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Overview and Problem Definition

Streaming Data
Xt = ..., x (t−3), x (t−2), x (t−1), x (t) at time t,
Xt+1 = ..., x (t−3), x (t−2), x (t−1), x (t), x (t+1) at time t + 1. Data
not analyzed in batches but updated constantly.

Issues for Anomaly Detection in Streaming Data
1 Online processing
2 Adaptiveness: algorithm is continuous and not dependent of

the entire dataset
3 Human interaction in general implausible. Unsupervised

Learning
4 Adaptability to concept drift
5 Minimization of false positives and false negatives

2 / 22



Overview and Problem Definition

Anomaly detection streaming data paradigms
• Forecast

• HTM: Hierarchical Temporal Memory
• RNNs: Recurrent Neural Networks
• LSTMs: Long Short term Memory
• Other time series or sliding window based approaches

• Reconstruction
• Autoencoders: Convolutional Autoencoders, LSTM

Autoencoders

3 / 22



The HTM Algorithm

Taken from: (Ahmad et al., 2017)

4 / 22



The HTM Algorithm: Encoder and Spatial Pooling

Taken from: (Ahmad et al., 2017)
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The HTM Algorithm: Sequence Memory

Taken from: (Ahmad et al., 2017)
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The HTM Algorithm: Prediction Error

Taken from: (Ahmad et al., 2017)

Prediction Error

St = 1 − π(xt−1).a(xt)
|a(xt)|

0 if π(xt−1) is exactly the same as a(xt) i.e. predicted equals
observation.
1 if π(xt−1) have no bits in common with a(xt) i.e. if they are
orthogonal (no prediction matches its observation).
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The HTM Algorithm: Anomaly Likelihood

Taken from: (Ahmad et al., 2017)

Anomaly Likelyhood
Intuitively: probability of an event being anomalous or not (lies
within 0 and 1). Its calculation is based on a rolling normal
distribution over the last predicted error values within last W
observations.

µt =
∑i=W −1

i=0 st−i
W

σ2
t =

∑i=W −1
i=0 (st−i − µt)2

W − 1
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The HTM Algorithm: Anomaly Likelihood

Taken from: (Ahmad et al., 2017)

Anomaly Likelyhood
Long term and short term prediction error distributions are
compared. Where the short term mean is (being W ′ << W ):

µ̃t =
∑i=W ′−1

i=0 st−i
W ′

And the anomaly likelihood calculated as:

Lt = 1 − Q( µ̃t − µt
σt

)
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The HTM Algorithm: Multivariate Time Series Data

Taken from: (Ahmad et al., 2017)

Simultaneous data sources
Assuming that the underlying distributions of each of the M + 1
prediction errors are independent:

Lt = 1 −
M−1∏
i=0

Q( µ̃ti − µti

σti
)
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Related Approaches: Long Short Term Memory (LSTM)

Recurrent Neural Networks

Taken from: (Olah, 2015)
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Related Approaches: Long Short Term Memory (LSTM)

Taken from: (Olah, 2015)

LSTM Neural Networks
• LSTMs add or remove information to the cell state with the

gates composed of sigmoid and multiplication
• Gates are: forget gate, input gate and output gate
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Related Approaches: Long Short Term Memory (LSTM)

Taken from: (Olah, 2015) 13 / 22



Related Approaches: Long Short Term Memory (LSTM)

LSTM for Anomaly Detection
• Prediction approach: Forecasting
• Learning mechanism: Supervised
• Training mechanism: per Batches
• Easy handle of multidimensional data
• Not so fast adaptation to concept drift
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Related Approaches: Autoencoders

Taken from: (Nguyen et al., 2020)

Autoencoders
• Reconstruction vs forecast (LTSM, HTM) approach
• Feature selection and/or dimensionality reduction with

potential highly nonlinear functions
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Related Approaches: Autoencoders

Taken from: (Agarwal et al., 2021)

Autoencoders for Anomaly Detection
• Prediction approach: Reconstruction
• Learning mechanism: Unsupervised
• Training mechanism: per Batches
• Easy handle of multidimensional data
• Not so fast adaptation to concept drift
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Evaluation Metrics

Confusion Matrix

True Class
0 1

Estimated 0 TN FN
Class 1 FP TP

Evaluation Metrics
• Total error rate: F = FP+FN

n
• Sensitivity (True Positive Rate): TPR = TP

TP+FN
• 1-Specificity (False Positive Rate): FPR = FP

TN+FP
• Precision: TP

TP+FP
• F1-Score: 2

1
Precision + 1

Recall
= 2 Precision∗Recall

Precision+Recall (Harmonic Mean)
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Evaluation Metrics

ROC Curve
Points on the diagonal are randomly assigned

Taken from: (James et al., 2017) 18 / 22



Experimental results

Taken from: (Agarwal et al., 2021)
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Experimental results

Taken from: (Haddad and Piehl, 2019)
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Comparison and Discussion

Discussion
• HTMs and LSTMs proceed under forecasting paradigm

whereas Autoencoders are reconstructive
• HTMs have the highest capacity of updating themselves fast

in an online learning application (concept drift)
• LSTMs learn in a supervised manner
• Typically, LSTMs and Autoencoders require more data
• HTMs appear to achieve a higher recall in several applications,

whereas LSTMs and Autoencoders are more precise
• LSTMs and Autoencoders have a more flexible and built-in

way to adapt to several related data sources
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