Unsupervised Anomaly Detection in Traffic Videos

Akshaya Surendran

Table of Contents

- Introduction
- Anomaly Detection
- Related Work
- Proposed Method
 - i. Preprocessing
 - ii. Candidate Selection
 - iii. Backtracking Algorithm
- Experiment
- Improvements

Introduction

NVIDIA AI CHALLENGE 2020

What is Anomaly Detection?

Unsupervised Learning

Anomaly detection (also outlier detection) is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.

Related Work

Supervised Learning

Proposed Work

Candidate Selection

Backtracking Anomaly Detection

Preprocessing

I. Background Modelling:

Preprocessing

II. Road Segmentation:

The image is normalized to perform binarization to extract the segmentation map (S)

III. Object Detection:

YOLO (You Only Look Once)

YOLO is an algorithm that uses neural networks to provide real-time object detection.

P_c	1
C_{x}	50
$C_{\mathcal{Y}}$	70
W	60
Н	70
\mathcal{C}_1	1
C_2	0

 C_1 Dog Class

C₂ Person Class

S X S grid on input

Bounding box + Confidence

Final Detections

Class probability map

$$C^{XY} = \{ (c_{X\vec{I}}^{t}, c_{Y\vec{I}}^{t}), \}$$

$$L^{XY} = \{ (w_{X\vec{I}}^{t}, h_{Y\vec{I}}^{t}), \}$$

MS COCO is a large-scale object detection, segmentation, and captioning dataset by Microsoft

Background Modeling

Frame Segmentation

Video Frames

Segmentation Map

Detected Objects

Preprocessing Pipeline

Candidate Selection

I. Outlier Detection:

K - Nearest Neighbor

K Nearest Neighbor is a simple algorithm that stores all the available cases and classifies the new data or case based on a similarity measure.

A point (c_{Xi}^t, c_{Yi}^t) (center of the bounding box for an object i detected at each time instance t) as misclassified if

 $d^t_{xi,yi}(k_1) \leq l_1$, and as a slow-moving vehicle if $d^t_{xi,yi}(k_2) \geq l_2$

Candidate Selection (contd.)

• II. <u>Hotspots Detection:</u>

K – Means Clustering

K- Means Clustering is an unsupervising learning method that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

Select K using elbow method

if Centroid not in the Segmentation Map, then Remove.

Declare t as
potential anomaly
onset time
tK for centroid K

For each time instance t and each K. The B-box centers are compared with centroids.

Candidate Selection (contd.)

Potential Region of Interest

Backtracking Anomaly Detection

Region of Interest 3

Experiment

- Dataset
- 2 Evaluation Criteria:
 - I. Detection delay measured by the root mean square error (RMSE)
 - II. the detection performance measured by the F1 score.

$$S_4 = F_1(1 - NRMSE)$$

F1 Score

0.5926

RMSE

8.2386

S4 Score

0.5763

Improvements

- Object Detection
- Background Modelling
- Segmentation Map

References

- Keval Doshi and Yasin Yilmaz. Fast unsupervised anomaly detection in traffic videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, 2020.
- Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity based vehicle trajectory clustering and anomaly detection. In *IEEE International Conference on Image Processing*, 2005.
- Romero Morais, Vuong Le, Truyen Tran, Budhaditya Saha, Moussa Mansour, and Svetha Venkatesh. Learning regularity in skeleton trajectories for anomaly detection in videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2019.
- Shuai Bai, Zhiqun He, Yu Lei, Wei Wu, Chengkai Zhu, Ming Sun, and Junjie Yan. Traffic anomaly detection via perspective map based on spatial-temporal information matrix. In *Proc. CVPR Workshops*, 2019.
- Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
- Introduction to YOLO Algorithm for Object Detection. <u>Introduction to YOLO Algorithm for Object Detection | Engineering Education (EngEd) Program | Section</u>.
- Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 2004.
- Yingying Li, Jie Wu, Xue Bai, Xipeng Yang, Xiao Tan, Guanbin Li, Shilei Wen, Hongwu Zhang, Errui Ding. Multi-Granularity Tracking with Modularlized Components for Unsupervised Vehicles Anomaly Detection, 2020.
- Keval Doshi, Yasin Yilmaz. An Efficient Approach for Anomaly Detection in Traffic Videos, 2021.
- Yuxiang Zhao, Wenhao Wu, Yue He, Yingying Li, Xiao Tan, Shifeng Chen. Good Practices and A Strong Baseline for Traffic Anomaly Detection, 2021.
- Jie Wu, Xionghui Wang, Xuefeng Xiao, Yitong Wang. Box-Level Tube Tracking and Refinement for Vehicles Anomaly Detection, 2021.