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Simulations used for prediction of wildland fire spread

Large uncertainties exist and must be quantified for better accuracy (ensemble
forests)

Generating calibrated ensembles

Keywords: uncertainty quantification, Metropolis Hastings (MH), Wasserstein
distance, Gaussian process
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*Must have Input File

*Fuel Grid
*Is used to define fuel types in the area
*Must have the same resolution and extent as the
DEM file

*Fuel LookUp Table
*Defines the fuel types and parameters to be used
with the fuel grid.

*Weather Information
*Hourly information of temperature,relative

humidity,precipitation,wind velocity and direction.

eIgnition location and time information
*Supported types are point,line and area ignition
*Support multiple ignition at different time.

*Optional input files

*Digital Elevation Model(DEM)
*Used to calculate the effects on fire spread rate
and wind direction
*Must have the same resolution and extent as the
fuel grid file.
*Physical Features
*Obstacles that can possibly halt fire
propagation(non-fuel areas,water,roads).
*Wind Grid
*High Resolution wind velocity and direction grids.
*Information about the fuel
*Information about seasonal (green-up phase)
*Information about the trees(tress height,canopy
base height).

https://springerplus.springeropen.com/track/pdf/10.1186/s40064-016-2842-9.pdf
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Fire Behaviour

6. Calculate the rate of
spread of the crown fire
using empirical
relationships to surface
fire ROS

1. Represent & track
the (subgrid-scale)
interface between
burning and
nonburning regions
(the “flaming front ")

3. Post-frontal
heat & water
vapor release.
Once ignited, the
fuel remaining
decays

exponentially, acc.
to lab

experiments.

5. Surface fire heats and
dries canopy. Does the

surface fire heat flux
exceed the (empirical)

threshold to transition into
the tree canopy (if
present)?

b. A Fire Behavior Module

Overview of Components

2. Rate of spread
(ROS) of flaming

front calculated as
function of fire-

affected wind, fuel,
and slope using
semi-empirical
equations (i.e.
Rothermel (1972))

4. Heat, water vapor,

and smoke fluxes
s e released by surface

w ' G fire into lowest

d layers of

atmospheric model

Courtesy BLM

7. Heat, water vapor, and smoke fluxes released by
crown fire into atmospheric model

https://doi.org/10.6028/NIST.SP.1245
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https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Eulerian Level Set Method

Eulerian Level Set Method 0

nnnnnnnnnnn

* Eulerian: fixed frame of
reference such as a grid

= Level set methods are a class
of numerical techniques to
track surfaces, shapes, or
interfaces

= Track curved surfaces on a grid

https://doi.org/10.6028/NIST.SP.1245
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Fire propagation calculations

» Calculations start by defining a fire perimeter polygon at the
ignition location (shape depends on the used ignition type: point,
line or area). Figure a.

. iMter this the propagation calculations are done in a five-stage
oop:

&

1. The propagation of fire is calculated from selected points along the
fire perimeter polygpn using the FWI/FBP values of the previous
propagation loop. Figure b.

2. The newly formed fire perimeter polygon is smoothed. Figure c.

3. If a propagation point has struck with an obstacle (non-fuel cellg, the
flame length is compared to the width of the obstacle. If it is not able to
cross over the obstacle, the propagation point will be turned off.
Otherwise, it will cross the boundary and stay active.

4. The perimeter is checked for possible tangles and overlaps with other
fire perimeter polygons. Tangles are solved and overlapping perimeters
are Joined into one.

5. Calculate the FBP/FWI values for the propagation points according to
current cell values they are in and restart the loop. If all points have
been de-activated, or the simulation time has ended, stop the loop.

a b
ILHATIETEEN LAITOS =)
METEOROLOGISKA INSTITUTET
FINNISH METEOROLOGICAL INSTITUTE

https://doi.org/10.6028/NIST.SP.1245
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*Time and Location, Wind Speed highly uncertain
*Solution : Several simulation of fire spread = Perturbation
*Three classes of perturbation : additive, multiplicative and transitive
eadditive perturbation, X, = X1Z, multiplicative perturbation, X, =X X Z,
*transition perturbation : x éxp
*Probability distribution to quantify uncertainty = log or log-normal distribution
Input Unit Perturbation a Range
Wind direction 2 Additive, global 30 [—60, 60]
Wind speed norm ms— ! Multiplicative, global (log) 0.5log1.5 [2/3,1.5]
Dead fuel moisture Multiplicative, global 0.15 [0.7,1.3]

10
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* Any point xi, b, (0,1) = prediction
* g, = P[B, = 1], B, follows Bernoulli law of parameters

* Estimate of g, : p, = n, / n (where n, is the number of simulations for which b, = 1. pi is
the MC estimate of g, and converges to it as n increases)

*p; is our burn probability and resulting 2D model is our burn probability map.
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* Accuracy N
- Measured By Brier Score BS — i Z(D_ . p,)z
-Ranges between 0 and 1 and negatively oriented N < ’ v

-BSS(Brier Skill Score) = 1 — BS/BS,

* Reliability and Sharpness
- A system is reliable if Vp € [0, 1], f(p) = p.
- Reliability Diagram (plot of f(p) and p)
- g(p) as the proportion of events that are assigned a probability p among all evaluated
events.
- The sharpness graph is simply the plot of g(p) against p.

*Probabilistic resolution
- capacity of the system to yield relative frequencies that are different from the reference
probability p..
- Positively correlated
-Accessed using reliability diagram (deviation between f(p) and p..

* Consistency
-Accessed by Rank Histogram.
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https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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The goal: To propose and apply a method to calibrate the probability distribution of
the inputs of the model based on observed fires

Solving a problem of inverse uncertainty quantification

Strategy for calibration of input uncertainty

14
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Sources of uncertainty:
* Unknown parameters
* Model inadequacy
* Observation error

Bayesian approach proposed for calibration that accounts for different forms of
uncertainty.

Starting point:

q
fx—x) =exp{ = > wlx —x) 1.
J=1

15
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GET READYZ

- sotsa THERE'S A llIT IIFJ
o ‘FIIIIMlIlAE COMING YOURWAY

16
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S,ps: Observed burned surface

M: numerical model of fire spread whose inputs may vary according to an input u
of d perturbations applied to reference inputs

S,: simulated burned surface (S, = M(u))
g: probability density function
f: prior density function

The idea is to obtain g by making the best possible use of f, S, and M.
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Classical choice for g would be the posterior density function which is obtained
according to Bayes’s rule:

- L[:S(J]'ﬁlti'}_lr[:-u]
a JII El::StJ]'ﬁlt{'}'_llrl::'u ]rh‘!

f-”::'u |'St:ul'-a-: }

Where L(S,,./u) would be the likelihood of the observation S ,. knowing the
perturbation vector u.

While defining a likelihood for a vector is feasible, this may not be the case for a
random surface. Therefore, a calibrated distribution inspired by Bayes’ rule may
be used where g written in the form:

E—;ﬂ:’[u}f(u:l
g;f,_,-:r(“} = fc_,_,-jlf[u]f(u)du

Where 6>0 and E is a positive energy function equal to 0 when S, = S_,. and
increases with dissimilarity between S, and S,,..
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 The present study introduces a novel score that makes use of the Wasserstein
distance, which is a metric between probability distributions.

* The square of Wasserstein distance is defined as follows:

v € D(p,v) 1

J

Wi (u,v) = inf { ]: ) |z —y||3 dy(z, )

* Where W,(u,v) is the Wasserstein distance between two probability measures u
and v both defined on RY, ||.||, is the Euclidian distance and [(u,v) is the
ensemble of the measures defined on R x R% such that their conditional measure
relatively to the first variable is 4 and their conditional measure on the second
variable is v.



technische universitat
dortmund

For comparison between surfaces, it is natural to consider g = 2 and choose
uniform measures whose support is respectively S_,. and S, for the probability
measures u and v.

By making these choices, E(u) is defined as:

: 2 1(r € She
E(u) =int f |z = yl[5 (. y)dzdy ‘ f A, y)dy = S Zobs)
Y Sobs X Su S ‘bobs‘

L(y € Su)

[S Y(r,y)dr = WJ

ohs

Where 1 is the indicator function, ||.||, is the Euclidian distance and |S]| is the
surface area of S.

20
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Except for some particular cases, there is no simple analytic formula for the

Wasserstein distance.
This led us to consider a discrete approximation of E(u) instead, which can be

obtained numerically via a discretization of the PDF’s by a sum of Dirac delta

distributions.
From this point, E(u) is now defined as:

J
E(‘u,):11:31‘{/50t \buHr—yH ~(x, y)dzdy ‘] (x,y)d _j;
1 K

fS[ irya”r—[—z:: }

L)

*  Where §, is the Dirac delta distribution at point x € R?, and each x; belongs to S ...,
whereas y, belongsto S,

21
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* In this discrete setting, the admissible distributions y can be represented by a
matrix of size J x K where each cell y; is positive and indicates the “probability

mass” that is transferred from X; to y,.

* In this case, the infimum of the equation in the previous slide is reached and is the
solution of the following linear programming problem:

J K
min S viel|7; — yell2

M =1 k=1

1 1
subject to y;, = 0, Z Vik = = andz Vik = —-
; K p J

* Which is also referred to as Earth Mover’s Distance. It is known from graph theory
that the optimal y is a sparse matrix that has at most J + K— 1 non-zero cells.
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An issue in the denominator of gg ; (from the equation in slide 18) which is an
intractable high-dimensional integral.

But this integral does not depend on the perturbation vector u, so for a given 8, the
PDF is known up to some constant factor.

Another question arises: how do we draw samples from the distribution when it is
known up to a factor?



technische universitat
dortmund

THE METIWI’II[IS
HASTI S AlGIIIIITHM
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Lot of iterations of MH algorithm required to obtain a sufficiently large sample, takes

too much time
Emulator (E) used to speed up MH
E(u) provides good approximation of E(u) while being considerably fast to compute.
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Emulation method, also called kriging

In statistics, Gaussian process emulator is one name for a general type of
statistical model that has been used in contexts where the problem is to make
maximum use of the outputs of a complicated computer-based simulation
model.
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Inputs of training sample are obtained via Latin hypersquare sample with
optimized discrepancy

Complementary test sample generated to evaluate approximation error of
emulator far from training points (obtained with an algorithm for an optimal
validation design)

Based on test sample, several error metrics used to evaluate emulator, here Mean
Absolute Error (MAE), standardized mean square error (SMSE) and Q, metric

As the error of the emulator gets lower, MAE gets closer to 0 and Q, metric gets
closerto 1
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 Considering K fire cases, it is possible to compute the energy functions that
correspond to each fire (E,,...,E;)

* An issue arises when the variations of one energy function are much higher than
for the other fires in which case the variations of pseudo-likelihood will mostly be
determined by that one energy function and the calibrated distribution will mostly
be representative of that one fire at the expense of the other observations

* How do we fix this? Weigh each fire depending on the values taken by E,(u) and
define the energy functions as the weighted sum of squared Wasserstein distances:

K
E(u) =" wpE(u),
k=1
where the weights are defined using all points from the training dataset:

n

T, E(w)

Wy,
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As already explained before, emulator used instead of energy function to run the
algorithm in reasonable time

m: number of chains

n: number of samples per chain

u;;: i element of the j* chain

u.;: candidate

This algorithm is motivated by the convergence diagnosis

Recommended to choose u, ,,...,u, ,, quite far from each other

Based on chains returned by the MH algorithm, the matrices B/n (size d) and W

are computed as: Bin—= 1 S (a

m — 1
i=1

}T

—u)(u; —u

m n

W = ZZ[H” — wj) (i — l_f,j)T._

m(n—l J =

* 0;is the sample mean of the j" chain and & is the sample mean over all chains
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* The metric used for analysing convergence is:

fd _ T 1 N (-r‘;r? + 1)/\1.

1 I

* Where A, is the largest eigenvalue of the symmetric, positive definite matrix
W-1B/n

At convergence, R? tends to 1 and one may consider that a sufficient number
of MH iterations has been carried out if R9< 1.1 for the second half of the
chains

* From this, it follows that the set comprising the second half of all m chains
constitutes a representative sample of the target distribution when R9< 1.1
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Metropolis Hastings algorithm (Sampling from the calibrated distribution)

Define m, n, and an instrumental distribution of PDF ¢ : u — g(u|v)
for j=1,...,mdo
Choose a starting point wu ;
for : =2,....n do
Sample a candidate w.; ~ q(.|u; 1)
Compute the ratio

95.5(te) A(uirjlucs) e PEMe) flucy) g(uimiglucy)

g (i) q(ucslui1y)  ePE@i-1) flupy ) qlae,|uity)

if 7 > 1 then
[Accept the candidate]
Wi j S Uej
else
[Accept the candidate with probability 7]
Sample p ~ U(0,1)

if p <71 then
Ui — Uej
else
Ujj < WUi-15
end if
end if
end for
end for
return (. ... U, ;) j=1, _m

31
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* Open source fire spread solver ForeFire is used
* Input variables of ROS model subject to perturbation:
* Fuel moisture content of dead fuel
e Surface volume ratio
* Heat content
* The fuel load
* The particle density
* The fuel bed depth
» ‘“effective” wind speed in the direction of fire spread

* Some assumptions:
* Mineral damping coefficient = 1
* Fuel mineral content is negligible (net initial fuel loading is equal to fuel load)
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Additionally, to account for wind speed at mid-height of the flame being lower than
that of the prediction, a 0.4 factor in ROS computations is applied to W so that W, =
0.4 W.n

The scheme used to advance the markers of the fire front is based on a first-order
approximation

Considering a marker that is located at x; at time t, with its normal to the front

denoted as n; (oriented toward the unburned area), its next location is determined

by: ]
Tip1 = T4 + ol n;

The advance in time depends on ROS, the ROS computed with the values of the
environmental inputs at location x; and time t;, as follows:
ol
ROS;

tiv1 =1 +
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*K =7 fires

*Previous Study Ensembles to as “reference ensembles”[1]

*Emulator training size of 4000,test sample size of 2000

*Resolution = 20m for small surface and 40m for large surface

*Package ot from the Python toolbox POT|[2]

* MH algorithm is applied for different distribution with different values of
B={1/20,1/7,1/4,1/2,1}

*For each value of B, n = 150000 iterations are carried out for m = 8 chains
*The distribution is then truncated to the perturbation range.

*Take the latter half of chain of MH—> m x n/2 = 600000 for each B
*Ensembles of wildland fire simulation is carried out = calibrated ensembles
*size of a calibrated ensemble ranges between 2000 and 10000

*ensemble generation based on prior distribution—> prior ensembles
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20 30 40 50
Emulator prediction £ ()

MAE = 0.73
Q, =95.3%

 Use of Logarithm favoured
*Without logarithm: MAE = 0.97,
Q, =93.2%

*0.6s for one energy function
*150000 iteration of MH
algorithm-> more than a day

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
35
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Results : Ensemble Evaluation

Fire name (ensemble size) Reference Prior @#=1/10 B8=1/7 p=1/4 p=1/2 p=1 pg=2

Calenzana (10000) 0.269 0.291 0.304 0.308 0.309 0.314  0.308  0.284

Chiatra (10000) 0.324 0.386 0.385 0.379 0.371 0.358 0.342 0.325

Ville di Paraso (2000) 0.021 0.168 0.179 0.182 0.189 0.188 0.176  0.168

Sant’Andrea di Cotone (5000) 0.190 0.408 0.429 0.442 0.454 0.468 0.485 0.494

Olmeta di Tuda (2000) 0.063 0.187 0.230 0.219 0.278 0.322 0.378  0.451

Nonza (4000) -5.323 -3.089 -3.124 -3.133 -3.124 -3.044 -3.057 -3.053

Ghisoni (2000) -0.9%86 -10.273 -9.831 -0.851 -0.333 -0.018 -8.638 -8.332

Global -1.609 -1.332 -1.266 -1.269 -1.191 -1.135  -1.080 -1.033

Fire name (ensemble size) Reference Prior A=1/10 B=1/7 B=1/4 B=1/2 B=1 B=2

Calenzana (10000) 8 6 5 3 2 1 3 7

Chiatra (10000) 8 1 2 3 4 5 6 7

Ville di Paraso (2000) 8 6 4 3 1 2 5 G

Sant’Andrea di Cotone (5000) 8 7 6 5 4 3 2 1

Olmeta di Tuda (2000) 8 T 5 6 4 3 2 1

Nonza (4000) 8 4 5 7 5 1 3 2

Ghisoni (2000) 7 8 5 6 4 3 2 1

Sum 55 39 32 33 24 18 23 25

Overall ranking 8 7 5 6 3 1 2 4 https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Ensemble Evaluation
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Results : Ensemble Evaluation
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https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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* Here’s what we know so far:

Led to generation of calibrated ensembles (input distributions defined by posterior PDF) with a pseudo
likelihood function that involves the Wasserstein distance between simulated and burned surfaces
Gaussian process emulator was built to obtain calibrated sample because of high dimensionality and
computational requirements

Emulation showed good accuracy (Q, > 95%)

Calibration was successful in modifying the probability distribution of the input so that the fire spread
predictions have better overall accuracy

Safe to assume that increasing 8 lead to distributions that favour lower ROS

Best overall BSS ranking for B = )5, not best globally but very good one for most fires
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Could take into account other sources of uncertainty in calibration like model error—not really
straightforward because of the nature of model input

All large fires for one season and from one region were chosen. No guarantee that there will still be an
overall improvement if other fires are included

More fires in the training sample would provide more information, should limit overfitting

Improving prediction accuracy is crucial because many important parts of our ecosystem are endangered
here

Main research perspective is now to combine these calibrated ensembles with models for probability of
ignition and values at stake to assess next day wildfire risk, which is relevant to fire managers, and help in the
decision of firefighting actions and fire prevention planning.
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