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Chapter 1

Introduction

1.1 Motivation

Adversial examples are a common technique to evaluate and improve the robustness
of Machine Learning models. In this paper, we create adversial examples with
our new supervision-free framework for unsupervised and supervised learning tasks.
In order to create adversial examples, we make use of the new MinMax algorithm
developed in this paper. The algorithm works with a per-sample mutual information
neural estimator (MINE). This is a neural network which can measure the similarity
of two different data samples. Apart from approving robustness of machine learning
models, we even can improve performance, accuracy and visual quality in comparison
to other frameworks, too.

1.2 Adversial Examples

An adversial example 1.1 is a perturbed data sample leading to misclassification. A
perturbed data sample is a native data sample added with noise. A human being
is still able to classify correctly, but the machine learning model usually cannot
without adversial defense techniques.

Figure 1.1: Adversial Example ( [C15] )
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1.3 Mutual Information Neural Estimator (MINE)

A MINE compounds mutual information (MI) and a convolutional neural network
(CNN).

1.3.1 Mutual Information (MI)

MI 1.1 calculates the dependency between two random variables X and Z with the
joint distribution PXZ and the marginal distributions PX and PZ as input parameters
to the Kullback-Leibler (KL-) divergence. If I(X,Y) = 0, X and Y are independent
and we cannot conclude any information from Y out of X. If I(X,Y) > 0 there is at
least some dependency between the data.

For the MINE algorithm, we use a dual representation 1.2 from [D21]. With
that representation, we are able to calculate the maximal lower bound of the mutual
information efficiently [C-M21].

I(X, Y ) = DKL(PXZ ||PX ⊗ PZ) (1.1)

DKL(P||Q) ≥ sup
T∈F

EP[T ]− log(EQ[e
T ]) (1.2)

1.3.2 Artificial Neural Networks

In the picture 1.2 we see a special case of an artificial neural network - a multilayer
perceptron (MLP). The blue lines should represent the forward calculation and the
red dashed lines represent the backpropagation process, in which the minimum of
the error function is calculated by the gradient descent. In the paper it will be the
projected gradient descent, because we have to consider constraints and projection.

The green circles with a blue touch represent neurons 1.3. An artificial neuron
gets parameterized inputs. Those will be summed up and forwarded to an activation
function. This activation function - which will be a RELU in the paper’s approach
- will activate the neuron, if it satisfies the threshold.

1.3.3 Convolutional Neural Network (CNN)

CNNs 1.4 have several layers. In the convolution layer we pass our filters which
recognize features and save them in feature maps. Our MINE algorithm primarily
use the first convolution layer of our inputs, since it delivers the best results.
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Figure 1.2: MLP with Backpropagation ( https://vinodsblog.com/2019/02/17/deep-learning-
backpropagation-algorithm-basics/ )

Figure 1.3: https://datasolut.com/neuronale-netzwerke-einfuehrung/

Figure 1.4: Convolutional Neural Network ( https://www.youtube.com/watch?v=zfiSAzpy9NM
)
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Figure 1.5: MINE algorithm ( [C-M21] )

1.4 MINE Algorithm

While computing MI can be difficult, this neural network 1.5 maximizes the lower
bound of mutual information of two random variables. For that reason, we use the
Donsker-Varadhan representation 1.2.

Our inputs are a native sample x and the perturbed sample x + δ. x + δ

is the adversial example candidate passed from our MinMax Algorithm 2.1. In the
beginning of our algorithm, we initialize the network parameters called θ. After that
we calculate the first convolution layer of both samples, the native and perturbed
to extract our K feature maps. K is a number we pass manually. The loop has a
manually passed number of iterations. Like we have seen in 1.3.1, we need the joint
distribution and the marginal distribution. In line 5 and 6 of the algorithm, we
calculate their auxiliary distributions. Then we calculate the lower bound of mutual
information estimate with the neural network and finally update the parameters θ.



Chapter 2

MinMax Algorithm

The gist of the MinMax algorithm is to optimize the c and δ value and so return an
adversial example with the highest mutual information in supervised tasks leading
to misclassification and the lowest mutual information in unsupervised tasks leading
to lower reconstruction error. Those calculations are done in line four and eight of
the algorithm 2.1.

δ, which is the grade of perturbation, should be maximized in supervised tasks
and minimized in unsupervised tasks.

So, in the supervised tasks we would like to have most similar examples leading
to misclassification, because we can still have very good visual quality.

In our unsupervised tasks we would like to have most dissimilar examples leading
to generalization errors, but still having lower reconstruction loss, for example in
autoencoder tasks. This switch is done by a simple change of sign.

After that δ should be projected to a feasible set of δ ∈ [−ϵ,ϵ], where ϵ ∈ [0.1, 1.0]d

and x + δ ∈ [0, 1]d. In 2.1 we can see a corresponding representation of this convex
optimization. Those constraints derive from the Lp-Norm perturbation. We use this
to be able to easily compare to other algorithms.

In the inner part, we have to maximize the variable c ≥ 0. This variable is
multiplicated with the attack success evaluation function f+

x (x + δ), where f+
x (x +

δ) ≤ 0 means that we found an adversial example. f+ means, that you pass the
result of the function to a RELU function. One reason why other approaches are
less successful in our test environment is, that they have a constant c value and just
use the Lp-Norm perturbation. In the paper’s approach, we are going to optimize
the c in every iteration.

The use of the projected gradient descent is done for optimization of c and δ. In
the paper, it is also proved, that the algorithm converges.
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Figure 2.1: MinMax Algorithm ( [C-M21] )

MIN
δ:x+δ∈[0,1]d,δ∈[−ϵ,ϵ]d

MAX
c≥0

F (δ, c) ≜ c · f+
x (x+ δ)− IΘ(x, x+ δ) (2.1)



Chapter 3

Evaluation

3.1 Supervised Adversial Examples

We compare supervised adversial examples with our new MinMax algorithm and
common techniques so far - the penalty-based ones. We use them on two differ-
ent datasets. The wellknown MNIST with grayscale numbers and CIFAR-10 with
coloured pictures of 10 classes like trucks, ships, etc.. We observe strongly better MI
on both datasets MNIST and CIFAR-10 3.1 with our approach. The attack success
rate is on both sides 100% in that test set up.

We can observe 3.2 how the MI is developing over the number of iterations.
Penalty-based attacks (green) like in [D17] pretty quickly reaches their peak, whereas
MinMax improves over the number of iterations and gets better on both datasets.
For some reason, the question if the performance is still useful after so many itera-
tions is not answered. Also, it would be very interesting, if the MI would increase
even after 9000 iterations and if or when it saturates.

Moreover, we can see 3.3 why a better mutual information is useful. With the
higher mutual information in our framework, we get significantly better visual qual-
ity against the common adversial techniques, the Projected Gradient Descent attack.
PGD has very good visual quality when using a small number for ϵ. But this leads
to a low attack success rate.

Figure 3.1: ASR and MI over 1000 Adversial Examples ( [C-M21] )
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Figure 3.2: Mean and Standard Deviation of Supervised Adversial Attacks ( [C-M21] )

Figure 3.3: Mean and Standard Deviation of Supervised Adversial Attacks ( [C-M21] )

3.2 Unsupervised Adversial Examples

3.2.1 Data Reconstruction

In data reconstruction tasks using autoencoders, we can observe lower reconstruction
loss with our framework than with the original model or other common techniques.
Furthermore, the generated unsupervised adversial examples serve as data augmen-
tation, which improves the reconstruction loss tremendously. The evaluation 3.4
shows that on both data sets - MNIST and SVHN - we perform better than other
common unsupervised adversial example techniques. With sparse autoencoders, we
improve the reconstruction error on MNIST dataset up to 56.7% and up to 73.5%
on SVHN dataset. Also, the attack success rate is usually higher in comparison to
the other techniques.

3.2.2 Representation Learning

Using the state-of-the-art feature selection method and its test set in representation
learning - concrete autoencoder [J19] - we can improve the reconstruction error
generating UAEs for data augmentation with our framework up to 11% 3.5. The
probable reason for the change for the worse in the dataset of Coil-20 is the result
of the low attack success rate followed by too fewer features recognized by [J19].
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Figure 3.4: Reconstruction Loss of Unsupervised Adversial Examples ( [C-M21] )

Figure 3.5: Reconstruction Error in Representation Learning with UAE Data Augmentation (
[C-M21] )

3.2.3 Contrastive Learning

Also in contrastive learning, we can observe an improvement of contrastive loss and
accuracy with UAE data augmentation generated by our framework for the state-
of-the-art algorithm - SimCLR [G18].
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Chapter 4

Future Work

In the paper, the framework was compared to various other frameworks in supervised
learning or was serving as a data augmentation tool in unsupervised learning to
improve the according loss function and accuracy.

We tested in very limited test sets and environments. To realize how good our
framework is, we have to test it in reality with real life examples. One future work
could be using the framework in autonomous driving to manipulate real world ML
models integrated in nowadays cars, to see, if the framework is comparable to the
state-of-the-art ones in those scenarios.
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