higher depths are associated with smaller subspaces which are shared by fewer instances.
As a result, feedback on any individual instance gets passed on to many other instances in IFOR, but
to fewer instances in HST. RSF has similar behavior as HST. We set the depth for HST (and RSF
(Wu et al., 2014)) to 8 (Figure 6c) in our experiments in order to balance accuracy and feedback
efficiency.

Isolation Forest (IFOR) comprises of an ensemble of isolation trees. Each tree partitions
the original feature space at random by recursively splitting an unlabeled dataset. At every
tree-node, first a feature is selected at random, and then a split point for that feature is
sampled uniformly at random (Figure 4). This partitioning operation is carried out until
every instance reaches its own leaf node. The key idea is that anomalous instances, which
are generally isolated in the feature space, reach the leaf nodes faster by this partitioning
strategy than nominal instances which belong to denser regions (Figure 5). Hence, the path
from the root node is shorter to the leaves of anomalous instances when comapred to the
leaves of nominal instances. This path length is assigned as the unnormalized score for an
instance by an isolation tree. After training an IFOR with T trees, we extract the leaf nodes
as the members of the ensemble. Such members could number in the thousands (typically
4000− 7000 when T = 100). Assume that a leaf is at depth l from the root. If an instance

10



Active Anomaly Detection via Ensembles

belongs to the partition defined by the leaf, it gets assigned a score −l by the leaf, else 0.
As a result, anomalous instances receive higher scores on average than nominal instances.
Since every instance belongs to only a few leaf nodes (equal to T ), the score vectors are
sparse resulting in low memory and computational costs.

HST and RSF apply different node splitting criteria than IFOR, and compute the
anomaly scores on the basis of the sample counts and densities at the nodes. We apply log-
transform to the leaf-level scores so that their unsupervised performance remains similar
to the original model and yet improves with feedback. The trees in HST and RSF have a
fixed depth which needs to be larger in order to improve the accuracy. In contrast, trees
in IFOR have adaptive depth and most anomalous subspaces are shallow. Larger depths
are associated with smaller subspaces, which are shared by fewer instances. As a result,
feedback on any individual instance gets passed on to very few instances in HST and RSF,
but to much more number of instances in IFOR. Therefore, it is more efficient to incorporate
feedback in IFOR than it is in HST or RSF (see Figure 6).

5.2 Compact Description Formalism and Applications to Diversified Querying
and Interpretability

In this section, we first describe the compact description formalism to describe a group of
instances. Subsequently, we propose algorithms for selecting diverse instances for querying
and to generate succinct interpretable rules using compact description.

Compact Description (CD). The tree-based model assigns a weight and an anomaly
score to each leaf (i.e., subspace). We denote the vector of leaf-level anomaly scores by
d, and the overall anomaly scores of the subspaces (corresponding to the leaf-nodes) by
a = [a1, ..., am] = w ◦ d, where ◦ denotes element-wise product operation. The score
aiprovides a good measure of the relevance of the i-th subspace. This relevance for each
subspace is determined automatically through the label feedback. Our goal is to select a
small subset of the most relevant and “compact” (by volume) subspaces which together
contain all the instances in a group that we want to describe. We treat this problem as a
specific instance of the set covering problem. We illustrate this idea on a synthetic dataset
in Figure 7. This approach can be potentially interpreted as a form of non-parametric
clustering.

Let Z be the set of instances that we want to describe, where |Z| = p. For example,
Z could correspond to the set of anomalous instances discovered by our active learning
approach. Let si be the δ most relevant subspaces (i.e., leaf nodes) which contain zi ∈
Z, i = 1, ..., p. Let S = s1 ∪ ... ∪ sp and |S| = k. Denote the volumes of the subspaces
in S by the vector v ∈ Rk. Suppose x ∈ {0, 1}k is a binary vector which contains 1 in
locations corresponding to the subspaces in S which are included in the covering set, and
0 otherwise. Let ui ∈ {0, 1}k denote a vector for each instance zi ∈ Z which contains 1
in all locations corresponding to subspaces in si. Let U = [uT1 , ...,u

T
n ]T . A compact set of

subspaces S∗ which contains (i.e., describes) all the candidate instances can be computed
using the optimization formulation in Equation 1. We employ an off-the-shelf ILP solver
(CVX-OPT) to solve this problem.

11
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S∗ = arg min
x∈{0,1}k

x · v (1)

s.t. U · x ≥ 1 (where 1 is a column vector of p 1’s)

Applications of Compact Description. Compact descriptions have multiple uses including:

• Discovery of diverse classes of anomalies very quickly by querying instances from
different subspaces of the description.

• Improved interpretability of anomalous instances. We assume that in a practical
setting, the analyst(s) will be presented with instances along with their corresponding
description(s). Additional information can be derived from the description and shown
to the analyst (e.g., number of instances in each compact subspace), which can help
prioritize the analysis.

In this work, we present empirical results on improving query diversity and also compare
with another state-of-the-art algorithm that extracts interpretations (Wang et al., 2016).

(a) Baseline (b) Active Anomaly Detection (c) Compact Description
Figure 7: Top 30 subspaces ranked by w ◦ d (relevance). Red points are anomalies. (a) shows the
top 30 most relevant subspaces (w.r.t their anomalousness) without any feedback. We can see that
initially these subspaces simply correspond to the exterior regions of the dataset. Our active anomaly
detection approach learns the true relevance of subspaces via label feedback. (b) shows that
after incorporating the labels of 35 instances, the subspaces around the labeled anomalies have
emerged as the most relevant. (c) shows the set of important subspaces which compactly cover all
labeled anomalies. These were computed by solving Equation 1. Note that the compact subspaces
only cover anomalies that were discovered in the 35 feedback iterations. Anomalies which were not
detected are likely to fall outside these compact subspaces.

Diversity-based Query Selection Strategy. In Section 4, we reasoned that the greedy
strategy of selecting top-scored instances (referred as Select-Top) for labeling is efficient.
However, this strategy might lack diversity in the types of instances presented to the hu-
man analyst. It is likely that different types of instances belong to different subspaces in
the original feature space. Our proposed strategy (Select-Diverse), which is described
next, is intended to increase the diversity by employing tree-based ensembles and compact
description to select groups of instances from subspaces that have minimum overlap.

Assume that the human analyst can label a batch of b instances, where b > 1, in each
feedback iteration. Algorithm 1 employs the compact description to achieve this diver-
sity. The algorithm first selects n (> b) top-ranked anomalous instances Z and computes

12
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Algorithm 1 Select-Diverse (X, b, n)

Input: Unlabeled dataset X, # instances to select b, # candidate instances n (n ≥ b)
Let Z = n top-ranked instances as candidates ⊆ X (blue points in Figure 8a)
Let S∗ = subspaces with Equation 1 that contain Z (rectangles in Figures 8b and 8c)
Set Q = ∅
while |Q| < b do

Let x = instance with highest anomaly score ∈ Z s.t. x has minimal
overlapping regions in S∗ with instances in Q

Set Q = Q ∪ {x} (green circles in Figure 8c)
Set Z = Z \ {x}

end while
return Q

the corresponding compact description (small set of subspaces S∗). Subsequently, per-
forms an iterative selection of b instances from Z by minimizing the overlap in the corre-
sponding subspaces from S∗. Figure 8 provides an illustration comparing Select-Top and
Select-Diverse query selection strategies.

(a) Candidate Subspaces (b) Select-Top (c) Select-Diverse
Figure 8: Illustration of compact description and diversity of selected instances for labeling using
IFOR. Most anomalous 15 instances (blue checks) are selected as the query candidates. The red
rectangles in (a) form the union of the δ (= 5 works well in practice) most relevant subspaces across
each of the query candidates. (b) and (c) show the most “compact” set of subspaces which together
cover all the query candidates. (b) shows the most anomalous 5 instances (green circles) selected
by the greedy Select-Top strategy. (c) shows the 5 “diverse” instances (green circles) selected by
Select-Diverse.

Interpretable Explanations from Subspaces. While Equation 1 helps in generating
descriptions to improve query diversity, it lacks consideration for easy interpretability by
a human analyst. Motivated by the research in interpretability for classification problems
(Wang et al., 2016), we state the following desiderata for interpretability of anomalies:

• Descriptions (of anomalies) should be simple. Subspaces in the case of tree-based
models are defined by ranges of feature values which can be translated to predicate
rules. A feature range which does not have either a minimum or a maximum value
(i.e., ±∞) requires fewer predicates for defining the corresponding rule and simplifies
the subspace definition.

13
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Figure 9: Illustration of interpretable rules on Toy dataset. The left figure shows all candidate
regions after 30 feedback iterations. The figure on the left shows the interpretable description for
anomalies computed by Algorithm 2. The interpretable descriptions are translated to the following
rule: predict ‘anomaly’ if ((x > 4.436513) & (y > 2.238837) & (y <= 4.395921)) or

((x > 3.658627) & (y <= 2.716822)) or ((x > -0.431709) & (x <= 2.033541) & (y >

3.703597))

• Descriptions should be precise, i.e., they should include few nominals (false-positives).
The absence of this property would result in descriptions with high recall but low
precision.

Keeping the above considerations in mind, we modify Equation 1 as follows:

S∗ = arg min
x∈{0,1}k

x · (v ◦ (1k + η) + ς) (2)

s.t. U · x ≥ 1p

where x,v, p, k are the same as defined for Equation 1

1k is a column vector of k 1’s

1p is a column vector of p 1’s

η = {η1, · · · , ηk} are the number of ‘nominals’ in the subspaces in S
ς = {ς1, · · · , ςk} are the complexities (function of rule lenghts) of subspaces in S

Algorithm 2 employs Equation 2 to generate interpretable descriptions for all anomalies
in a group of labeled instances L. The algorithm also takes as input a set of unlabeled
instances U from which it samples a set of pseudo “nominals” denoted by Lu. The la-
beled nominals in L together with Lu are then used to improve the precision of the output
descriptions. The number of nominals in L ∪ Lu which fall within a subspace s is com-
puted as ηs = num nominals(s,L ∪ Lu). Since a precise description of anomalies should
exclude nominals as much as possible, Equation 2 penalizes a subspace s in proportion to
ηs. Furthermore, Algorithm 2 retains only those subspaces whose precision is greater than a
threshold, i.e., precision(s,L∪Lu) ≥ t. Subspaces which are selected for the descriptions
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can be represented as rules based on their feature-ranges. A rule has the same length as
the number of feature-range predicates required to define a description. Longer rules are
harder for an analyst to understand. Therefore, we define the complexity ςs of a subspace
s as a function of its rule length: ςs = 2rule length(s)−1. Equation 2 penalizes a subspace by
its complexity and therefore, encourages selection of subspaces which are simpler to define.
Figure 9 illustrates the rules generated on the Toy dataset.

At a broader level, we start with as many candidate subspaces for descriptions as the
number of leaves in the forest. Typically, these are few thousands in number. The label
feedback from human analyst helps in automatically identifying the most relevant candidates
for Algorithm 2, which then applies additional filters using Equation 2 and the precision of
subspaces. Thus, Algorithm 2 tries to efficiently select an optimal subset from thousands
of subspaces via stepwise selection and filtering.

Algorithm 2 Interpretable-Descriptions (L, U , u, t)

Input: Labeled set we want to describe L (having anomalies as well as nominals),
unlabeled set from which we sample “nominals” U ,
number of additional instances to sample as “nominals” u,
precision threshold t ∈ [0, 1]

Let Lu = select u random instances from U and label them as ‘nominal’
Let Z = {x ∈ L ∪ Lu : x is labeled ‘anomaly’}
Let S = candidate subspaces for describing instances in Z
Let v = {volume(s) : s ∈ S}
Let η = {num nominals(s,L ∪ Lu) : s ∈ S}
Let ς = {2rule length(s)−1 : s ∈ S}
Let S∗ = compute subspaces with Equation 2
return Q = {s : s ∈ S∗ and precision(s,L ∪ Lu) ≥ t}

5.3 Algorithmic Approach to Update Weights of Scoring Function

In this section, we provide an algorithm to update weights of the scoring function in the
batch active learning (BAL) setting: the entire data D is available at the outset.

Recall that our scoring function is of the following form: Score(x) = w · z, where
z ∈ Rm corresponds to the scores from anomaly detectors for instance x. We extend the
AAD approach (based on LODA projections) (Das et al., 2016) to update the weights
for tree-based models. AAD makes the following assumptions: (1) τ fraction of instances
(i.e., nτ) are anomalous, and (2) Anomalies should lie above the optimal hyperplane while
nominals should lie below. AAD tries to satisfy these assumptions by enforcing constraints
on the labeled examples while learning the weights of the hyperplane. If the anomalies
are rare and we set τ to a small value, then the two assumptions make it more likely that
the hyperplane will pass through the region of uncertainty. Our previous discussion then
suggests that the optimal hyperplane can now be learned efficiently by greedily asking the
analyst to label the most anomalous instance in each feedback iteration. We simplify the
AAD formulation with a more scalable unconstrained optimization objective, and refer to
this version as BAL. Crucially, the ensemble weights are updated with an intent to maintain
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the hyperplane in the region of uncertainty through the entire budget B. The batch active
learning approach is presented in Algorithm 3. BAL depends on only one hyper-parameter
τ .

We first define the hinge loss `(q,w; (zi, yi)) in Equation 3 that penalizes the model
when anomalies are assigned scores lower than q and nominals higher. Equation 4 then
formulates the optimization problem for learning the optimal weights in Line 14 of the
batch algorithm (Algorithm 3). Figure 10 illustrates how BAL changes the anomaly score
contours across feedback iterations on the synthetic dataset using an isolation forest with
100 trees.

`(q,w; (zi, yi)) =
0 w · zi ≥ q and yi = +1
0 w · zi < q and yi = −1
(q −w · zi) w · zi < q and yi = +1
(w · zi − q) w · zi ≥ q and yi = −1

(3)

w(t) = arg min
w

∑
s∈{−,+}

 1

|Hs|
∑

zi∈Hs

`(q̂τ (w(t−1)),w; (zi, yi))

+
1

|Hs|
∑

zi∈Hs

`(z(t−1)τ ·w,w; (zi, yi))


+ λ(t)‖w −wunif‖2 (4)

where, wunif = [
1√
m
, . . . ,

1√
m

]T , and,

z(t−1)τ and q̂τ (w(t−1)) are computed by ranking

anomaly scores with w = w(t−1)

λ(t) determines the influence of the prior. For the batch setup, we set λ(t) = 0.5
|H+|+|H−|

such that the prior becomes less important as more instances are labeled. When there are
no labeled instances, λ(t) is set to 1

2 . The third and fourth terms of Equation 4 encourage

the scores of anomalies in H+ to be higher than that of z
(t−1)
τ (the nτ -th ranked instance

from the previous iteration), and the scores of nominals in H− to be lower than that of

z
(t−1)
τ . We employ gradient descent to learn the optimal weights w in Equation 4. Our prior

knowledge that wunif is a good prior provides a good initialization for gradient descent.
We later show empirically that wunif is a better starting point than random weights.

5.4 Algorithms for Active Anomaly Detection in Streaming Data Setting

In this section, we describe algorithms to support active anomaly detection using tree-based
ensembles in the streaming data setting.

In the streaming setting, we assume that the data is input to the algorithm continuously
in windows of size K and is potentially unlimited. The framework for the streaming active
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Algorithm 3 Batch-AL (B, w(0), H, H+, H−)

Input: Query budget B, initial weights w(0), unlabeled instances H,
labeled instances H+ and H−

Set t = 0
while t ≤ B do

Set t = t+ 1
Set a = H ·w (i.e., a is the vector of anomaly scores)
Let q = zi, where i = arg maxi(ai)
Get yi ∈ {−1,+1} for q from analyst
if yi = +1 then

Set H+ = {zi} ∪H+

else
Set H− = {zi} ∪H−

end if
14: Set H = H \ zi

w(t) = learn new weights; normalize ‖w(t)‖ = 1
end while
return w(t), H, H+, H−

(a) Initial scores (b) 8 iterations (c) 16 iterations

(d) 24 iterations (e) 32 iterations (f) 34 iterations
Figure 10: Score contours across 34 BAL feedback iterations on the Toy dataset (Figure 3a).

learning (SAL) is shown in Algorithm 4. Initially, we train all the members of the ensemble
with the first window of data. When a new window of data arrives, the underlying tree model
is updated as follows: in case the model is an HST or RSF, only the node counts are updated
while keeping the tree structures and weights unchanged; whereas, if the model is an IFOR,
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a subset of the current set of trees is replaced as shown in Update-Model (Algorithm 4).
The updated model is then employed to determine which unlabeled instances to retain in
memory, and which to “forget”. This step, referred to as Merge-and-Retain, applies the
simple strategy of retaining only the most anomalous instances among those in the memory
and in the current window, and discarding the rest. Next, the weights are fine-tuned with
analyst feedback through an active learning loop similar to the batch setting with a small
budget Q. Finally, the next window of data is read, and the process is repeated until the
stream is empty or the total budget B is exhausted. In the rest of this section, we will
assume that the underlying tree model is IFOR.

When we replace a tree in Update-Model, its leaf nodes and corresponding weights get
discarded. On the other hand, adding a new tree implies adding all its leaf nodes with
weights initialized to a default value v. We first set v = 1√

m′
where m′ is the total number

of leaves in the new model, and then re-normalize the updated w to unit length.

The stream active learning framework is presented in Algorithm 4. In all the SAL
experiments, we set the number of queries per window Q = 20, and λ(t) = 1

2 .

Algorithm 4 Stream-AL (K, B, Q, E(0), X0, w(0), αKL)

Input: Stream window size K, total query budget B,
queries per window Q, anomaly detector ensemble E(0),
initial instances X0 (used to create E(0)), initial weights w(0),
significance level αKL

Set H = H+ = H− = ∅
// initialize KL-divergence baselines

Set q
(0)
KL = Get-KL-Threshold(X0, E(0), αKL, 10)

Set P(0) = Get-Ensemble-Distribution(X0, E(0))

Set t = 0
while <stream is not empty> do

Set t = t+ 1
Set Xt = K data instances from stream
Set Ht = transform Xt to ensemble features

// Update-Model either updates node counts (e.g., for HST and RSF),
// or replaces a fraction of the oldest trees in E with new
// ones constructed using Xt (e.g., for IFOR)

Set E(t), q(t)KL, P(t) = Update-Model(Xt, E(t−1), q(t−1)KL , P(t−1), αKL)

// Merge-and-Retain(w, H, K) retains K most anomalous instances in H
Set H = Merge-and-Retain(w(t−1), {H ∪Ht}, K)
Set w(t), H, H+, H− = Batch-AL(Q, w(t−1), H, H+, H−)

end while
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SAL approach can be employed in two different situations: (1) limited memory with
no concept drift, and (2) streaming data with concept drift. The type of situation
determines how fast the model needs to be updated in Update-Model. If there is no concept
drift, we need not update the model at all. If there is a large change in the distribution of
data from one window to the next, then a large fraction of members need to be replaced.
When we replace a member tree in our tree-based model, all its corresponding nodes along
with their learned weights have to be discarded. Thus, some of the “knowledge” is lost with
the model update. In general, it is hard to determine the true rate of drift in the data. One
approach is to replace, in the Update-Model step, a reasonable number (e.g. 20%) of older
ensemble members with new members trained on new data. Although this ad hoc approach
often works well in practice, a more principled approach is preferable.

Drift Detection Algorithm. Algorithm 5 presents a principled methodology that em-
ploys KL-divergence (denoted by DKL) to determine which trees should be replaced. The
set of all leaf nodes in a tree are treated as a set of histogram bins which are then used to
estimate the data distribution. We denote the total number of trees in the model by T , and
the t-th tree by Tt. When Tt is initially created with the first window of data, the data from
the same window is also used to initialize the baseline distribution for Tt, denoted by pt
(Get-Ensemble-Distribution in Algorithm 7). After computing the baseline distributions
for each tree, we estimate the DKL threshold qKL at the αKL (typically 0.05) significance
level by sub-sampling (Get-KL-Threshold in Algorithm 6). When a new window is read,
we first use it to compute the new distribution qt (for Tt). Next, if qt differs significantly
from pt (i.e., DKL(pt||qt) > qKL) for at least 2αKLT trees, then we replace all such trees
with new ones created using the data from the new window. Finally, if any tree in the
forest is replaced, then the baseline densities for all trees are recomputed with the data in
the new window.

6. Active Learning Algorithms for Generic Ensembles

In this section, we first describe an active anomaly detection algorithm referred as GLAD
that is applicable to generic (homogeneous or heterogeneous) ensemble of detectors. Sub-
sequently, we describe a GLAD-specific approach to generate succinct explanations to help
the human analyst.

6.1 GLocalized Anomaly Detection via Active Feature Space Suppression

Definition 1 (Glocal) Reflecting or characterized by both local and global considerations2.

A majority of the active learning techniques for discovering anomalies, including those
presented above, employ a weighted linear combination of the anomaly scores from the
ensemble members. This approach works well when the ensemble contains a large number
of members which are themselves highly localized, such as the leaf nodes of tree-based
detectors. However, when there are a small number of detectors in the ensemble and/or
the members of the ensemble are global (such as LODA projections (Pevný, 2016)), it is
highly likely that individual detectors are incorrect in at least some local parts of the input

2. https://en.wikipedia.org/wiki/Glocal (retrieved on 29-Dec-2018)
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Algorithm 5 Update-Model (X, E , qKL, P, αKL)

Input: Instances X, anomaly detector ensemble E ,
current KL threshold qKL, baseline distributions P,
significance level αKL

Set T = number of trees in E
Set Q = Get-Ensemble-Distribution(X, E)
Initialize KL = 0 ∈ RT
for t ∈ 1..T do

Set KLt = DKL(Pt||Qt)
end for
Set S = {t : KLt > qKL}
if |S| < 2αKLT then

// the number of trees with divergence is not significant
return E , qKL,P

end if
Set E ′ = replace trees in E whose indexes are in S, with new trees trained using X
// Recompute threshold and baseline distributions
Set q′KL = Get-KL-Threshold(X, E ′, αKL, 10)
Set P ′ = Get-Ensemble-Distribution(X, E ′)
return E ′, q′KL,P ′

Algorithm 6 Get-KL-Threshold (X, E , αKL, n)

Input: Instances X, anomaly detector ensemble E ,
significance level αKL,
repetitions of KL-divergence computations n

Set T = number of trees in E
Initialize KL = 0 ∈ RT // mean KL-divergence for each tree
for i in 1 · · ·n do

Partition X = {A,B} at random s.t. X = A ∪B and |A| ≈ |B|
for t ∈ 1 · · ·T do

Let Tt = t-th tree in E
Set pA = Get-Tree-Distribution(A, Tt)
Set pB = Get-Tree-Distribution(B, Tt)
Set KLt = KLt +DKL(pA||pB)

end for
end for
Set KL = KL

n // average the values
Set qKL = (1− αKL)× 100 quantile value in KL
return qKL
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Algorithm 7 Get-Ensemble-Distribution (X, E)

Input: Instances X, ensemble E
Set T = number of trees in E
Set P = ∅
for t ∈ 1 · · ·T do

Let Tt = t-th tree in E
Set pt = Get-Tree-Distribution(X, Tt)
Set P = P ∪ pt

end for
return P

Algorithm 8 Get-Tree-Distribution (X, T )

Input: Instances X, tree T
Set p = distribution of instances in X at the leaves of T
return p

feature space. To overcome this drawback, we propose a principled technique — GLocalized
Anomaly Detection (GLAD) — which allows a human analyst to continue using anomaly
detection ensembles with global behavior by learning their local relevance in different parts
of the feature space via label feedback. Our GLAD algorithm automatically learns the local
relevance of each ensemble member in the feature space via a neural network using the label
feedback from a human analyst.

Our GLAD technique is similar in spirit to dynamic ensemble weighting (Jiménez, 1998).
However, since we are in an active learning setting for anomaly detection, we need to
consider two important aspects: (a) Number of labeled examples is very small (possibly
none), and (b) To reduce the effort of the human analyst, the algorithm needs to be primed
so that the likelihood of discovering anomalies is very high from the first feedback iteration
itself.

Overview of GLAD Algorithm. We assume the availability of an ensemble E of M
(global) anomaly detectors (e.g., LODA projections) which assign scores s1(x), s2(x), · · · , sM (x)
to each instance x ∈ X . Suppose that pm(x) ∈ [0, 1] denotes the relevance of the mth en-
semble member for a data instance x. We employ a neural network to predict the local
relevance of each ensemble member. The scores of M anomaly detectors are combined as
follows: Score(x) =

∑M
m=1 sm(x) · pm(x). We incorporate the insights discussed in Sec-

tion 4 for GLAD as follows. We start with the assumption that each ensemble member is
uniformly relevant in every part of the input feature space. This assumption is implemented
by priming a neural network referred to as FSSN (feature space suppression network) with
parameters Θ to predict the same probability value b ∈ (0, 1) for every instance in D. In
effect, this mechanism places a uniform prior over the input feature space X for
the relevance of each detector. Subsequently, the algorithm receives label feedback from a
human analyst and determines whether the ensemble made an error (i.e., anomalous in-
stances are ranked at the top and scores of anomalies are higher than scores of nominals).
If there was an error, the weights of FSSN are updated to suppress all erroneous detectors
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Figure 11: Overview of GLAD Algorithm. In each iteration, we select one unlabeled instance for
querying, and update the weights of FSSN to adjust the local relevance of each ensemble member
over all labeled instances.

for similar inputs in the future. Figure 11 illustrates the different components of the GLAD
algorithm (Algorithm 9) including the ensemble of anomaly detectors and the FSSN.

Loss Function. We employ a hinge loss similar to that in Equation 3, but tailored to the
GLAD-specific score. We will denote this loss by `AAD(x) (Equation 7).

`prior(x) =
M∑
m=1

−b log(pm(x))− (1− b) log(1− pm(x)) (5)

`A(q; (x, y)) = max(0, y(q − Score(x))) (6)

`AAD(x, y) = `A(q(t−1)τ ; (x, y)) + `A(Score(x(t−1)
τ ); (x, y)) (7)

`FSSN =
1

|H(t)
f |

∑
(x,y)∈H(t)

f

`AAD(x, y) +
λ

|D|
∑
x∈D

`prior(x) (8)

Feature Space Suppression Network (FSSN). The FSSN is a neural network with
M sigmoid activation nodes in its output layer, where each output node is paired with an
ensemble member. It takes as input an instance from the original feature space and outputs
the relevance of each detector for that instance. We denote the relevance of the mth detector
to instance x by pm(x). The FSSN is primed using the cross-entropy loss in Equation 5
such that it outputs the same probability b ∈ (0, 1) at all the output nodes for each data
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instance in D. This loss acts as a prior on the relevance of detectors in ensemble. When
all detectors have the same relevance, the final anomaly score simply corresponds to the
average score across all detectors (up to a multiplicative constant), and is a good starting
point for active learning. The FSSN must have sufficient capacity to be able to learn
to output the same value for every instance non-trivially. This is not hard with neural
networks as the capacity can be increased simply by adding a few more hidden nodes. For
improved robustness and generalization, it is preferable to select the simplest network that
can achieve this goal.

After FSSN is primed, it automatically learns the relevance of the detectors based on
label feedback from human analyst using the combined loss `FSSN in Equation 8, where λ

is the trade-off parameter. We set the value of λ to 1 in all our experiments. H
(t)
f ⊆ D

in Equation 8 denotes the total set of instances labeled by the analyst after t feedback

iterations. x
(t−1)
τ and q

(t−1)
τ denote the instance ranked at the τ -th quantile and its score

after the (t − 1)-th feedback iteration. `A encourages the scores of anomalies in Hf to be
higher than that of q, and the scores of nominals in Hf to be lower.

Algorithm 9 GLAD (B, E , FSSN, D, Hf , b)

Input: Query budget B, Ensemble E ,
Feature Space Suppression Network FSSN with parameters Θ,
complete dataset D, labeled instances Hf ⊆ D, bias probability b

Initialize FSSN to predict b for all x ∈ D // priming step
for t ∈ {1 · · ·B} do

// get the vector of anomaly scores for unlabeled instances
Set a = Score(D \ {x : (x, .) ∈ Hf}, E , FSSN)

// greedy query strategy: label most anomalous instance
Let q = xi, where i = arg maxi(ai)
Get label yi ∈ {−1,+1} for q from human analyst
Set Hf = {(xi, yi)} ∪Hf

Update the parameters of FSSN by minimizing loss in Equation 8

end for
return FSSN, Hf

Illustration of GLAD on Toy Data. We employed a shallow neural network with 50
hidden nodes as the FSSN. The anomaly detection ensemble comprises of the four LODA
projections shown in Figure 12. Figure 12b illustrates the aspect that detectors are varying
in quality. Figure 12d shows that GLAD learns useful relevance information that can be of
help to the analyst.

GLAD vs. Tree-based AAD. We may consider GLAD as very similar to the Tree-based
AAD approach. Tree-based AAD method partitions the input feature space into discrete
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(a) Baseline LODA score contours (b) Score contours for each LODA projection

(c) Learned scores after 30 iterations (d) Relevance after 30 feedback iterations
Figure 12: Toy data. More red on the top row indicates more anomalous. More red on the bottom
row indicates more relevant. The red ‘×’ are true anomalies and grey ‘×’ are true nominals. (a)
LODA with four projections (green lines) applied to the Toy dataset. (b) The contours of only the
bottom left LODA projection are somewhat aligned with the true anomalies, i.e., most anomalies
lie in the higher anomaly score regions. Other projections are highly inaccurate. (c) The learned
anomaly scores output by GLAD after 30 feedback iterations. (d) The points circled in green
were shown to the analyst for labeling, one per feedback iteration. After 30 feedback iterations,
the bottom left projection was found to be most relevant in the top-right half-space, whereas it is
completely irrelevant in the bottom-left half-space. Other projections were less relevant in most
parts of the feature space.
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subspaces and then places a uniform prior over those subspaces (i.e., the uniform weight
vector to combine ensemble scores). If we take this view to an extreme by imagining that
each instance in the feature space represents a subspace, we can see the connection to
GLAD. While Tree-based AAD assigns the scores of discrete subspaces to instances (e.g.,
node depths for Isolation Forest), the scores assigned by GLAD are continuous, defined by
the global ensemble members. The relevance in GLAD is analogous to the learned weights
in Tree-based AAD. This similarity lets us extend the key insight behind active learning
with tree-based models (Section 4) to GLAD as well: uniform prior over weights of each
subspace (leaf node) in Tree-based AAD and uniform prior over input feature space for the
relevance of each ensemble member in GLAD are highly beneficial for label-efficient active
learning. On the basis of this argument and its supporting empirical evidence, we claim
that the following hypothesis is true:

Under an uniform prior on the detectors’ relevance over the input space, the greedy
query selection strategy is label-efficient for active learning with any ensemble of
pre-trained anomaly detectors.

Broader Applicability of the Key Idea behind GLAD. In practice, we often do not
have control over the ensemble members. For example, the ensemble might have only a
limited number of detectors. In the extreme case, there might only be a single pre-trained
detector which cannot be modified. A scoring model that combines detector scores linearly
would then lack capacity if the number of labeled instances (obtained through feedback) is
high. In this case, GLAD can increase the capacity for incorporating feedback through the
FSSN. The FSSN allows us to place a uniform prior over the input space. This property
can be employed for domain adaptation of not only anomaly detector ensembles, but also
other algorithms including classifier ensembles after they are deployed.

GLAD employs the AAD loss (Equation 7) for ranking scores relative to qτ and xτ in
a more general manner when compared to the linear scoring function. This technique can
be applied more generally to any parameterized non-ensemble detector as well (such as the
one based on density estimation) for both semi-supervised and active learning settings.

6.2 Explanations for Anomalies with GLAD

To help the analyst understand the results of active anomaly detection system, we have
used the concept of “descriptions” for the tree-based ensembles. We now introduce the
concept of “explanations” in the context of GLAD algorithm. While both descriptions and
explanations seem similar, they are actually quite different:

• Description: A description generates a compact representation for a group of in-
stances. The main application is to reduce the cognitive burden on the analysts while
providing labeling feedback for queried instances.

• Explanation: An explanation outputs a reason why a specific data instance was
assigned a high anomaly score. Generally, we limit the scope of an explanation to one
data instance. The main application is to diagnose the model: whether the anomaly
detector(s) are working as expected or not.

25



Das, Islam, Jayakodi, & Doppa

GLAD assumes that the anomaly detectors in the ensemble can be arbitrary (homoge-
neous or heterogeneous). The best it can offer as an explanation is to output the member
which is most relevant for a test data instance. With this in mind, we can employ the
following approach to generate explanations:

1. Employ the FSSN network to predict the relevance of individual ensemble members
on the complete dataset. It is important to note that the relevance of a detector is
different from the anomaly score(s) it assigns. A detector which is relevant in a par-
ticular subspace predicts the labels of instances in that subspace correctly irrespective
of whether those instances are anomalies or nominals.

2. Find the instances for each ensemble member for which that detector is the most
relevant. Mark these instances as positive and the rest as negative.

3. Train a separate decision tree for each member to separate the corresponding positives
and negatives. This describes the subspaces where each ensemble member is relevant.
Figure 13 illustrates this idea on the Toy dataset.

4. When asked to explain the anomaly score for a given test instance:

(a) Use FSSN network to identify the most relevant ensemble member for the test
instance.

(b) Employ a model agnostic explanation technique such as LIME (Ribeiro et al.,
2016) or ANCHOR (Ribeiro et al., 2018) to generate the explanation using the
most relevant ensemble member. As a simple illustration, we trained GLAD
on the synthetic dataset and a LODA ensemble with four projections. After
30 feedback iterations, the unlabeled instance at (6.12, 3.04) had the highest
anomaly score. We used LIME to explain its anomaly score. LIME explanation
is shown below:

(’2.16 < y <= 3.31’, -0.4253860500153764)

(’x > 2.65’, 0.3406543313093905)

Here the explanation 2.16 < y <= 3.31 from member 2 has the highest absolute
weight and hence, explains most of the anomaly score.

Since most aspects of explanations are qualitative, we leave their evaluation on real-
world data to future work.

7. Experiments and Results

Datasets. We evaluate our algorithms on ten publicly available benchmark datasets
((Woods, Doss, Bowyer, Solka, Priebe, & Kegelmeyer, 1993),(Ditzler & Polikar, 2013),(Har-
ries & of New South Wales., 1999), UCI(Dheeru & Karra Taniskidou, 2017)) listed in Ta-
ble 1. The anomaly classes in Electricity and Weather were down-sampled to be 5% of the
total.

Evaluation Methodology. For each variant of the algorithm, we plot the percentage of
the total number of anomalies shown to the analyst versus the number of instances queried;
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Figure 13: Most relevant ensemble members in subspaces inferred with GLAD after 30 feedback
iterations. There are four members (i.e., LODA projections) in our current example. The region
where a member is ranked as the top-most relevant detector is shown in red. Note that members 0
and 1 were found relevant in subspaces which have mostly nominal instances. This is because they
correctly assigned low anomaly scores to instances in those subspaces. The last member (member 3)
did not rank as the top-most relevant detector for any instance; hence, it does not have any region
marked in red. The point circled in green (in bottom left plot) is a test instance. Ensemble member
2 was found to be the most relevant for this instance.
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Table 1: Description of benchmark datasets used in our experiments.
Dataset Nominal Class Anomaly Class Total Dims # Anomalies(%)

Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)

ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)

Cardiotocography 1 (Normal) 3 (Pathological) 1700 22 45 (2.65%)

Covtype 2 4 286048 54 2747 (0.9%)

KDD-Cup-99 ‘normal’ ‘u2r’, ‘probe’ 63009 91 2416 (3.83%)

Mammography -1 +1 11183 6 260 (2.32%)

Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)

Yeast CYT, NUC, MIT ERL, POX, VAC 1191 8 55 (4.6%)

Electricity DOWN UP 27447 13 1372 (5%)

Weather No Rain Rain 13117 8 656 (5%)

this is the most relevant metric for an analyst in any real-world application. Higher plot
means the algorithm is better in terms of discovering anomalies. All results presented are
averaged over 10 different runs and the error-bars represent 95% confidence intervals.

(a) Abalone (b) ANN-Thyroid (c) Cardiotocography (d) Covtype

(e) Electricity (f) KDDCup99 (g) Mammography (h) Shuttle

(i) Weather (j) Yeast
Figure 14: Histogram distribution of the angles between score vectors from IFOR and wunif for all
datasets. The red and green histograms show the angle distributions for anomalies and nominals
respectively. Since the red histograms are closer to the left, anomalies are aligned closer to wunif .
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(a) Abalone (b) ANN-Thyroid-1v3

(c) Cardiotocography (d) Yeast
Figure 15: Percentage of total anomalies seen vs. the number of queries for the smaller datasets in
the batch setting.

7.1 Results for Active Anomaly Detection with Tree Ensembles

Experimental Setup. All versions of Batch Active Learning (BAL) and Streaming Active
Learning (SAL) employ IFOR with the number of trees T = 100 and subsample size 256.
The initial starting weights are denoted by w(0). We normalize the score vector for each
instance to unit length such that the score vectors lie on a unit sphere. This normalization
helps adhere to the discussion in Section 4, but is otherwise unnecessary. Figure 14 shows
that wunif tends to have a smaller angular separation from the normalized IFOR score
vectors of anomalies than from those of nominals. This holds true for most of our datasets
(Table 1). Weather is a hard dataset for all anomaly detectors (Wu et al., 2014), as reflected
in its angular distribution in Figure 14i. In all our experiments, Unsupervised Baseline

shows the number of anomalies detected without any feedback, i.e., using the uniform
ensemble weights wunif ; BAL (No Prior - Unif) and BAL (No Prior - Rand) impose
no priors on the model, and start active learning with w(0) set to wunif and a random
vector respectively; BAL sets wunif as prior, and starts with w(0) = wunif . For HST, we
present two sets of results with batch input only: HST-Batch with original settings (T = 25,
depth=15, no feedback) (Tan et al., 2011), and HST-Batch (Feedback) which supports
feedback with BAL strategy (with T = 50 and depth=8, a better setting for feedback). For
RST, we present the results (RST-Batch) with only the original settings (T = 30, depth=15)
(Wu et al., 2014) since it was not competitive with other methods on our datasets. We also
compare the BAL variants with the AAD approach (Das et al., 2016) in the batch setting
(AAD-Batch). Batch data setting is the most optimistic for all algorithms.

29



Das, Islam, Jayakodi, & Doppa

(a) Covtype (b) Mammography

(c) KDD-Cup-99 (d) Shuttle
Figure 16: Percentage of total anomalies seen vs. number of queries for the larger datasets
in the limited memory setting. SAL (KL Adaptive) and SAL-D apply the Select-Top and
Select-Diverse query strategies resp. Mammography, KDD-Cup-99, and Shuttle have no significant
drift. Covtype, which has a higher drift, is included here for comparison because it is large.

7.1.1 Results for Diversified Query Strategy

The diversified querying strategy Select-Diverse (Algorithm 1) employs compact descrip-
tions to select instances. Therefore, the evaluation of its effectiveness is presented first. An
interactive system can potentially ease the cognitive burden on the analysts by using de-
scriptions to generate a “summary” of the anomalous instances.

We perform a post hoc analysis on the datasets with the knowledge of the original classes
(Table 1). It is assumed that each class in a dataset represents a different data-generating
process. To measure the diversity at any point in our feedback cycle, we compute the
difference between the number of unique classes presented to the analyst per query batch
averaged across all the past batches. The parameter δ for Select-Diverse was set to
5 in all experiments. We compare three query strategies in the batch data setup: BAL-T,
BAL-D, and BAL-R. BAL-T simply presents the top three most anomalous instances per query
batch. BAL-D employs Select-Diverse to present three diverse instances out of the ten
most anomalous instances. BAL-R presents three instances selected at random from the top
ten anomalous instances. Finally, BAL greedily presents only the single most anomalous
instance for labeling. We find that BAL-D presents a more diverse set of instances than
both BAL-T (solid lines) as well as BAL-R (dashed lines) on most datasets. Figure 17b shows
that the number of anomalies discovered (on representative datasets) with the diversified
querying strategy is similar to the greedy strategy, i.e., no loss in anomaly discovery rate
to improve diversity. The streaming data variants SAL-* have similar performance as the
BAL-* variants.
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(a) Class diversity (b) % anomalies seen
Figure 17: Results comparing diversified querying strategy textttBAL-D with baseline query strate-
gies BAL-T and BAL-R. The x-axis in (a) shows the number of query batches (of batch size 3). The
y-axis shows the difference in the number of unique classes seen averaged across all batches till a
particular batch. The solid lines in (a) show the average difference between unique classes seen with
BAL-D and BAL-T; the dashed lines show the average difference between BAL-D and BAL-R.

7.1.2 Results for Anomaly Descriptions with Interpretability

We compare the Compact Descriptions (CD) for interpretability (Algorithm 2) with Bayesian
Rulesets (BR) in Figure 18. Our experimental setup for active learning is transductive (i.e.,
learning is performed over the combined set of labeled and unlabeled instances) and the
number of anomalies is very small. Therefore, we compute precision, recall, and F1 metrics
of the learned model over the combined dataset with ground-truth labels after each feed-
back cycle. It is hard to present a qualitative comparison between them since they both
have similar F1 Scores. BR has higher precision whereas CD has higher recall in general.
However, CD usually generates rules of smaller lengths than BR. Some rule sets generated
for Abalone and Yeast are presented in Appendix A. CD often generates more number of
simpler rules that define “anomalies”. Therefore, their recall is higher. This is particularly
pronounced for Yeast (Table 4 and Table 5). Prior work (Letham et al., 2015) suggests that
this attribute might be advantageous to end users. However, the judgment of description
quality is subjective and dependent on the specific dataset and application.

7.1.3 Results for Batch Active Learning (BAL)

We set the budget B to 300 for all datasets in the batch setting. The results on the
four smaller datasets Abalone, ANN-Thyroid-1v3, Cardiotocography, and Yeast are shown
in Figure 15. The performance is similar for the larger datasets as shown in Figure 16.
When the algorithm starts from sub-optimal initialization of the weights and with no prior
knowledge (BAL (No Prior - Rand)), more number of queries are spent hunting for the
first few anomalies, and thereafter detection improves significantly. When the weights
are initialized to wunif , which is a reliable starting point (BAL (No Prior - Unif) and
BAL), fewer queries are required to find the initial anomalies, and typically results in a
lower variance in accuracy. Setting wunif as prior in addition to informed initialization
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(a) Abalone (b) Yeast

(c) Cardiotocography (d) Covtype
Figure 18: Results comparing Compact Descriptions (CD) with Bayesian Rulesets (BR) (Wang
et al., 2016) on representative datasets. The result for each dataset has four sets of plots: F1 Score,
Precision, Recall, and Rule length.

(BAL) performs better than without the prior (BAL (No Prior - Unif)) on Abalone, ANN-
Thyroid-1v3, and Yeast. We believe this is because the prior helps guard against noise.

7.1.4 Results for Streaming Active Learning (SAL)

In all SAL experiments, we set the number of queries per window Q = 20. The total budget
B and the stream window size K for the datasets were set respectively as follows: Cov-
type (3000, 4096), KDD-Cup-99 (3000, 4096), Mammography (1500, 4096), Shuttle (1500,
4096), Electricity (1500, 1024), Weather (1000, 1024). These values are reasonable w.r.t
the dataset’s size, the number of anomalies, and the rate of concept drift. The maximum
number of unlabeled instances residing in memory is K. When the last window of data
arrives, then active learning is continued with the final set of unlabeled data retained in
the memory until the total budget B is exhausted. The instances are streamed in the same
order as they appear in the original public sources. When a new window of data arrives:
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(a) ANN-Thyroid-1v3 (b) Covtype
Figure 19: Results for drift detection across windows. (a) When there is no drift, such as in ANN-
Thyroid-1v3, then no trees are replaced for most of the windows, and the older model is retained.
(b) If there is drift, such as in Covtype, then the trees are more likely to be replaced.

SAL (KL Adaptive) dynamically determines which trees to replace based on KL-divergence,
SAL (Replace 20% Trees) replaces 20% oldest trees, and SAL (No Tree Replace) cre-
ates the trees only once with the first window of data and only updates the weights of the
fixed leaf nodes with feedback thereafter.

Limited memory setting with no concept drift. The results on the four larger datasets
are shown in Figure 16. The performance is similar to what is seen on the smaller datasets.
Among the unsupervised algorithms in the batch setting, IFOR (Unsupervised Baseline)
and HST (HST-Batch) are competitive, and both are better than RSF (RSF-Batch). With
feedback, BAL is consistently the best performer. HST with feedback (HST-Batch (Feedback))
always performs better than HST-Batch. The streaming algorithm with feedback, SAL

(KL Adaptive), significantly outperforms Unsupervised Baseline and is competitive with
BAL. SAL (KL Adaptive) performs better than HST-Batch (Feedback) as well. SAL-D

which presents a more diverse set of instances for labeling performs similar to SAL (KL

Adaptive). These results demonstrate that the feedback-tuned anomaly detectors general-
ize to unseen data.

Figure 20 shows drift detection on datasets which do not have any drift. The stream-
ing window size for each dataset was set commensurate to its total size: Abalone(512),
ANN-Thyroid-1v3 (512), Cardiotocography(512), Covtype(4096), Electricity(1024), KDD-
Cup99 (4096), Mammography(4096), Shuttle(4096), Weather(1024), and Yeast(512).

Streaming setting with concept drift. Figure 21 shows the results after integrating
drift detection and label feedback with SAL for the datasets which are expected to have
significant drift. Both Covtype and Electricity show more drift in the data than Weather
(top row in Figure 21). The rate of drift determines how fast the model should be updated.
If we update the model too fast, then we loose valuable knowledge gained from feedback
which is still valid. On the other hand, if we update the model too slowly, then the model
continues to focus on the stale subspaces based on the past feedback. It is hard to find
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(a) Abalone (b) Cardiotocography

(c) Yeast (d) Mammography

(e) KDD-Cup-99 (f) Shuttle
Figure 20: The last data window in each dataset usually has much fewer instances and therefore, its
distribution is very different from the previous window despite there being no data drift. There-
fore, we ignore the drift in the last window. We did not expect Abalone, Cardiotocography,
KDDCup99, Mammography, Shuttle, Yeast, and ANN-Thyroid-1v3 (Figure 19a) to have much drift
in the data. This can also be seen in the plots where most of the windows in the middle of streaming
did not result in too many trees being replaced (the numbers in the parenthesis are mostly zero).
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(a) Covtype (b) Electricity (c) Weather

(d) Covtype (e) Electricity (f) Weather
Figure 21: Results for integrated drift detection and label feedback with Streaming Active Learning
(SAL) algorithm. The top row shows the number of trees replaced per window when a drift in
the data was detected relative to previous window(s). The bottom row shows the percentage of
total anomalies seen vs. number of queries for the streaming datasets with significant concept
drift.

a common rate of update that works well across all datasets (such as replacing 20% trees
with each new window of data). Figure 21 (bottom row) shows that the adaptive strategy
(SAL (KL Adaptive)) which replaces obsolete trees using KL-divergence, as illustrated in
Figure 21 (top row), is robust and competitive with the best possible configuration, i.e.,
BAL.

7.2 Results for Active Anomaly Detection with GLAD Algorithm

In this section, we evaluate our GLocalized Anomaly Detection (GLAD) algorithm that is
applicable for generic ensembles.

LODA based Anomaly Detector. For our anomaly detector, we employ the LODA
algorithm (Pevný, 2016), which is an ensemble E = {Dm}Mm=1 of M one-dimensional his-
togram density estimators computed from sparse random projections. Each projection Dm
is defined by a sparse d-dimensional random vector βm. LODA projects each data point
onto the real line according to β>mx and then forms a histogram density estimator fm. The
anomaly score assigned to a given instance x is the mean negative log density: Score(x) =
1
M

∑M
m=1 sm(x), where, sm(x) , − log(fm(x)).

LODA gives equal weights to all projections. Since the projections are selected at
random, every projection may not be good at isolating anomalies uniformly across the
entire input feature space. LODA-AAD (Das et al., 2016) was proposed to integrate label
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(a) Abalone (b) ANN-Thyroid-1v3 (c) Cardiotocography

(d) Yeast (e) Mammography (f) KDD-Cup-99

(g) Shuttle (h) Covtype
Figure 22: Results comparing GLAD with LODA and LODA-AAD on real-world datasets. Number
of anomalies discovered as a function of the number of label queries. Results were averaged over 10
different runs.
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feedback from a human analyst by learning a better weight vector w that assigns weights
proportional to the usefulness of the projections: weights are global, i.e., they are fixed
across the entire input feature space. In contrast, we employ GLAD to learn the local
relevance of each detector in the input space using the label feedback.

Feature Space Suppression Network (FSSN) Details. We employed a shallow neural
network with max(50, 3M) hidden nodes for all our test datasets, where M is the number of
ensemble members (i.e., LODA projections). The network is retrained after receiving each
label feedback. During the retraining process, we cycle over the entire dataset (labeled and
unlabeled) once. Since the labeled instances are very few, we up-sample the labeled data
five times. We also employ L2-regularization for training the weights of the neural network.

Results on Real-world Data. We evaluate GLAD on all the benchmark datasets listed in
Table 1. Since GLAD is most relevant when the anomaly detectors are specialized and fewer
in number, we employ a LODA ensemble with a maximum of 15 projections. Figure 22 shows
the results comparing unsupervised LODA, LODA-AAD (weights the ensemble members
globally) (Das et al., 2016), and GLAD algorithms. We observe that GLAD outperforms
both the baseline LODA as well as LODA-AAD. These results show the effectiveness of
GLAD in learning the local relevance of ensemble members and discovering anomalies via
label feedback.

7.3 Summary of Experimental Findings

We briefly summarize the main findings of our empirical evaluation.

• Uniform prior over the weights of the scoring function to rank data instances is very
effective for active anomaly detection. The histogram distribution of the angles be-
tween score vectors from Isolation Forest (IFOR) and wunif show that anomalies are
aligned closer to wunif .

• The diversified query selection strategy (Select-Diverse) based on compact descrip-
tion improves diversity over greedy query selection stratgey with no loss in anomaly
discovery rate.

• In the comparison between compact description (CD) and Bayesian rulesets (BR)
for interpretability, BR has higher precision whereas CD has higher recall in general.
However, CD usually generates rules of smaller lengths than BR.

• The KL-Divergence based drift detection algorithm is very robust in terms of detecting
and quantifying the amount of drift. In the case of limited memory setting with no
concept drift, feedback tuned anomaly detectors generalize to unseen data. In the
streaming setting with concept drift, our streaming active learning (SAL) algorithm
is robust and competitive with the best possible configuration, namely, Batch Active
Learning (BAL).

• GLocalized Anomaly Detection (GLAD) algorithm is very effective in learning the
local relevance of ensemble members and discovering anomalies via label feedback.
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8. Summary and Future Work

This paper studied the problem of discovering and interpreting anomalous data instances in
a human in the loop learning framework. We first explained the reason behind the empirical
success of anomaly detector ensembles and called attention to an under-appreciated prop-
erty that makes them uniquely suitable for label-efficient active anomaly detection. This
property provides guidance for designing efficient active learning algorithms for anomaly
detection. We demonstrated the practical utility of this property by developing two types
of algorithms: one that is specific for tree-based ensembles and another one that can be
used with generic (homogeneous or heterogeneous) ensembles. We also showed that the
tree-based ensembles can be used to compactly describe groups of anomalous instances to
discover diverse anomalies and to improve interpretability. To handle streaming data set-
tings, we developed a novel algorithm to detect the data drift and associated algorithms to
take corrective actions. This algorithm is not only robust, but can also be employed broadly
with any ensemble anomaly detector whose members can compute sample distributions such
as tree-based and projection-based detectors.

Our immediate future work includes deploying active anomaly detection algorithms in
real-world systems to measure their accuracy and usability (e.g., qualitative assessment of
interpretability and explanations). Developing algorithms for interpretability and explain-
ability of anomaly detection systems is a very important future direction.
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Table 2: Compact Description Rulesets for Abalone: Predict ‘anomaly’ if:
Sl. No Rule

1 ((Whole weight> 1.57868) & (Shucked weight<= 0.630149) & (Viscera weight> 0.199937))
or ((Height <= 0.084543) & (Whole weight <= 0.113046))

2 ((Length <= 0.274885) & (Viscera weight > 0.002735))
or ((Height <= 0.037791))

3 ((Shucked weight <= 0.935282) & (Shell weight > 0.559848))
or ((Whole weight <= 0.113578) & (Shell weight <= 0.029704))

4 ((Shucked weight <= 0.923357) & (Shell weight > 0.555072))
or ((Length <= 0.248288))

5 ((Diameter <= 0.189798))
or ((Length > 0.618923) & (Diameter <= 0.437515))

6 ((Length <= 0.26422) & (Shell weight <= 0.04513))

7 ((Shucked weight <= 0.721247) & (Shell weight > 0.51048))
or((Diameter <= 0.215382))

8 ((Shell weight <= 0.018319))
or ((Viscera weight <= 0.273323) & (Shell weight > 0.534263))
or ((Diameter> 0.541657) & (Shucked weight<= 0.609971) & (Viscera weight<= 0.41689))
or ((Shell weight > 0.577965))

9 ((Length > 0.59405) & (Shucked weight <= 0.570384) & (Shell weight > 0.446641))
or ((Diameter <= 0.195845))

10 ((Diameter <= 0.178574) & (Height <= 0.085074))

Table 3: Bayesian Rulesets for Abalone: Predict ‘anomaly’ if.
Sl. No Rule

1 ((Length <= 0.214647) & (Whole weight <= 0.510445))
or ((Sex 2 > 0.884258) & (Whole weight <= 0.079634))

2 ((Height <= 0.470428) & (Shucked weight <= 0.027743) & (Shell weight <= 0.044533))

3 ((Shucked weight <= 0.031114) & (Viscera weight <= 0.108052))

4 ((Length <= 0.248288))

5 ((Diameter <= 0.189798))

6 ((Whole weight <= 0.064756))

7 ((Diameter <= 0.190009) & (Whole weight <= 0.648927))

8 ((Shell weight <= 0.018319))

9 ((Length <= 0.22373))

10 ((Diameter <= 0.178574) & (Height <= 0.085074))

Appendix A. Sample rule sets

The experiments were run 10 times and the rule sets were generated after 300 feedback
iterations. Table 2 and Table 3 show the rule sets discovered by Compact Descriptions and
Bayesian Rulesets respectively for the Abalone dataset. Table 4 and Table 5 show the rule
sets discovered by Compact Descriptions and Bayesian Rulesets respectively for the Yeast
dataset.
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Table 4: Compact Description Rulesets for Yeast: Predict ‘anomaly’ if.
Sl. No Rule

1 ((erl <= 0.585391) & (pox > 0.364574))

2 ((pox > 0.120416) & (nuc <= 0.653604))
or ((mcg > 0.657209) & (vac > 0.552232) & (nuc > 0.238628))
or ((mcg > 0.582497) & (gvh > 0.55403) & (alm > 0.523469) & (alm <= 0.531885) & (erl
<= 0.881784))
or ((mcg > 0.794555) & (gvh > 0.542536) & (pox <= 0.820273))
or ((alm <= 0.369833) & (mit <= 0.672693) & (erl <= 0.584497))

3 ((mcg > 0.674536) & (gvh > 0.638449) & (erl <= 0.907276))
or ((erl > 0.907276))
or ((pox > 0.767557) & (vac > 0.518821))
or ((mcg > 0.794434) & (mit <= 0.195325))
or ((alm <= 0.360879) & (nuc <= 0.264294))

4 ((pox > 0.427265))
or ((gvh <= 0.620138) & (alm <= 0.386303))
or ((mcg > 0.787897))
or ((erl > 0.914982))
or ((mcg > 0.679087) & (vac > 0.564625))

5 ((pox > 0.429429))
or ((erl > 0.905249))
or ((mcg > 0.669503) & (gvh > 0.743648))
or ((gvh <= 0.489981) & (alm <= 0.381303))
or ((alm <= 0.35154) & (nuc > 0.233709))

6 ((gvh > 0.67054) & (vac > 0.517722))
or ((pox > 0.324963))
or ((gvh > 0.746516) & (nuc <= 0.253885))

7 ((erl > 0.683501))

8 ((erl > 0.983772))
or ((mcg > 0.361774) & (pox > 0.493825))
or ((alm <= 0.264392))

9 ((erl > 0.767609))
or ((alm <= 0.367489) & (vac <= 0.524935))
or ((mcg > 0.66527) & (alm <= 0.402742) & (mit <= 0.168347))
or ((mcg > 0.671279) & (mcg <= 0.681442))
or ((mcg > 0.681442) & (gvh > 0.61967) & (alm > 0.411821))
or ((pox > 0.29627))
or ((mit > 0.268483) & (mit <= 0.305828) & (vac > 0.574091))

10 ((erl > 0.732173))
or ((mcg > 0.647776) & (alm <= 0.440001) & (mit > 0.378884))
or ((pox > 0.05977))

Appendix B. Comparison with feedback-guided anomaly detection via
online optimization (Siddiqui et al., 2018)

The comparison of BAL with feedback-guided anomaly detection via online optimization
(Feedback-guided Online) (Siddiqui et al., 2018) is shown in Figure 23. The results for
KDDCup99 and Covtype could not be included for Feedback-guided Online because their
code3 resulted in Segmentation Fault when run with 3000 feedback iterations (a reasonable
budget for the large datasets).

3. https://github.com/siddiqmd/FeedbackIsolationForest(retrieved on 10-Oct-2018)
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Figure 23: Results comparing BAL with feedback-guided anomaly detection via online optimization
(Siddiqui et al., 2018). BAL is the tree-based model implemented in our codebase and employs the
AAD loss (anomalies score higher than τ -th quantile score and nominals lower). Feedback Guided

Online employs the linear loss in Siddiqui et al., 2018. Unsupervised Baseline is the unsupervised
Isolation Forest baseline. Both approaches perform similar on most datasets. While BAL has slightly
poor accuracy on Mammography than Feedback Guided Online, BAL performs much better on
Weather.
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Table 5: Bayesian Rulesets for Yeast: Predict ‘anomaly’ if.
Sl. No Rule

1 ((mcg > 0.612499) & (gvh > 0.682922) & (alm <= 0.668676) & (pox <= 0.009232) & (vac
> 0.47575))
or ((mcg <= 0.502029) & (mit <= 0.334013) & (pox > 0.116026))

2 ((mit <= 0.330373) & (pox > 0.664994))
or ((mcg > 0.653156) & (gvh > 0.685483) & (alm > 0.317241) & (alm <= 0.744628) & (vac
> 0.418177) & (vac <= 0.585261) & (nuc <= 0.329873))

3 ((alm <= 0.525488) & (pox > 0.531186))
or ((mcg > 0.674349) & (gvh > 0.717917) & (vac > 0.134507))

4 ((mcg <= 0.472991) & (pox > 0.108393))

5 ((mit <= 0.370084) & (pox > 0.747723))

6 ((mcg > 0.675101) & (gvh > 0.623194) & (nuc <= 0.262247))
or ((alm <= 0.410164) & (mit <= 0.181271) & (pox <= 0.221393) & (vac <= 0.531984) &
(nuc <= 0.310148))
or ((mit <= 0.300781) & (pox > 0.539966))

7 ((mcg > 0.672968) & (gvh > 0.674907) & (mit > 0.148338) & (vac > 0.397623))
or ((mit > 0.10795) & (mit <= 0.249317) & (erl <= 0.993022) & (pox > 0.085537) & (vac
> 0.495427))

8 ((mit > 0.002063) & (pox > 0.766752))

9 ((gvh <= 0.609246) & (pox > 0.75496))
or ((mcg > 0.681442) & (gvh > 0.61967) & (alm > 0.411821))

10 ((mcg <= 0.457615) & (gvh > 0.247344) & (pox > 0.003658))

Appendix C. Comparison of rule sets generated by Compact
Descriptions and Bayesian Rulesets

Figure 24 compares the rule sets generated with Compact Descriptions and Bayesian Rule-
sets for the datasets not shown in Figure 18.
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Figure 24: Results comparing BAL with feedback-guided anomaly detection via online optimization
(Siddiqui et al., 2018). BAL is the tree-based model implemented in our codebase and employs the
AAD loss (anomalies score higher than τ -th quantile score and nominals lower). Feedback Guided

Online employs the linear loss in Siddiqui et al., 2018. Unsupervised Baseline is the unsupervised
Isolation Forest baseline. Both approaches perform similar on most datasets. While BAL has slightly
poor accuracy on Mammography than Feedback Guided Online, BAL performs much better on
Weather.
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