Adversarial Examples

JUSTIN WICKES®, Technische Universitit Dortmund, Germany

In a world of growing reliance on machine learning and artificial intelli-
gence, adversarial examples exploit a seemingly ubiquitous vulnerability
within machine learning models. The danger adversarial examples have the
potential to present is real. Thus research into the various adversarial attacks
has been the focus of almost a decade’s worth of research, as many have
tried to understand these attacks in order to help prevent the danger they
pose. In this paper, we will be exploring what an adversarial example is, why
they are important, and the kinds of attacks that can be made with them.

ACM Reference Format:
Justin Wickes. 2022. Adversarial Examples. 1, 1 (August 2022), 6 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Adversarial Examples are malicious inputs constructed to be inten-
tionally misclassified by a given machine learning model. A salient
example would be that of a stop sign and a self-driving car [4]. The
car processes and analyzes images of its surrounding to determine
its behavior. When it identifies the image of a stop sign located in
front of the car, it proceeds to stop, as any car should. Now if an
attacker wanted to perform an adversarial attack on this self-driving
car, they would have a few options. They could physically change
the stop sign, so that it is no longer identifiable by the intelligence
guiding the car. This could be achieved by physically marking the
stop sign or even by placing a maliciously crafted sticker onto the
sign. Alternatively the attacker could gain access to the car’s image
processing and change the images before they are analyzed. This
way, the car could be fooled into driving past a stop sign without
even physically marking said sign. This example illustrates quite
well what an adversarial example is. It is an intentionally modified
input, in this case an image of a stop sign, which is designed to be
misclassified or otherwise misunderstood by the machine learning
model. This example also can be used to clarify another aspect of ad-
versarial examples, namely that their changes are deliberate. Simply
painting the whole stop sign black would cause the car to no longer
be able to identify the sign, but this would be ignoring an important
aspect of adversarial examples, which is their indistinguishability
from unmodified inputs.

In the aforementioned example, the goal is to modify the stop
sign so it is misclassified by the car, but the modification should
be as small as possible and ideally imperceptible to the human eye.
This aspect of adversarial examples is an optimization problem. The
attacker wants to create a modified input that is as close to indistin-
guishable from inputs that share it’s correct label, while also having
as high a chance of misclassification as possible. Making the stop

Author’s address: Justin Wickes, justin.wickes@tu-dortmund.de, Technische Univer-
sitat Dortmund, Dortmund, NRW, Germany.

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in , https://doi.org/
KXXXXXXXXXXXXX.

sign look less and less like a stop sign makes it more likely that it
is misclassfied, but also more likely that someone will identify that
the sign or the car has been tampered with. This is where the inten-
tionality of the perturbation is important. Simply painting over the
sign or adding random noise to an image is not what makes a good
adversarial example. All changes to the image should be deliberate
and purposeful so as to achieve the desired optimization between
chance of misclassification and inconspicuousness. Furthermore it
is quite trivial for a machine learning model to simply remove or
ignore random noise [10]. Many models are actually quite robust
against noisey images, what is of interest, is that these same models
can fall victim to adversarial examples.

The significance of adversarial examples should be becoming
clear. Up until now we have only discussed how road signs could be
tampered with to intentionally cause accidents and chaos, but ad-
versarial examples are widely applicable. One study [1] has shown
that one can create adversarial examples with 3D-printed objects.
They produced a sea turtle that was perceived by a machine learning
model as a rifle. It would not be inconceivable that the opposite
could be achieved as well; creating a dangerous weapon, that when
perceived by an artificial intelligence, is seen as harmless. Further-
more another study [2] has been done on adversarial examples for
natural language processing systems, which proved that recorded
audio could be changed slightly (by less than 1%), and the deep
neural network would interpret it as a completely different phrase.
Moreover they could change the audio to actually force the DNN to
interpret it as a specific phrase of their choosing. The ramifications
of these studies are clear to see; with more reliance on artificial
intelligence and machine learning, we will become more vulnerable
to these kinds of attacks. As A.I. becomes more ingrained in funda-
mental, everyday systems, the danger only grows. This is why the
study of adversarial examples is so important.

For most of this paper we will be focusing on supervised learning
models, specifically 2D image classifiers. This is where the most
abundant research on adversarial examples is focused. Even with
this restriction, there are still a plethora of adversarial attacks. All
of these attacks have their own pros and cons and thus, separate
use-cases. Selecting a specific attack tailored to the situation and
the attacker’s goals is almost always a fundamental decision for an
adversarial attack. This paper is structured as follows: in section 2)
we will examine the different threat models, as well as the differ-
ence between White-Box and Black-Box attacks. Then in section
3) we will review a few White-Box attacks and contrary to these
approaches there are also Black-Box attacks, which we will discuss
in section 4). We will conclude by examining the weaknesses of
the proposed Black-Box attack from section 4) and then consider
possible defenses.

2 THREAT MODELS

Threat models enumerate the goals and capabilities of adversaries
in a target domain. What this means is a threat model indicates
what the adversary wants to achieve and how much the adversary

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2« Justin Wickes

knows about the target machine learning model. A threat model
is composed of an adversarial goal and the adversarial capabilities
[6]. There are four adversarial goals and five adversarial capabilities
which we will be discussing.

2.1 Adversarial Goals

The first goal is Confidence Reduction, which works to reduce how
sure a given model is, that the input belongs to it’s classification.
This adversarial goal does not work to outright misclassify an ad-
versarial example, but rather make a model less confident that it
belongs to the class it was assigned. This is thus the least complex
adversarial goal. The second goal is Misclassification, which tries to
make the model assign the adversarial example to any class other
than the original class. The third adversarial goal is Targeted Mis-
classification, which differentiates itself from the second goal by
forcing the output classification to be a specific target class. The
fourth and most complex goal is Source/Target Misclassification.
This entails forcing the output classification of a specific input to be
a specific target class. The difference between this goal and the third
one is how the input is specified. For Source/Target Misclassification
a specific input is chosen and modified to appear like the target class,
whereas for Targeted Misclassification there is no specificity for the
input. As long as it is misclassified as the targeted class, any possible
input could be chosen and modified.

2.2 Adversarial Capabilities

Adversarial capabilities describe the amount of information about
the target model, that is available to the adversary. The most knowl-
edge an adversary can have is knowledge of both the architecture
and training tools. This constitutes the first of the adversarial capa-
bilities. With knowledge of both the architecture and training tools.
The attacker has to access the training data, as well as functions and
algorithms used for network training. They are able obtain knowl-
edge about the DNN’s architecture. This includes the activation
functions of neurons, the number and type of layers, as well as bias
matrices and weights. The attacker also knows which algorithm
was used to train the network, including the associated loss func-
tion. This is the strongest adversary that can analyze the training
data and simulate the deep neural network completely. However, in
practical settings, knowledge of both the architecture and training
tools is rare, and simply obfuscating what architecture and training
tools were used is enough to stop these attacks.

The next capabilities are knowledge of either the architecture or
the training data but not both. These attacks require less informa-
tion and are thus easier to perform, but the adversarial examples
crafted in the attack will likely be weaker (i.e. less likely to be mis-
classified) than attacks that use more information. Any attack that
uses knowledge of the architecture, the training data, or both, is a
White-Box attack. White-Box attacks have some amount of crucial
internal information on the target model, this differentiates them
from Black-Box attacks, which have no internal information. The
next two capabilities constitute those of a Black-Box attack.

The next capability is that of an Oracle. The term oracle comes
from the field of cryptography and defines the capability of using

, Vol. 1, No. 1, Article . Publication date: August 2022.

a given neural network to obtain output classifications when sup-
plying inputs. Essentially the adversary can query or input into the
neural network and the only knowledge they can obtain from this is
what the input was classified as. There is no knowledge of architec-
ture or training data, their only capability is to map some amount of
inputs to their outputs classifications. All input features are usually
known for image classifiers, but for other models it may be more
difficult to find out what the inputs are. Thus ascertaining what
all the input components are can be somewhat of a challenge in
other contexts. This oracle capability can be further parameterized
by the number of queries allowed/available. Querying all possible
inputs and receiving their outputs proposes a few issues. While one
could theoretically query every single possible input and receive
their output classification, thus making a copy of the target neural
network, it is unreasonable and impractical. If a machine learning
model had N input components, with each component taking a dis-
crete value among a set K of possible values. The number of inputs
that would have to be queried is K. Computation time alone would
be problematic, but additionally the more an adversary queries their
target, the more likely they are to being discovered. Furthermore
many API’s have a set number of queries one user can make, before
they are denied access. Such restrictions and limitations are crucial
factors for Black-Box attacks using oracles.

The final capability is simply the ability to collect samples. The
attacker has some number of input-output pairs and must use this
information to execute a Black-Box attack. They cannot modify
the inputs in any way, as opposed to the oracle. These adversarial
attacks require large quantities of samples and even then are among
the weakest attacks possible.

In summary, as knowledge over the target decreases, so does the
strength of the attack and as the complexity of the goals increase, so
does the difficulty of the attack. This should explain why there is not
simply one catch-all attack that should be used all the time. Attacks
have different use-cases that are determined by the adversary’s goals
and knowledge. So if an attacker were to be clever and efficient they
would select different attacks depending on the scenario.

3 WHITE-BOX ATTACKS

There are many White-Box attacks that exist, for all kinds of use-
cases, but for this section we will focus on three. These attacks
are the Szegedy et al. method [10], the Fast Gradient Sign Method
(FGSM) [3], and the Jacobian-based Saliency Map Attack (JSMA)
[6]. Two of these attacks, FGSM and JSMA, are of particular note,
because they will be used in the Black-Box attack described in the
next section.

3.1 Szegedy et al. Method

clr| +lossp(x +71,1) (1)

For this function x is an image/input. It represents a vector of
pixels. Then r is the change of pixels to create an adversarial example,
while [is the targeted outcome class. Finally c is used to balance the
distance between images and predictions. The first term measures
the distance between the adversarial example and the original image
and the second term is the distance between the predicted outcome
of the adversarial example and the desired class [. By minimizing the

function with respect to r, adversarial examples can be generated.
This function is a perfect example of Targeted Misclassification and
was the first method for creating adversarial examples [10].

3.2 Fast Gradient Sign Method

N
5. = esgn(V-c(F, X.y) @

For this function, the goal is to create an adversarial example

N

x*=x +§;. In this instance, X is the input image, while 5; is the

perturbation to be applied. c¢(F, ?, y) is a cost function, where F
represents the model’s parameters, X is the input, and y is the label
that was assigned to X. The sign of the model’s cost function gra-
dient is represented with sgn(V;c(F, ; y)). Finally € is the input
variation parameter and controls the amplitude of the perturbation.
The larger € is, the more likely an adversarial sample will be mis-
classified, but the easier it will be for humans to detect that it is an
adversarial sample. Normally this value lies between 0.25 to 0.4 [9]
for most attacks, but it can be raised if required. This method applies
an imperceptibly small perturbation to all pixels in the input image
and is well suited for fast crafting of many adversarial samples. The
one major downside being that the combined total perturbation
over the whole image is quite large and thus this method of attack
is potentially easier to detect than the JSMA. This function is also
an example of a simple Misclassification, as no targets are specified.

3.3 Jacobian-based Saliency Map Attack

0if 8E(7) <Oor 3, 32(F) > 0

S(#,1)i] =

OF, (= aF; .
%ﬁ{r) PP ij—ré(:r)l otherwise

(3)
Similar to the last attack, the JSMA tries to craft an adversarial sam-

A
ple x*=x +5;. This time however, it adds the perturbation 5; toa

subset of the input components X;. This means the perturbation is
only applied to a few pixels in the inputted 2D image, as opposed to
the Fast Gradient Sign Method, where the perturbation is applied
to all the pixels. F is the target model and it’s parameters are re-

quired for this attack, similar to FGSM. S (;, t)[i] is the adversarial
saliency value of component i for a target class t. Equation 3 is

the definition of this saliency value, with [%] is the model’s
1 i

Jacobian matrix. The Jacobian matrix contains all partial derivatives
of a vector function.

In a Jacobian-based Saliency Map Attack, input components are
sorted in decreasing order by their saliency value and perturbed until
the sample is misclassified. In the discipline of Computer Vision, a
saliency map describes a mapping of an image that indicates where
peoples eyes are drawn. It is used to locate visual "hotspots". In a
similar way, this algorithm creates a sort of saliency map, which
measures not where human eyes are drawn, but how important
a given part of an image is for deciding it’s output classification.
This attack perturbs the most deciding pixels first, and it perturbs
them by a large amount in comparison to FGSM. The greater the

Adversarial Examples + 3

perturbation per component, the less components must be perturbed.
The input variation parameter € is often € = 1 for this attack. Y is the
distortion and is another important parameter, because it quantifies
how many input components have been perturbed. As one might
notice, a large difference between FGSM and JSMA is how their
perturbations are applied. In JSMA a few pixels are changed greatly,
so that overall the perturbation over the whole image remains low.
In this way, JSMA attacks are likely harder for a human to notice.
The Jacobian-based Saliency Map Attack is, however, more complex
than the FGSM, meaning it has a higher computing cost. This attack
also constitutes a Source/Target Misclassification, which is another
major difference from FGSM.

Hopefully by explaining these attacks, it becomes more clear why
cleverly selecting your attack is important when crafting adversar-
ial examples. These are all White-Box attacks, yet they have very
different use-cases.

4 BLACK-BOX ATTACK

Now we can begin to tackle the Black-Box attack [9]. To review: a
Black-Box attack has no detailed knowledge of the target model’s
architecture, parameters, or training data. The adversary only has

knowledge of an oracle O, which can access the label 0 (;) assigned

to any chosen input X. To solve this, we first create a substitute for
the target system, which we can attack with one of the previously
discussed White-Box attacks. This solves the lack of information on
the architecture and parameters of the model. To solve the lack of
training data, we use a synthetic dataset using synthetic inputs and
the outputs of the target model. In this way, the lack of information
about the target can be overcome.

This Black-Box attack has three restrictions: its only capability
is to observe the Oracle O, the number of labels it queries on the
target remote system is limited, and it applies and scales to multiple
machine learning classifier types.

4.1 Substitute

An approximation F of the target model T is created. Determining
the actual architecture of this approximation is not a limiting factor,
as we have access to the oracle O and thus have knowledge of the
expected input and output. Consequently an architecture fitting to
the input-output relation can be chosen. Within [9] it was found
that learning a substitute model that mimics the remote system’s
accuracy is unimportant, what is of importance is mimicking the
decision boundaries. The decision boundaries describe an area in
a problem space where the output classifier is ambiguous. It is the
boundary between decision regions. If we look at our stop sign
example from the beginning, a decision boundary would be the area
where the model is unsure if the sign it’s processing is a stop sign or
a yield sign. Thus everything on one side of the decision boundary
is stop signs and everything on the other is yield signs. Creating
perturbations that push valid inputs towards decision boundaries is
how one creates an adversarial example. In summary what is im-
portant is not the actual accuracy of the substitute F in comparison
to the target T, but rather how F groups its outputs.

These substitutes can be learned with a Deep Neural Network or
Logistic Regression. The attack can be used against DNNs, as well

, Vol. 1, No. 1, Article . Publication date: August 2022.

4« Justin Wickes

as other classifier types, namely Logistic Regression, SVM, Decision
Tree, and Nearest Neighbors.

4.2 Transferability

Transferability is the property that explains how making a White-
Box attack on a substitute model would create adversarial examples
that are misclassified by the target. Transferability describes is a
property that describes the following phenomena: adversarial ex-
amples trained on a machine learning model may be misclassified
by another model even if their architectures significantly differ.
Why adversarial examples are transferable is still in debate, but the
property itself is undoubtedly real.

There are two kinds of transferability [8]: Intra-technique trans-
ferability and Cross-technique transferability. Intra-technique trans-
ferability is defined across models trained with the same machine
learning technique but different parameter initializations or datasets.
All models (DNN, LR, SVM, kNN, DT) are found vulnerable to this
type of transferability, but the phenomenon is stronger for differ-
entiable models like deep neural networks and logistic regression
than for support vector machines, decision trees, and and nearest
neighbors [8]. Decision trees, while still vulnerable to intra-techique
transferability, seem to be the most resilient to it. Cross-technique
transferability considers models trained using two different tech-
niques. Deep neural networks and nearest neighbors are particularly
resilient to this form of transferability, whereas logistic regression,
support vector machines, decision trees, and ensembles of models
are considerably more vulnerable to Cross-technique transferability
[8].

This is how adversarial examples created from one model may be
used to attack another and it is why this particular Black-Box attack
works at all. There would be no use in training a substitute model if
the adversarial attacks made against it could not be used to attack
another model. As such this property of transferability is critical to
this Black-Box attack, and consequently is the pairing of substitute
model and target model of great importance. This is because some
machine learning techniques are more resilient to certain kinds of
transferability, as such it is often within the adversary’s interest to
train multiple substitute models, each with different architecture
or parameters. This way, they can simply select the substitute that
produces the most often misclassified adversarial examples.

4.3 Synthetic Data

As previously stated, the adversary has no knowledge of the training
data used in the target model, so synthetic data must be created.
This data is created using a heuristic that measures the directions
in which the the target model’s output begins to vary, using the
substitute’s Jacobian matrix. An original training set is selected and
synthetic data is continually added, until the substitute mimics the
target’s decision boundaries. This is called Jacobian-based Dataset

, Vol. 1, No. 1, Article . Publication date: August 2022.

Augmentation.

Algorithm 1 - Substitute DNN Training: for oracle O,
a maximum number mazx, of substitute training epochs, a
substitute architecture F', and an initial training set Sp.

Input: (j._ maz,, So, A

1: Define architecture F'

2: for pe0.. maz, —1do

3: // Label the substitute training set

4 De {(f.é(f)] .Fe S,,}

5: // Train F' on D to evaluate parameters Op
6: OF + train(F, D)
T /| Perform Jacobian-based dataset augmentation

8 S, {F+ A sgn(Jp[O(F)):F€S,IUS,
9: end for
10: return #5

(8]
4)

As previously stated, the goal of this algorithm is to augment images
from the original training set to be classified closer to decision
boundaries. This algorithm will be explained in the following steps:

(1) The initial collection of training data. This data does not
need to come from the targeted model’s training distribution.
Samples should however be chosen intelligently, collecting
a certain number of samples per output classification is a
strong general strategy.

(2) Select the architecture to be trained as F (the substitute)

(3) For max, Epochs following steps are repeated:

(a) Query O (?) to label every X from the initial training set

(b) Train architecture using training set with classical machine
learning techniques. One would train this substitute as if it
were any other machine learning model.

(c) Perform the Jacobian-based Dataset Augmentation and
augment training set to produce larger set with more points.
This set better represents the model’s decision boundaries.

The Jacobian-based Dataset Augmentation in Figure 4 on line 8
evaluates the sign of the Jacobian matrix dimension correlative to

the label assigned to input X by the oracle. The A describes the
step size in the sensitive direction and it has been shown [9], that
increasing the step size decreases transferability. As transferability
is crucial to this attack’s strategy, the value A was later altered to be
periodic, which also increased the accuracy of the substitute while
also keeping transferability at an acceptable level. Consequently,
after every period, the step size alternates between being positive
and negative.

To further reduce querying when applicable, Reservoir Sampling
[11] was introduced. This is useful in realistic scenarios and for paid
APIs where the number of queries is limited before exceeding quota
or when being detected is a high risk. Reservoir sampling is used to
select x new inputs before a Jacobian-based dataset augmentation.
Without reservoir sampling, the training data grows exponentially,
literally doubling every iteration. This means that with high max,,
the queries directed at the target will grow very quickly. Reservoir
sampling allows for the first few iterations of the Substitute DNN

Training to proceed unimpeded. The dataset, for the first few itera-
tions, can grow exponentially. Then after a set iteration has been
reached, reservoir sampling is used to limit the growth of the dataset.
This method of sampling also ensures that each input has an equal
chance to be chosen for Jacobian-based Dataset Augmentation in
the next iteration.

After the substitute is trained and has similar decision boundaries
to the target, a White-Box attack can be performed on the substitute.
The adversarial examples that were crafted by the attack, can then be
used on the remote system with a high chance of misclassification.

4.4 Results

In the study [9], three attacks of note were performed. One was on
the remote platform of MetaMind who were using a Deep Learning
based machine learning technique. In the Black-Box attack, Meta-
Mind was queried 6,400 times during the training of the substitute.
Adversarial samples directed to MetaMind were misclassified at a
rate of 84.24%. Following that they proceeded to attack Amazon
who had trained their model using logistic regression. Amazon was
queried 800 times and the crafted adversarial examples were mis-
classified 96.19% of the time. Finally they attacked Google, whose
machine learning technique could not be ascertained. They were
queried 2,000 times and achieved a misclassification rate of 88.94%.
While these misclassification rates are certainly impressive, the fact
that each remote platform was queried a different amount of times
is questionable. One of the results from these attacks was the realiza-
tion that the defender may increase the attacker’s cost by training
models with higher input dimensionality or modeling complexity.
These two factors are what cause adversaries to need to make so
many queries while training their substitutes. While it could be
argued that a more complex target requires more queries and thus
the vastly differing number of queries in these attacks is justifiable,
it could also equally be argued that the remote systems were simply
queried until the misclassification rate seemed impressive. There is
a case to be made here about the dishonesty of the results.

EDNNA BDNNF mDNN G mDNN H mDNN | mDNN J mDNN K mDNN L mDNN M

T

Iw |||
=0
ransfer. Success Transfer. Success Transfer.
28

Ti ¥
.57% | Distortion 39.80%
(5)

Further results include the finding that FGSM and JSMA have sim-
ilar transferability rates when similar amounts of perturbation are
applied. The distortion Y in the JSMA algorithm increases transfer-
ability, the higher it is. A 29% distortion improves adversarial sample
transferability significantly. Additionally it was found that increas-
ing the number of training iterations does not improve adversarial

0
=3

-

— h3 &2 & &0 & =
ER-R-E-E-E-E-N

Success Transfer. Success

[9] Distortion 7.18% | Distortion 14.28% Distortion 2

Adversarial Examples « 5

sample transferability, if the substitute has reached an asymptotic
accuracy. Furthermore substitutes using logistic regression perform
measurably better against logistic regression and support vector
machine trained models compared to substitutes using deep neural
networks.

5 WEAKNESSES AND DEFENSES

There are two weaknesses of this particular Black-Box attack. One
was previously mentioned, namely that models with higher com-
plexity or input dimensionality require more queries to train the
substitute. This can be slightly mitigated by the adversary by choos-
ing not to query from a single user, and instead distributing oracle
queries among a set of colluding users, thus making them harder to
detect. The other weakness is that this method of attack can only
learn substitutes with DNN or LR techniques. As discussed in the
section on transferability, nearest neighbor models have a resiliency
to Cross-technique transferability. Being that only DNN or LR sub-
stitutes can be learned, every attack on a kNN model would hinge
very strongly on Cross-technique transferability for the adversarial
examples trained on the substitutes. As such kNN models as well
as sufficiently complex models can be difficult to attack using this
method.

There are a few possible defenses against this Black-Box attack,
but no complete and comprehensive defense is known. One of the
defenses introduced in the paper [9] is Defensive Distillation [7],
which is a kind of Gradient Masking. A gradient in mathematics is
the derivative of a function with more than one input variable. As
with any derivative it measures the rate of change. For this reason
the gradient is important, because locating high rates of change can
often lead to decision boundaries. Gradient Masking and thus Defen-
sive Distillation try to smoothen out the gradient, to make it harder
to identify where high rates of change are. Defensive Distillation
has been shown to work in White-Box settings in repelling a FGSM
attack. However it does not work against this Black-Box attack. The
reason is that the substitute doesn’t interact with the gradient at all,
it only queries the oracle for labels. Consequently the target model
may be distilled and thus be masking it’s gradient, but the substitute
is not distilled. Thus a White-Box attack can still successfully be
performed on the substitute and Gradient Masking does nothing
to hinder the success of the adversarial examples crafted from said
attack. Due to this, Gradient Masking and Defensive Distillation are
unsuccessful at defending against this Black-Box attack.

The next defense, which is more successful, is adversarial training
[3] [5]. Adversarial training is the act of retraining a given machine
learning model with adversarial examples mixed in with the training
data, however the adversarial examples are assigned their correct la-
bels. This teaches the model to ignore the intentional perturbations
in the adversarial examples and learn only from "robust" features.
Training with a significant enough € value (e > 3)[9], drastically
decreases the misclassification rate of adversarial examples and ren-
ders the Black-Box attack ineffective. A major issue with adversarial
training, however, is that it only defends a given machine learning
model against the same attacks used to craft the examples origi-
nally included in the training data. For example, one could train
their model on adversarial examples crafted using the Fast Gradient

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 « Justin Wickes

Sign Method, but their model would only learn to defend against
adversarial examples with ubiquitous small perturbations. So if an
adversary staged a Black-Box attack and used the Jacobian-based
Saliency Map Attack to craft adversarial examples, then the defender
would be practically defenseless. Their model would be trained to
be robust against widespread small perturbations, so when faced
with extremely selective large perturbations, it would be as if no
adversarial training had been performed at all. For this reason, a
good defense would be to train on adversarial examples from an
ensemble of substitutes of the original model. This way, different
attacks can be performed on each substitute and thus a variety of
adversarial examples can be crafted. The machine learning model
would become robust against a large set of adversarial attacks and
therefore increase the chances of a successful defense.

The final defense would be any comprehensive form of Input
Modification or Denoiser. Such defenses clean an input of noise and
perturbation before it is passed onto the model to be analyzed. Such
a defense could possibly remove the relevant perturbations of an
adversarial example before they are misclassified or otherwise harm
the machine learning model.

6 CONCLUSION

The Black-Box attack introduced by Papernot et al. is a breakthrough
in adversarial attacks. While the honesty of some of the reported fig-
ures could be called into question, this Black-Box attack nonetheless
shows that attacks using severely limited knowledge are possible.
While the number of queries required to produce effective adversar-
ial examples can be quite large, and even though the attack depends
heavily upon the substitute and target model requiring significant
transferability, their paper is still a large step forward in the sub-
ject area of adversarial examples. Before their paper there were
no Black-Box attacks that were nearly as reliable as the one in-
troduced by Papernot and his colleagues. There were only really
White-Box attacks. Now there are a plethora of papers discussing
various Black-Box attacks, many of them drawing inspiration from
Papernot and his coworkers. Thus while certainly having flaws,
their paper shows how adversarial examples can theoretically be
applied in more practical settings, where information is scarce.

Although the majority of successful adversarial attacks have been
performed in studies and many of the more ambitious designs [12]
have yet to see widespread use, adversarial examples are becoming
increasingly more relevant. There have yet to be any examples of
real adversarial attacks that have caused major harm, and for this
reason the study and understanding of adversarial examples is so
important. The danger they pose is not behind us, but rather in
front of us, in the future. Eventually we will become more and
more reliant on artificial intelligence and machine learning and it
is a simple eventuality that adversarial examples will be crafted to
mislead these systems. In order to better understand what kinds
of attacks are possible and how to defend against them, we must
continue to deepen our understanding of these tools.

REFERENCES

[1] Anish Athalye, et al. 2018. Synthesizing Robust Adversarial Examples. (2018).
[2] Nicholas Carlini, et al. 2018. Audio Adversarial Examples: Targeted Attacks on
Speech-to-Text. (2018).

, Vol. 1, No. 1, Article . Publication date: August 2022.

[3] Ian]J. Goodfellow, et al. 2015. Explaining and Harnessing Adversarial Examples.
(2015).
[4] Christopher Molnar. 2022. Interpretable Machine Learning.
[5] Aleksander Madry, et al. 2019. Towards Deep Learning Models Resistant to
Adversarial Attacks. (2019).
[6] Nicolas Papernot, et al. 2015. The Limitations of Deep Learning in Adversarial
Settings. (2015).
[7] Nicolas Papernot, et al. 2016. Distillation as a Defense to Adversarial Perturbations
against Deep Neural Networks. (2016).
[8] Nicolas Papernot, et al. 2016. Transferability in Machine Learning: from Phenom-
ena to Black-Box Attacks using Adversarial Samples. (2016).
[9] Nicolas Papernot, et al. 2017. Practical Black-Box Attacks against Machine Learn-
ing. (2017).
[10] Christian Szegedy, et al. 2014. Intriguing properties of neural networks. (2014).
11] Jeffrey S. Vitter. 1985. Random sampling with a reservoir. (1985).
[12] Zhe Zhou, et al. 2018. Invisible Mask: Practical Attacks on Face Recognition with
Infrared. (2018).

	Abstract
	1 Introduction
	2 Threat Models
	2.1 Adversarial Goals
	2.2 Adversarial Capabilities

	3 White-Box Attacks
	3.1 Szegedy et al. Method
	3.2 Fast Gradient Sign Method
	3.3 Jacobian-based Saliency Map Attack

	4 Black-Box Attack
	4.1 Substitute
	4.2 Transferability
	4.3 Synthetic Data
	4.4 Results

	5 Weaknesses and Defenses
	6 Conclusion
	References

