pip install yano

Simon Kluettermann

ls9 tu Dortmund

24. Mai 2022

Simon Kluettermann

- Paper with Benedikt
- require multiple very specific datasets
 - many but not to many features
 - at least some samples (for the NN)
 - Only numerical attributes best
 - specific quality
 - unrelated datasets
- Requires you to search for many datasets and filter them

- Not clear what you can use
- Many different formats
- train/test splits
- So for Students I just do this work and send them archives directly
- $\bullet \ \Rightarrow \mathsf{Not} \ \mathsf{a} \ \mathsf{good} \ \mathsf{solution}$

- So I have been packaging all my scripts
- I had surprisingly much fun doing this
 - More than just standard functions
 - A couple of weird decisions
 - And this will likely grow further
- $\bullet \Rightarrow So \ I$ would like to discuss some parts with you and maybe you even have more features you might want

- Simply install it over pip
- Contains 187 real-World Datasets
- \Rightarrow biggest library of datasets explicitely for anomaly detection
- not yet happy with this
- especially only mostly contains numerical and nominal attributes
- \Rightarrow few categorical and no time-series attributes

selector

```
import vano
from yano.symbols import *
condition = (number_of_features >5) &
            (number_of_features <100) &
            (number_of_samples > 100) \&
            (number_of_samples <10000) &
            (number_of_samples >2*number_of_features) &
            ~index
print(len(condition), "Datasets_found")
\Rightarrow 33 Datasets found
```

selectors

- Lots of symbols like this
 - name
 - number_of_features
 - number_of_samples
 - index (correlated datasets)
- Feature types
 - numeric
 - nominal
 - categorical
 - (textual)
- Count based
 - number_anomalies
 - number_normals
 - fraction_anomalies
- Specific ones
 - image_based
 - (linearly_seperable)

iterating

۲

٠

٥

۲

۲

for dataset in condition:
 print(condition)

annthyroid

breastw

cardio

Housing_low

...

```
for dataset in condition:
    x=dataset.getx()
    y=dataset.gety()
```

. . .

pipeline

- Again there are a couple modifiers possible
 - nonconst \Rightarrow remove constant features
 - shuffle
 - normalize('zscore'/'minmax')
 - $cut(10) \Rightarrow$ at most 10 datasets
 - $\bullet~$ split \Rightarrow train test split, all anomalies in test set
 - crossval(5)⇒similar to split, but do multiple times (crossvalidation)
- modifiers interact with each other
- For example: normalize('minmax'), split
- $\bullet \; \Rightarrow \! train$ set always below 1, but no guarantees for the test set

CrossValidation

- Learned from DMC: Crossvalidation is important
- Rarely found in Anomaly Detection, why?
- A bit more complicated (not all samples are equal), but no reason why not
- \Rightarrow So I implemented it into yano
 - folding only on normal data
 - How to handle anomalies?
 - If not folding them, cross-validation less useful
 - if folding them, often rare anomalies even more rare
 - \Rightarrow test set always 50% anomalous
 - \Rightarrow Also improves simple evaluation metrics (accuracy)
- Do you know a reason why Cross Validation is not common in AD?
- Are there Problems with the way I fold my Anomalies?

Logging

```
from vano.logging import Logger
from pvod.models.iforest import IForest
from extended_iforest import train_extended_ifor
I=Logger({ "IFor": IForest(n_estimators=100),
          "elFor": train_extended_ifor })
for dataset. folds in pipeline(condition.
                                crossval(5).
                                normalize ("minmax"),
                                shuffle):
    l.run_cross(dataset, folds)
latex=l.to_latex()
```

- If you dont do anything, everything is seeded.
- Makes rerunning a Model until the performance is good quite obvious.
- But as every Run is seeded itself, this might induce bias.
- Do you think this is worth it?
- Are there any Problems with this?

Dataset	elFor	lFor
рс3	$\textbf{0.7231} \pm 0.0153$	$\textbf{0.7223} \pm 0.0178$
pima	$\textbf{0.7405} \pm 0.0110$	$\textbf{0.7347} \pm 0.0126$
<i>Diabetes_present</i>	$\textbf{0.7414} \pm 0.0195$	$\textbf{0.7344} \pm 0.0242$
waveform - 5000	$\textbf{0.7687} \pm 0.0123$	$\textbf{0.7592} \pm 0.0206$
vowels	$\textbf{0.7843} \pm 0.0298$	$\textbf{0.7753} \pm 0.0334$
Vowel_0	$\textbf{0.8425} \pm 0.0698$	0.7193 ± 0.0817
Abalone_1_8	$\textbf{0.8525} \pm 0.0263$	0.8452 ± 0.0257
annthyroid	0.8399 ± 0.0135	$\textbf{0.9087} \pm 0.0090$
<i>Vehicle_van</i>	$\textbf{0.8792} \pm 0.0265$	$\textbf{0.8697} \pm 0.0383$
ionosphere	$\textbf{0.9320} \pm 0.0069$	0.9086 ± 0.0142
breastw	$\textbf{0.9948} \pm 0.0031$	$\textbf{0.9952} \pm 0.0033$
segment	1.0	$\textbf{0.9993} \pm 0.0015$
Average	0.8005	0.7957

- Friedman test to see if there is a difference between models
- Nemenyi test to see which models are equal, mark those equal to the maximum
- $\bullet\,$ For 2 models, Friedman not defined \Rightarrow use Wilcoxon test
- Does this match your expectation from the table?
- Two models are 'equal' if their probability of being from the same distribution is $p_b \le p$, what value should $p_b = 0.1$ have?
- Do I need to correct for p hacking (n experiments, so increase the difficulty for each, or is that clear from the table)

Extended Isolation Forests

- Isolation Forests are one algorithm for AD
- Tries to isolate abnormal (rare) points instead of modelling normal ones
- Creative approach⇒fairly successful (3000 Citations)
- Many follow up papers
- Extended Isolation Forest (Hariri et. al. 2018, 140 Citations)
- Remove bias from the Isolation Forests
- Also claim to improve their anomaly detection quality

Extended Isolation Forests

- Isolation Forests are one algorithm for AD
- Tries to isolate abnormal (rare) points instead of modelling normal ones
- Creative approach⇒fairly successful (3000 Citations)
- Many follow up papers
- Extended Isolation Forest (Hariri et. al. 2018, 140 Citations)
- Remove bias from the Isolation Forests
- Also claim to improve their anomaly detection quality

Extended Isolation Forests

- Isolation Forests are one algorithm for AD
- Tries to isolate abnormal (rare) points instead of modelling normal ones
- Creative approach⇒fairly successful (3000 Citations)
- Many follow up papers
- Extended Isolation Forest (Hariri et. al. 2018, 140 Citations)
- Remove bias from the Isolation Forests
- Also claim to improve their anomaly detection quality

Table 3: AUC values for both ROC and PRC for benchmark datas	ets
using standard Isolation Forest and Extended Isolation Forest	

	AUC ROC		AUC PRC	
Data	iForest	EIF	iForest	EIF
Cardio	0.888	0.915	0.466	0.483
ForestCover	0.809	0.924	0.430	0.504
Ionosphere	0.85	0.913	0.877	0.893
Mammography	0.859	0.862	0.4198	0.4271
Satellite	0.714	0.778	0.783	0.808

Dataset	elFor	IFor
Delft_pump_5x3_noisy	$\textbf{0.3893} \pm 0.0345$	$\textbf{0.4272} \pm 0.0680$
vertebral	$\textbf{0.4260} \pm 0.0111$	$\textbf{0.4554} \pm 0.0416$
$Liver_1$	0.5367 ± 0.0508	$\textbf{0.5474} \pm 0.0541$
Sonar_mines	$\textbf{0.6882} \pm 0.1264$	0.6189 ± 0.1301
letter	$\textbf{0.6756} \pm 0.0119$	0.6471 ± 0.0111
<i>Glass_building_float</i>	$\textbf{0.6480} \pm 0.1012$	$\textbf{0.6755} \pm 0.1117$
рс3	$\textbf{0.7231} \pm 0.0153$	$\textbf{0.7223} \pm 0.0178$
pima	$\textbf{0.7405} \pm 0.0110$	$\textbf{0.7347} \pm 0.0126$
<i>Diabetes_present</i>	$\textbf{0.7414} \pm 0.0195$	$\textbf{0.7344} \pm 0.0242$
waveform — 5000	$\textbf{0.7687} \pm 0.0123$	$\textbf{0.7592} \pm 0.0206$
steel — plates — fault	$\textbf{0.7735} \pm 0.0351$	$\textbf{0.7682} \pm 0.0402$
vowels	$\textbf{0.7843} \pm 0.0298$	$\textbf{0.7753} \pm 0.0334$

Dataset	elFor	lFor
Vowel_0	$\textbf{0.8425} \pm 0.0698$	0.7193 ± 0.0817
Housing_low	$\textbf{0.7807} \pm 0.0333$	$\textbf{0.7862} \pm 0.0336$
ozone – level – 8hr	$\textbf{0.7904} \pm 0.0207$	$\textbf{0.7768} \pm 0.0118$
Spectf_0	$\textbf{0.8155} \pm 0.0255$	0.7535 ± 0.0239
HeartC	0.7795 ± 0.0258	$\textbf{0.8079} \pm 0.0255$
satellite	$\textbf{0.8125} \pm 0.0170$	$\textbf{0.8103} \pm 0.0061$
optdigits	$\textbf{0.8099} \pm 0.0310$	$\textbf{0.8142} \pm 0.0267$
spambase	$\textbf{0.8085} \pm 0.0110$	$\textbf{0.8202} \pm 0.0042$
Abalone_1_8	$\textbf{0.8525} \pm 0.0263$	0.8452 ± 0.0257
qsar — biodeg	$\textbf{0.8584} \pm 0.0119$	$\textbf{0.8628} \pm 0.0135$
annthyroid	0.8399 ± 0.0135	$\textbf{0.9087} \pm 0.0090$
<i>Vehicle_van</i>	$\textbf{0.8792} \pm 0.0265$	$\textbf{0.8697} \pm 0.0383$

Dataset	elFor	IFor
ionosphere	$\textbf{0.9320} \pm 0.0069$	0.9086 ± 0.0142
page — blocks	0.9189 ± 0.0061	$\textbf{0.9299} \pm 0.0016$
Ecoli	$\textbf{0.9418} \pm 0.0292$	0.9192 ± 0.0332
cardio	$\textbf{0.9564} \pm 0.0043$	$\textbf{0.9535} \pm 0.0036$
wbc	$\textbf{0.9611} \pm 0.0121$	$\textbf{0.9607} \pm 0.0107$
pendigits	$\textbf{0.9641} \pm 0.0097$	$\textbf{0.9652} \pm 0.0076$
thyroid	0.9818 ± 0.0024	$\textbf{0.9871} \pm 0.0025$
breastw	$\textbf{0.9948} \pm 0.0031$	$\textbf{0.9952} \pm 0.0033$
segment	1.0	$\textbf{0.9993} \pm 0.0015$
0		
Average	$\textbf{0.8005} \pm 0.1458$	$\textbf{0.7957} \pm 0.1431$

• High Dimensional Data: one of the main limitation to standard, distance-based methods is their inefficiency in dealing with high dimensional datasets.^[10] The main reason for that is, in a high dimensional space every point is equally sparse, so using a distance-based measure of separation is pretty ineffective. Unfortunately, high-dimensional data also affects the detection performance of iForest, but the performance can be vastly improved by adding a features selection test like Kurtosis to reduce the dimensionality of the sample space.^{[1][5]}

 \Rightarrow 13 Datasets found

```
from pyod.models.iforest import lForest
from pyod.models.knn import KNN
from pyod.models.lof import LOF
l=Logger({"lFor":lforest(n_estimators=100),
        "Lof":LOF(),
        "Knn": KNN()}, addfeat=True)
```

Dataset	Knn	Lof	lFor
Delft_pump_5x3_noisy(64)	0.3800 ± 0.0475	0.3462 ± 0.0327	$\textbf{0.4272} \pm 0.0680$
hill - valley(100)	0.4744 ± 0.0269	$\textbf{0.5060} \pm 0.0327$	0.4720 ± 0.0288
speech(400)	0.4903 ± 0.0103	$\textbf{0.5104} \pm 0.0115$	0.4872 ± 0.0184
<i>Sonar_mines</i> (60)	$\textbf{0.7284} \pm 0.0939$	0.6769 ± 0.0933	0.6189 ± 0.1301
ozone – level – 8hr(72)	$\textbf{0.8051} \pm 0.0288$	0.7738 ± 0.0292	$\textbf{0.7768} \pm 0.0118$
spambase(57)	0.8038 ± 0.0125	0.7712 ± 0.0055	$\textbf{0.8202} \pm 0.0042$
arrhythmia(274)	$\textbf{0.8137} \pm 0.0185$	0.8042 ± 0.0186	$\textbf{0.8086} \pm 0.0099$
mnist(100)	0.9345 ± 0.0039	$\textbf{0.9548} \pm 0.0037$	0.8732 ± 0.0069
Concordia3_32(256)	0.9246 ± 0.0107	$\textbf{0.9486} \pm 0.0099$	$\textbf{0.9322} \pm 0.0178$
optdigits(64)	0.9966 ± 0.0012	$\textbf{0.9975} \pm 0.0012$	0.8142 ± 0.0267
gas - drift(128)	$\textbf{0.9790} \pm 0.0018$	0.9585 ± 0.0055	0.8764 ± 0.0166
Delft_pump_AR(160)	0.9965	$\textbf{0.9953} \pm 0.0019$	0.9665 ± 0.0096
musk(166)	1.0	1.0	0.9808 ± 0.0117
Average	0.7944	0.7879	0.7580

- Hypothesis: Isolation Forests are better when there are numerical and nominal attributes
- Easy to test

condition=condition & (numeric & nominal)

Dataset	Knn	lFor	Lof
ozone - level - 8hr(72)	$\textbf{0.8051} \pm 0.0288$	$\textbf{0.7768} \pm 0.0118$	0.7738 ± 0.0292
spambase(57)	0.8038 ± 0.0125	$\textbf{0.8202} \pm 0.0042$	0.7712 ± 0.0055
arrhythmia(274)	$\textbf{0.8137} \pm 0.0185$	$\textbf{0.8086} \pm 0.0099$	0.8042 ± 0.0186
musk(166)	1.0	0.9808 ± 0.0117	1.0

Average	0.8556	0.8466	0.8373	
• Only 4 datasets, so not clear at all				

- Only 4 datasets, so not clear at all
- $\bullet \ \Rightarrow \mathsf{More \ datasets}$

Unsupervised Optimization

- There are analysis that are only possible with many datasets
- Here: unsupervised optimization
- Given multiple AD models, find which is best:
- Use AUC score? Requires Anomalies \Rightarrow Overfitting
- Can you find an unsupervised Method?
- In general very complicated, so here only focus on very small differences in the model.
- So each model is an autoencoder, trained on the same dataset, where the difference is only in the initialisation

Loss Optimization

- First guess Loss of the Model on the training Data
- How to evaluate this?
- Train many models, look at the average AUC score.
- For the alternative, take groups of 20 models, and look at the AUC score of the best model.
- Is there a meaningfull difference between results? Give result as z_score $(\frac{m_1-m_2}{\sqrt{s_1^2+s_2^2}})$
- This difference depends a lot on the dataset
- \Rightarrow even 30 \leq z does not mean much

Loss Optimization

- First guess Loss of the Model on the training Data
- How to evaluate this?
- Train many models, look at the average AUC score.
- For the alternative, take groups of 20 models, and look at the AUC score of the best model.
- Is there a meaningfull difference between results? Give result as $z_{-}score \left(\frac{m_1-m_2}{\sqrt{s_1^2+s_2^2}}\right)$
- This difference depends a lot on the dataset
- \Rightarrow even 30 \leq z does not mean much

- Pick points with 1% width difference in input space around each point.
- for each point, find the maximum difference in output space.
- average this difference

Distance Correlation

- Pick random points in the input space.
- measure the distance in input and output space
- a low correlation is a good model

Other

- Things I still want to add:
 - Ensemble Methods
 - Visualisation options
 - Alternative Evaluations
 - Hyperparameter optimisation (with crossvalidation)
 - Parallelisation
 - Contamination
 - Dokumentation

- What do you think about this?
- Is there something I should also add?
- What would you need for you to actually use this?