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Anomaly Detection?

▪ To find the noisy metrics

▪ To identify the unexpected event
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Fig: Anomaly Detection

Source : https://www.pyimagesearch.com/2020/01/20/intro-to-

anomaly-detection-with-opencv-computer-vision-and-scikit-learn/

https://www.pyimagesearch.com/2020/01/20/intro-to-anomaly-detection-with-opencv-computer-vision-and-scikit-learn/


Examples

▪ Intrusion Detection

▪ Credit Card Fraud 

▪ Health Monitoring
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Types of  Anomalies
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▪ Point Anomalies

▪ Contextual Anomalies

▪ Collective Anomalies
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Point Anomaly

▪ Single Instance

▪ Used to detect credit card Fraud
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Fig: Point Anomaly

Source: https://elf11.github.io/2018/09/20/data-science-

anomaly-detection.html

https://elf11.github.io/2018/09/20/data-science-anomaly-detection.html
https://elf11.github.io/2018/09/20/data-science-anomaly-detection.html


Contextual Anomaly

▪ An individual data instance is anomalous
within a context

▪ Requires a notion of context

▪ Also referred to as conditional anomalies
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Fig: Contextual Anomaly

Source: https://www.repetico.com/card-67787341

https://www.repetico.com/card-67787341


Collective Anomaly

▪ A collection of instances

▪ Copy data from machine
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Fig: Collective Anomaly

Source: https://www.repetico.com/card-67787341

https://www.repetico.com/card-67787341


Time Series Data

▪ Sequence of data points

▪ Univariate data

▪ Multi-variate data
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Fig: Time Series Data

Source: https://www.influxdata.com/what-is-time-series-data/



Stationarity and Differentiation

▪ Stationarity

▪ Properties do not depend on the time 
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▪ Non-Stationary Stochastic Process

▪ Trend

▪ Volatility

▪ Seasonality



Modeling
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Statistical Process Control (SPC)

▪ Fixed Control Chart

▪ Moving window control chart

▪ Exponentially Weighted Moving Average 

(EWMA)

Fig: Moving Window control chart
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Fig: Basic control chart with fixed limit

Fig: EWMA

Source: Baron Schwartz and Preetam Jinka “Anomaly Detection for Monitoring”



Modeling
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▪ Autoregressive Integrated Moving Average (ARIMA)

▪ Predict future values

▪ Parameters (p,q,d)

▪ Linear Regression
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Prediction
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▪ What it should be?

▪ Why do we need Prediction?

▪ How to get Prediction?



Characteristics
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▪ Trend

▪ Historical changes

▪ Continuously increasing or decreasing

▪ Linear trend

Fig: Time Series data with Linear Trend
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Source: https://www.oraylis.de/blog/2015/trend-in-times-series-analysis

https://www.oraylis.de/blog/2015/trend-in-times-series-analysis


Characteristics
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▪ Seasonality

▪ Regular and predictable 

changes such as weekly and 

monthly.

Fig: Dealing with Seasonality
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Why do we need Decomposition?
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▪ Additive Decomposition

▪ Constant over the time

▪ Multiplicative Decomposition

▪ Increases over the time
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Fig: Additive Seasonality

Fig: Multiplicative Seasonality

Source: https://towardsdatascience.com/finding-seasonal-trends-in-time-series-

data-with-python-ce10c37aa861

https://towardsdatascience.com/finding-seasonal-trends-in-time-series-data-with-python-ce10c37aa861


Extract Pattern

▪ Fourier Transform

▪ trigonometric functions sine and cosine

The Fourier transform is used in many domains –

▪ Sound processing

▪ Filtering Data

▪ System Identification
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Metric
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▪ It’s important to be sure that the problem you’re 

trying to detect has a reliable signal.

Example metrics we could check include-
▪ Error Rate

▪ Throughput

▪ Latency



Mean Shift Analysis
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▪ Represents the fundamental changes to 

model parameter

▪ Cumulative Sum Control Chart (CUSUM )

▪ To detect small shifts from the process 

target

Fig: Cumulative Sum Control Chart 

Source: Baron Schwartz and Preetam Jinka “Anomaly Detection for Monitoring”

Fig: Mean shift with throughput



Disadvantages
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▪ Univariate data

▪ Common correlation over the time

▪ Autocorrelations and  systematic time series



Research Outcome
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▪ Common cause variation

▪ Special cause variation

▪ ARIMA Model

▪ Multivariate data

▪ Engineering process control
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Conclusion

▪ Anomalies are common occurrences

▪ Different anomalies, various detection method

▪ Combining several methods

▪ It´s complicated
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