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Anomaly Detection?

» To find the noisy metrics .
» To identify the unexpected event
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Fig: Anomaly Detection

Source : https://lwww.pyimagesearch.com/2020/01/20/intro-to-
anomaly-detection-with-opencv-computer-vision-and-scikit-learn/

l l l Technical University Dortmund


https://www.pyimagesearch.com/2020/01/20/intro-to-anomaly-detection-with-opencv-computer-vision-and-scikit-learn/

Examples

= |ntrusion Detection
= Credit Card Fraud

= Health Monitoring
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Types of Anomalies

=  Point Anomalies
= Contextual Anomalies

= Collective Anomalies
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Point Anomaly

= Single Instance

= Used to detect credit card Fraud &

Fig: Point Anomaly

Source: https:/lelf11.github.io/2018/09/20/data-science-
anomaly-detection.html
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Contextual Anomaly

= An individual data instance is anomalous
within a context
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: : AL\ Anomaly
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= Also referred to as conditional anomalies
Fig: Contextual Anomaly

Source: https://lwww.repetico.com/card-67787341
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Collective Anomaly

= A collection of instances
= Copy data from machine
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Fig: Collective Anomaly

Source: https://lwww.repetico.com/card-67787341
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Time Series Data

= Sequence of data points Temperature/ Feels Like
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= Univariate data "
=  Multi-variate data
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Fig: Time Series Data

Source: https://www.influxdata.com/what-is-time-series-data/
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Stationarity and Differentiation

= Stationarity
= Properties do not depend on the time

= Non-Stationary Stochastic Process

= Trend
= Volatility
= Seasonality
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Modeling
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Statistical Process Control (SPC)
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» Fixed Control Chart
= Moving window control chart

= Exponentially Weighted Moving Average
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Fig: Basic control chart with fixed limit
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Fig: Moving Window control chart

Fig: EWMA
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Modeling

= Autoregressive Integrated Moving Average (ARIMA)

=  Predict future values
= Parameters (p,q,d)

= Linear Regression
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» What it should be?
= Why do we need Prediction?

= How to get Prediction?
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Characteristics

= Trend R ?\fﬁ
) o N AN
= Historical changes . o
= Continuously increasing or decreasing 5 e =T~
= Lineartrend o N\/\f’
. . . ’ T -

Fig: Time Series data with Linear Trend

Source: https://Iwww.oraylis.de/blog/2015/trend-in-times-series-analysis

tu Technical University Dortmund
14


https://www.oraylis.de/blog/2015/trend-in-times-series-analysis

Characteristics

= Seasonality
= Regular and predictable
changes such as weekly and o {
monthly. 5
S
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Fig: Dealing with Seasonality
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Why do we need Decomposition?

= Additive Decomposition

= Constant over the time

= Multiplicative Decomposition

» |ncreases over the time
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Source: https://towardsdatascience.com/finding-seasonal-trends-in-time-series-
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Extract Pattern

= Fourier Transform
= trigonometric functions sine and cosine

The Fourier transform is used in many domains —
= Sound processing
» Filtering Data
= System ldentification
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= |t’s important to be sure that the problem you’re
trying to detect has a reliable signal.

Example metrics we could check include-
= Error Rate
= Throughput
= Latency



Mean Shift Analysis

» Represents the fundamental changes to |
model parameter .
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Fig: Mean shift with throughput

= Cumulative Sum Control Chart (CUSUM )

CUSUM Mean Shift Detection

®" To detect small shifts from the process

target A0 f_',.‘-f__‘;_’:_r,’_‘,'_% _______
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Fig: Cumulative Sum Control Chart
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Disadvantages

= Univariate data
= Common correlation over the time
= Autocorrelations and systematic time series
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Research Outcome

Common cause variation
Special cause variation
ARIMA Model

Multivariate data
Engineering process control
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Conclusion

Anomalies are common occurrences

Different anomalies, various detection method

Combining several methods

It’s complicated
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