
Unsupervised Real Time Anomaly Detection for Streaming Data

CÉSAR AUGUSTO VELÁSQUEZ PINEDA, Technische Universität Dortmund, Germany

Abstract: Streaming data is becoming increasingly important, particularly
in industrial environments or IoT applications, where sensors are constantly
measuring the state of variables. Detecting anomalies for such data is not
paramount in order to execute control or feedback actions whenever needed,
however, this comes with its own challenges in terms or the data processing
involved. This paper focuses on one paradigm for anomaly detection in
streaming data: the HTM or Hierarchical Temporal Memory, explains and
reports on the results acquired by it in streaming applications. Furthermore,
the suitability and performance of the model is compared with that of two
state of the art paradigms for anomal detection in time series: LSTMs and
Autoencoders. The advantages and shortcomings of ech paradigm are in
the end compared and discussed, in order to provide insight on the more
plausible applications for each, in the context of time series and streaming
data analysis.

ACM Reference Format:
César Augusto Velásquez Pineda. 2022. Unsupervised Real Time Anomaly
Detection for Streaming Data. 1, 1 (February 2022), 8 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Streaming data from sensors prevails in most industries, and it has
a growing trend with IoT devices that are key to the rise of Industry
4.0. It is therefore essential to monitor the data inflow coming from
these devices, since this data allows for a good functioning of a
productive process, machine, or many other applications. Detecting
when the behaviour of such data is anomalous has in consequence
a deciding role in deciding when and how action should be taken
upon a system in order to keep it performing as desired. In this work,
streaming data of time series nature is explored in this context.
When speaking about anomaly detection in time series data, a

distinction needs to be done between steady and streaming data. In
the former the data is analyze as a batch, i.e. a model can be learned
for the whole time span comprised within it in order to look for
anomalous behavior. Streaming data is, on the other hand, updated
constantly, and it is typical that an anomaly detection paradigm
for such data is expected to detect anomalous behavior as the data
arrives, i.e. in real time, instead of batches. This is a simple but decid-
ing aspect, since the challenges to overcome in anomaly detection
of streaming data with respect to bath processing are several and
very distinct, as stated by [2] and they can be summarized in the
following aspects:

(1) Online processing (every time step should be identified as
anomalous or not before the next one arrives).

(2) The model should be fast and adaptive to fulfill the condition
1. For this, it is important that the learning of the algorithm
is continuous and not dependent of the entire dataset.

(3) Due to the, in general, high velocity of data income from
sensors, human interaction, supervision or labeling of data is

Author’s address: César Augusto Velásquez Pineda, cesar.velasquez@tu-dortmund.de,
Technische Universität Dortmund, Dortmund, Germany.

implausible, from which learning should be unsupervised in
nature.

(4) Adaptability of models to concept drift, i.e. the possibility
that the system statistics may deviate due to a change in the
environment from which the data comes from (like updates
on the sensors for instance).

(5) Minimization of false positives and false negatives, since oth-
erwise the outputs of the model might end up being ignored
or considered largely as not relevant.

In this paper, one plausible model paradigm to tackle the above
issue is presented and described in detail: the HTM, whcih stands
for Hierarchichal Temporal Memory. In Section 2 the algorithm
is presented, both its mechanism of action, logic behind its con-
struction and how it is used for streaming data. Then, Section 3
introduces briefly two other paradigms for the same problem at
hand, the LSTMs and Autoencoders, both popular approaches for
time series data in the context of anomaly detection. Upon doing
that, Section 4 compares and discusses the three paradigms, again
in the context of their applicability to anomaly detection in stream-
ing data. Finally, Section 5 Summarizes the main ideas discussed
throughout this text.

2 ANOMALY DETECTION AND THE HTM PARADIGM

2.1 Time series and Anomalies
A time series can be defined as a collection of observations of a single
randomvariable at different time points, i.e.𝑋 = {𝑥 (1) , 𝑥 (2) , ..., 𝑥 (𝑛) }
where 𝑥 (𝑡) ∈ R𝑚 where𝑚 is the dimension and 𝑡 is the timestamp
(time interval where the variable was measured) [4]. Typically,𝑚 is
equal to 1 and the time intervals are equally spaced. A time series
can be steady, i.e. the dataset to be analysed is the set of observations
ranging from 𝑥 (1) to 𝑥 (𝑛) , where no further data is added during
inference and forecasts are made only based on this data observa-
tions. On the other side, the time series can consist of streaming
data, which means that the data is continuously being gathered
and updated, i.e. at the present time period the time series data
has the shape 𝑋𝑡 = ..., 𝑥 (𝑡−3) , 𝑥 (𝑡−2) , 𝑥 (𝑡−1) , 𝑥 (𝑡) , and at the next
one it will be 𝑋𝑡+1 = ..., 𝑥 (𝑡−3) , 𝑥 (𝑡−2) , 𝑥 (𝑡−1) , 𝑥 (𝑡) , 𝑥 (𝑡+1) [2]. As a
consequence, while producing forecasts on the data, a model fitted
to streaming data will always need to update itself based on the last
data collected in order to produce accurate forecasts based on the
latest gathered data.
Anomalies in the context of time series analysis, anomalies cor-

respond to instances (single observations) or collective instances
(multiple observations) whose values deviate from the expected [7].
In this context, unexpected is also to be understood as statistically
unlikely. How the deviation is measured depends on the specific
anomaly detection paradigm implemented. Figure 1 shows the main
types of anomalies in time series data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • César Augusto Velásquez Pineda

Fig. 1. Different types of anomaly in univariate time series data. Taken from: [4]

2.2 HTM algorithm overview
HTM, or Hierarchical Temporal Memory is an algorithm developed
by Numenta [2], which aims to reproduce in a more Biologically
similar way, the human processing logic as compared to neural
networks.

In the context of time series data, the HTMmodel is used in order
to make a prediction of the system state in the next time step 𝑥𝑡+1.
Using this prediction, once the actual value is known, a prediction
error can be calculated, which is in turn used to calculate an anomaly
likelihood, which is the one that will in the end conclude whether
this observation corresponds to an anomaly or not. Overall, the
anomaly detection block diagram using HTM is showed in Figure 2.
The HTM block is a whole process on its own, whose block diagram
is further explained in Figure 3.
As can be seen in Figure 3, the HTM algorithm takes the cur-

rent time state of the system (a sensor measurement at the current
time for example) and feeds it to an encoder. The encoder creates
an embedded representation of 𝑥𝑡 in the form of a binary sparse
array. This array is passed to a spatial pooler which has the task
of guaranteeing that the level of sparsity in any embedded signal
𝑥𝑡 is the same, i.e. the ratio of the number of ones with respect to
the number of zeroes is constant, all this while maintaining the
semantic meaning of the embedding. This representation is then
fed to the most important building block of the HTM, which is
the sequence memory. The memory is represented as an array with
several mini columns (as shown in Figure 4). According to both the
present state 𝑥𝑡 and the past observations (𝑥𝑡−1,𝑥𝑡−2, ...) the cells
(circles inside the grid) of the memory are activated. This structure
helps the algorithm learn patterns and make predictions based on
both the present state but also the context it comes from. With this
mechanism, the model makes a prediction 𝜋 (𝑥𝑡) for the next state,
i.e. for 𝑥𝑡+1. In Figure 4, it can be seen for instance, that even though
B and C are present in the sequence in the same relative positions,
the active cells differ (although the activated columns are the same),
because they appear in a different context (with a sequence starting
in A with respect to a sequence starting with X), which in turn leads

to a different prediction based on this past context and different cell
activations.

2.3 Prediction Error
As mentioned before, 𝑥𝑡 is encoded via the encoder and the spa-
tial pooler into a sparse binary representation, namely 𝑎(𝑥𝑡). Now,
according to Section 2.2, the prediction of the HTM algorithm for
the current time step was done while passing in the observation
𝑥𝑡 − 1, yielding the prediction 𝜋 (𝑥𝑡 − 1) (which is also represented
in the form of a sparse binary vector of the same size as 𝑎𝑡). The
prediction error is calculated using both of this measures as follows:

𝑆𝑡 = 1 − 𝜋 (𝑥𝑡−1) .𝑎(𝑥𝑡)
|𝑎(𝑥𝑡) |

The prediction error, is 0 if 𝜋 (𝑥𝑡−1) is exactly the same as 𝑎(𝑥𝑡)
i.e. if the predicted representation turns out to be the materialized
real observation. It is 1 on the other side if 𝜋 (𝑥𝑡−1) have no bits in
common with 𝑎(𝑥𝑡) i.e. if they are orthogonal. It is noteworthy that
the prediction error can adjust to concept drifts, since at shift points
it will peak, but then subside as the system converges to the new
normal metrics, as the concept drift settles.

2.4 Anomaly likelihood
The anomaly likelihood is the final output of the anomaly detection
model with HTM. The prediction error is not used directly as a
measure to conclude on whether an observation is anomalous or
not because of the inherent noise that may exist within the data.
Sometimes peaks may occur, but they may not represent themselves
an anomaly, from which just thresholding the precision error would
lead to many false positives (many events tagged as anomalous
when they are actually not). Because of this possibility, the anomaly
likelihood is computed from the prediction error. This measure is
based on a rolling normal distribution over the last predicted error
values within a sliding windowwith size, i.e. number of observations
𝑊 . This rolling distribution has the samplemean (𝜇𝑡) and the sample
variance (𝜎2𝑡) as parameters, which are calculated as follows:

Unsupervised Real Time Anomaly Detection for Streaming Data • 3

Fig. 2. Block diagram of data flow through the HTM Anomaly Detection algorithm. Taken from: [2]

Fig. 3. Block diagram of the core HTM algorithm (HTM block in Figure 2). Taken from: [2]

Fig. 4. HTM sequence memory illustration. Taken from: [2]

𝜇𝑡 =

∑𝑖=𝑊 −1
𝑖=0 𝑠𝑡−𝑖

𝑊

𝜎2𝑡 =

∑𝑖=𝑊 −1
𝑖=0 (𝑠𝑡−𝑖 − 𝜇𝑡)2

𝑊 − 1

The short term average of the prediction errors is calculated as:

𝜇𝑡 =

∑𝑖=𝑊 ′−1
𝑖=0 𝑠𝑡−𝑖

𝑊 ′

Where𝑊 ′ is a window for a short termmoving average, and𝑊 ′ <<
𝑊 . From these measures, the anomaly likelihood is calculated as
the complement of the tail probability:

𝐿𝑡 = 1 −𝑄 (𝜇𝑡 − 𝜇𝑡

𝜎𝑡
)

𝐿𝑡 is therefore the value that is thresholded via a user defined value
𝜖 , as:

If 𝐿𝑡 >= 1 − 𝜖 , then an anomaly is detected. According to [2] for
values very close to zero, it would be very unlikely to get alerts with
a likelihood higher than the threshold value 𝜖 .

2.5 Multiple data sources simultaneously
Until now, everything that has been described involves one data
source, i.e. one time series from which the anomalies are detected.
However, anomalies in many industrial environments may depend
on the measurements of multiple sensors simultaneously, which
brings the challenge of the multidimensionality of the input data. [3]
states that the framework described in Section 2.2 can be extended
to multiple models. In this approach, all data sources are combined
into a single anomaly likelihood before executing the thresholding,
because this way interactions between them can be accounted for

4 • César Augusto Velásquez Pineda

while detecting the anomalies (otherwise each model would just
have an anomaly score, and decisions would still be made out of
individual anomaly scores per sensor instead of from the combined
effect of the data, as Figure 5 shows.

For each data source (𝑀+1 in this example), the HTM architecture
is implemented, in order to output the prediction errors 𝑆0𝑡 to 𝑆𝑀𝑡 .
Then, all of these predictions errors are combined into a function
that computes the overall anomaly likelihood 𝐿. In [3] it is assumed,
for the sake of simplicity, that the underlying distributions of each
of the 𝑀 + 1 prediction errors are independent (although in reality
this not always holds, for instance, when there are multiple sensor
measuring variables of the same process, in which case their values
may be correlated to some extent) from where the joint anomaly
likelihood is calculated as:

𝐿𝑡 = 1 −
𝑀−1∏
𝑖=0

𝑄 (
˜𝜇𝑡𝑖 − 𝜇𝑡𝑖

𝜎𝑡𝑖
)

3 RELATED WORK
HTMs are naturally of interest for implementation in applications
with streaming data. However, there are other paradigms that are
currently subject of research for the similar applications. In the
following setions, two of the most relevant ones, namely LSTMs
and Autoencoders will be briefly explained and discussed, in order
to discuss and compare the different approaches.
Anomaly detection paradigms for time series can be grouped in

two main categories, namely forecasting-based and reconstruction-
based. The former are those that intend to, at each time step, forecast
the value of the response variable, after which an error measure
is calculated once the actual observation is measured. From this
forecast error, anomalies are determined and flagged as such. The
HTM model, as well as LSTM Recurrent Neural Networks (which
will be hereafter discussed) work typically under this paradigm. On
the other side, the reconstruction-based models intend to, given
some data, reconstruct it through learning its patterns. The recon-
structed data is compared to the actual data, and the anomalies are
detected according to which parts of the data present a reconstruc-
tion error higher than some accepted threshold. Autoencoder Neural
Networks are a good example of this kind of anomaly detection
paradigm.

3.1 LSTM Neural Networks
RNNs, or Recurrent Neural Networks, are a type of neural network
that can model sequential data, and they do so by passing informa-
tion from on time step to the next one, being able to capture temporal
dependencies and learn from them. Examples of data that are mod-
eled through RNNs are time series, speech or written language,
music, and any other kind of data that has a sequential temporal
dependency. The LSTM, or Long Short Term Memory model is a
kind of RNN that was developed in order to allow the traditional
RNNs to capture longer contextual dependencies within a sequence.
This is naturally advantageous, since it can learn dependencies fur-
ther away in time than a simple RNN. The structure of an LSTM is
shown in Figure 6.

Within a single cell of an LSTM, the cell state ℎ𝑡 is the main
variable implicated. It has the information of the sequence, both
the present state and the context that the network decides to keep
through learning (and it does so through keeping, updating and
dropping information using multiple gates appearing as 𝜎 in the
figure and transformations (tanh in a typical LSTM cell as the one
showed). Because of the gating structure, if some data from several
time steps in the past is considered relevant to predict the present
state during learning, then the gates will allow to keep this infor-
mation flowing from one time step to the next one to preserve its
semantic meaning in the encoded data.

When applied in the context of anomaly detection, LSTMs work
similarly to the HTM algorithm, i.e. the network makes predictions
on the next time step(s) and the result is compared to the actual
observed value. An anomaly score is calculated as a function of the
discrepancy between the predicted and observed (the higher the
discrepancy, the higher the anomaly score). The final classification
"anomalus/not anomalous" is finally made through a threshold pa-
rameter 𝜖 , analogous to what was shown in Section 2.4. When the
anomaly likelihood (probability) is higher than this threshold, then
an anomaly is detected. Some of the features of LSTMs relevant to
the anomaly detection problem in time series are:
Specifically, in the context of anomaly detection in time series

data, time series fall under the forecasting paradigm, as well as the
aforementioned HTM algorithm. Unlike HTM, LSTM learn parame-
ters in a supervised manner, which might be an impeachment for
working with high inflow rate data. Because of the typically big
network architectures an enormous number of parameters, it is
also typical for LSTMs to be retrained by batches, i.e. the model
parameters are not updated upon income of new data points auto-
matically, as was the case for the HTMmodel. LSTMs do not need to
assume independence of measurements to handle multidimensional
data, since they can take such data as input directly by construction,
facilitating and providing flexibility to the model in terms of the
possible relation within variables therein. Since LSTMs learn by
batches instead of online, they are naturally more succeptible to not
adapting as fast as HTMs to concept drifts in the data.

3.2 Autoenconders
Just as LSTMs are a popular method for time series data analysis
because of its power to learn temporal dependencies in order to
forecast, Autoencoder Neural Networks are also worth mentioning
when discussing anomaly detection, both for time series as well as
for other types of data (such as images). Unlike HTM of LSTMs,
autoencoders do not forecast on the data but instead recreate it
based on a low dimensional representation, and the compare the
recreation with the original to look for relevant discrepancies. The
main mechanism of an autoencoder is depicted in Figure 7.
As can be seen in the figure, the original data (blue column) is

first fed to the encoder (typically an LSTM-like neural network)
which has as output a lower dimensional representation of the
data (red column). Then, the original data is recreated from the
lower dimensional representation via the decoder, which is another
LSTM-like neural network whose output has the same dimension
as the originally fed data. For many applications, autoencoders

Unsupervised Real Time Anomaly Detection for Streaming Data • 5

Fig. 5. System with anomaly likelihood calculation over multiple independent HTM models. Taken from: [3]

Fig. 6. Configuration of an LSTM cell. Taken from: [4]

Fig. 7. LSTM Autoencoder diagram. Taken from: [6]

have the advantage of the dimensionality reduction, i.e. the data is
represented in lower dimensions than it originally has. In anomaly
detection approaches however, the finally recreated representation

is the subject of interest. Since the whole structure learns the main
patterns of the data, the decoded representation is typically denoised,
as compared to the original data. Then, the reconstructed data is
compared against the original and if their difference go beyond
some threshold, then they are classified as anomalies. Similiarly to
the HTM approach described in Section 2.4, the threshold can be
dynamically selected using a probability distribution on the data
(e.g. a normal distribution of the non-anomalous data) as made by
[1].

Even though typically autoencoders are used for static data, they
can also be adapted and used for streaming data, as done by [1].
The model is trained in batches (not completely online learning,
where updates are made to the model after each new data point
arrives, but every number of observations instead) since the num-
ber of parameters of an LSTM neural network make it virtually
impossible to be retrained that often. Notwithstanding, [1] claim
that an Autoencoder is able to keep track with contextual and point

6 • César Augusto Velásquez Pineda

anomalies, and also keep up with concept drifts accordingly, which
makes them very attractive for streaming data applications.
In the context of anomaly detection, autoencoders have, just

like HTMs the advantage of being unsupervised models, i.e. no
human labeling or interaction is explicitly required. Because of the
similar construction (neural network based) autoencoders can, just
like LSTMs handle multidimensional data easily are more flexibly in
comparison to HTMs, without needing to make further assumptions
on the data distributions.

3.3 Evaluation metrics
In order to compare learning models and perform model selection
for a particular application, one or several performance metrics are
to be implemented. Table 1 shows the most common performance
metrics, that apply to all the anomaly detection paradigms hereby
considered [5].
A high recall (also often called sensitivity), as explained in Ta-

ble 1 implies that a high number of the actual anomalies are being
detected by the algorithm, but it disregards the amount of false
positives (not actual anomalies detected as such), contrary to what
Precision does i.e. if there are too many false positives after evaluat-
ing a model, the precision may be too low, even if the recall is of a
100%. The F1 Score weights both measures into one, being therefore
affected both by false positives and false negatives (anomalies that
are not detected as such). Depending on the application, the recall
and the precision might have a different relevance. For instance, in
medical applications it might be paramount that an algorithm does
not skip any anomalies (i.e. does not have or have minimal false
negatives) whereby a high recall is mandatory. On the other side,
in finantial applications, where anomalies can mean e.g. fraudulent
transactions, it is also really important to keep the precision as high
as possible, since otherwise many transactions are detected as fraud,
when they are actually legitimate, which causes both trouble for
customers as high costs to the implicated companies. Thus, choosing
the evaluating metrics is also a key aspect of anomaly detection
analysis and model selection.

3.4 Experimental results
In order to discuss the advantages and disadvantages of one or
another anomaly detection paradigm, aspects such as the architech-
ture and model itself are relevant, but naturally, performance is
also a key factor. [4] compared HTMs and LSTMs architectures
for anomaly detetion in both artifitially modified datasets (where
noise was introduced with different levels of intensity to the data)
and real world datasets. Figure 8 shows a comparison of these two
paradigms in an artificial dataset, where the metrics are represented
as a function of the level of noise introduced to the dataset. It is
noteworthy that both HTM and HTM* models represent the same
model, but the metrics for the HTM* are calculated only using the
test data (as well as for the LSTM model), whereas the HTM uses
the whole time series, since it is updated at each data point (unlike
the LSTM).

The results obtained by [4] in both artificial and real-world datasets
point towards an important remark: The HTM algorithm shows
a higher recall than the LSTM (i.e. most of the actual anomalies

Fig. 8. Comparison LSTM and HTM in artificial datasets with different
levels of introduced noise. Taken from: [4]

are detected) particularly as the level of noise is higher, which is
tipically the case for e.g. IoT applications. This high recall can be
benefitial when it is too sensitive to miss an anomalous behavior,
which would happen if the recall is not close to 1. On the ther side,
LSTMs are in general more precise, i.e. they have less false positives.
Although [4] did not include Autoencoder architectures in their
comparison, [8] compared several Neural network architectures,
including a forecast-LSTM and Autoencoder LSTM. Therein, the
Yahoo Webscope S5 dataset was used for fitting and comparison of
the evaluation metrics. The Autoencoder variation showed some
improvements with respect to the original LSTM, as shown in Ta-
ble 2. It is noteworthy, that both approaches have a similar inner
architechture, wehre each cell in the neural network is an LSTM
cell, but the LSTM approach forecasts the observations, whereas the
autoencoder reconstructs the series.

4 COMPARISON AND DISCUSSION
As was mentioned before, LSTMs fall under the forecasting category
within the algorithms for anomaly detection in time series, just as
HTMs. However, there are several discrepancies between the two.
LSTMs are supervised models, which means they are trained on
labeled data, which is in general more expensive and technically
harder. Besides that, LSTMs are trained on batches, i.e. they are not
well-suited for online learning or being updated at every new data

Unsupervised Real Time Anomaly Detection for Streaming Data • 7

Table 1. Performance metrics, anomaly detection. Adapted from [5]

Metric Definition
Precision Number of actual anomalies detected in relation to all detected anomalies

Recall Number of detected anomalies in relation to all actual anomalies

F1-Score Measures the quantity of any false detections (based on both precision and recall)

ROC A curve that visualizes the ratio of correctly detected anomalies against incorrectly detected anomalies
for varying thresholds

Area under curve (AUC) Integral under the ROC. A high value represents a model with high recall and low false positive rate

Table 2. Comparison LSTM and Autoencoders (LSTM-based and Covolu-
tional LSTM-based autoencoders) in real world datasets. Taken from:[6]

Network Recall Precision F1 Score
LSTM 0.88 0.93 0.90
LSTM Autoencoder 0.94 0.97 0.96
Convolutional LSTM Autoencoder 0.97 0.99 0.97

point coming from sensors or any data source. It is a decision of
the modeler, after how many new data points the model should
be retrained, and this is in turn dependent on many factors such
as the speed of data streaming and the time it takes for the model
to retrain. Since typically, prediction in time series tends to have
a smaller precision whenever the forecast period is further away
from the current time, a trade off must be made while choosing the
batch size used for training, so as not to lose forecast precision. The
fact that LSTMs need to wait until the batch sized for retraining is
achieved, makes them less adaptive to concept drifts in the data (or
very computationally expensive if trained too often).

As was already mentioned, HTM has the capability to update
itself online, i.e. upon receiving new data points, whereas the two
other types of models perform retraining by batches of data, due to
their much bigger model construction and parameter count. One
big disadvantage of LSTMs is that they need labeled data, making
them supervised in nature. Because of the high rated of incoming
data in a streaming data monitoring application, acquiring such
labeled data might not be achievable or realistic. However, for data
whose measuring rate is not extremely fast, human labeling might
be an option and LSTMs would be a suitable solution to implement.
Autoencoders do not suffer from this, since they are unsupervised
by nature. However, as stated by [5], in order to further highlight
the possible anomalies while calculating the reconstruction error
from an autoencoder, preprocessing or feature extraction techniques
are applied ro the data before feeding it to the autoencoder, which
implies more work in the data pipeline. One important advantage
of LSTMs and autoencoders with repect to HTMs is that they can
handle multidimensional data in a much more simple and flexible
way, since their model architechtures are built to accept any kind
of incoming data dimensionality, and their model mechanics can
model complex non linear relationships in the data, whereas in
HTMs multidimensional data must be handled in a more manual
way, stacking several HTMs together to join the prediction errors
of each separate measure as was described in Section 2.5.

According to [4], while deploying HTMs in comparison to LSTMs
for real world time series data, HTMs had comparatively more false
positives but better recognition of point anomalies i.e. a higher recall.
On the other side LSTMs showed a better precision, at the expense
letting go some actual anomalies undetected. As was discussed ear-
lier in this text, such a model would make a better fit for e.g. finantial
operations, where a low false positive rate is desired to minimize op-
erational costs and trouble, whereas for health related applications
it would be more unacceptable to have a high number of undetected
anomalies, which could potentially be life threatening signals for
an individual. Furthermore, since both HTMs and Autoencoders
work in an unsupervised manner, they should be preferred for ap-
plications in manufacturing and industry 4.0, where many sensors
are to be monitored simultaneously and automatically, without the
aid of labeling from an expert, since it would be timely impossible
to keep track with. The choice between HTMs and Autoencoders
would then depend on how critical or often concept drifts might
occur, or how many and how interrelated the variables measured
by sensors are. If concept drifts are critical and fast adaptability to
them is paramount, then HTMs are likely better than autoencoders,
because of their online learning capabilites. On the other side, if
there are many potential interrelations between several sensors
sending streaming data, autoencoders might potentially be a more
robust solution, since they can handle multidimensional data and
more complex dynamics within it in a more comprehensive way
and with less human intervention as compared to HTMs.

5 SUMMARY
Anomaly detection for streaming data is paramount for many appli-
cations, and increasing with the rise of data automation in industry,
where IoT and online data processing is becoming the rule. This
paper reviewed, compared and discussed three methods used for
the processing of streaming data in order to detect anomalies.
The First model involved was the HTM (Hierarchical Temporal

Memory) model, which stems from the forecasting paradigm of
anomaly detection, i.e. the model first predicts the upcoming ob-
servation and the anomaly scoring and likelihood are calculated
as a function of the distance between this forecast and the actual
observed value. HTMs encodes each temporal data observation of a
univariate time series into a sparse binary representation and uses
a sequence memory scheme to capture the temporal relationships
and context (relevant information from previous observations) from
the data in order to make predictions. The comparison between
the forecast and the actual observation allow the model to estimate

8 • César Augusto Velásquez Pineda

the likelihood or probability of an observation being anomalous.
Since the HTM scheme is constructed for unidimensional data, it
makes an independent distribution assumption on the data in order
to handle anomaly detection from various sources simultaneously.
The LSTM (LOng Short Term Memory) model was also briefly

discussed. This is a Neural Network based model, which also works
under the forecast paradigm. LSTMs have the advantage over HTMs
of handling by construction multidimensional data, since they can
handle virtually any sequential input data. However, they learn
much more slowly and possibly do not have the capacity to perform
online learning for many applications because of their very robust
architecture, with many thousands of parameters to estimate. Au-
toencoders are similar to LSTMs in their model architecture and
flexibility to handle multidimensional data. Autoencoders work
however under the reconstruction paradigm, attempting to rebuilt a
window of the time series data, and then computing the reconstruc-
tion error by overlapping the reconstruction with the original data.
The anomaly score is in this case a function of the reconstruction
error.
While comparing the performance of the three approaches, it

turns out that HTMs are probably most suitable for online learning
applications, especially when the inflow of data is particularly fast,
as might often happen in IoT related applications. On the other
side LSTMs or Autoencoders might be preferable when a higher
precision in the detection is relevant, or when it is desired to handle

simultaneously several sources of data that might be interdepen-
dent. In such case, LSTMs or Autoencoders can capture or model
complicated non-linear dependencies within the data that HTMs
typically cannot model as easily or without human intervention.
Some approaches in the literature are attempting to further improve
Autoencoders, in order to make them almost comparable to HTMs
in the sense of their capacity to process and learn from the data in an
online manner, which is its current main shortcoming for anomaly
detection of streaming data.

REFERENCES
[1] Raghav Agarwal, Tanishq Nagpal, Dibyajyoti Roy, and Aju D. 2021. A Novel

Anomaly Detection for Streaming Data using LSTM Autoencoders. (2021).
[2] Subutay Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsupervised

real-time anomaly detection for streaming data. Neurocomputing (2017).
[3] Subutay Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsuper-

vised real-time anomaly detection for streaming data, Supplementary Material.
Neurocomputing (2017).

[4] Josef Haddad and Carl Piehl. 2019. Unsupervised anomaly detection in time series
with recurrent neural networks.

[5] Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich.
2021. Survey on anomaly detection for technical systems using LSTM networks.
(2021).

[6] H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad. 2020. Forecasting and
Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques
with the applications in supply chain management. (2020).

[7] Baron Schwartz and Pritam Jinka. 2015. Anomaly Detection Monitoring: A Statistical
Approach to Time Series Anomaly Detection.

[8] Chunyong Yin, Sun Zhang, Jin Wang, and Neal N. Xiong. 2022. Anomaly Detection
Based on Convolutional Recurrent Autoencoder for IoT Time Series. (2022).

	Abstract
	1 Introduction
	2 Anomaly Detection and the HTM Paradigm
	2.1 Time series and Anomalies
	2.2 HTM algorithm overview
	2.3 Prediction Error
	2.4 Anomaly likelihood
	2.5 Multiple data sources simultaneously

	3 Related work
	3.1 LSTM Neural Networks
	3.2 Autoenconders
	3.3 Evaluation metrics
	3.4 Experimental results

	4 Comparison and Discussion
	5 Summary
	References

