test_pie/external/MRF/ICM.cpp

327 lines
8.5 KiB
C++
Raw Permalink Normal View History

2023-09-14 11:12:02 +02:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "ICM.h"
#define m_D(pix,l) m_D[(pix)*m_nLabels+(l)]
#define m_V(l1,l2) m_V[(l1)*m_nLabels+(l2)]
ICM::ICM(int width, int height, int nLabels,EnergyFunction *eng):MRF(width,height,nLabels,eng)
{
m_needToFreeV = 0;
initializeAlg();
}
ICM::ICM(int nPixels, int nLabels,EnergyFunction *eng):MRF(nPixels,nLabels,eng)
{
m_needToFreeV = 0;
initializeAlg();
}
ICM::~ICM()
{
delete[] m_answer;
if (!m_grid_graph) delete[] m_neighbors;
if ( m_needToFreeV ) delete[] m_V;
}
void ICM::initializeAlg()
{
m_answer = (Label *) new Label[m_nPixels];
if ( !m_answer ){printf("\nNot enough memory, exiting");exit(0);}
if (!m_grid_graph)
{
m_neighbors = (LinkedBlockList *) new LinkedBlockList[m_nPixels];
if (!m_neighbors) {printf("Not enough memory,exiting");exit(0);};
}
}
void ICM::clearAnswer()
{
memset(m_answer, 0, m_nPixels*sizeof(Label));
}
void ICM::setNeighbors(int pixel1, int pixel2, CostVal weight)
{
assert(!m_grid_graph);
assert(pixel1 < m_nPixels && pixel1 >= 0 && pixel2 < m_nPixels && pixel2 >= 0);
Neighbor *temp1 = (Neighbor *) new Neighbor;
Neighbor *temp2 = (Neighbor *) new Neighbor;
if ( !temp1 || ! temp2 ) {printf("\nNot enough memory, exiting");exit(0);}
temp1->weight = weight;
temp1->to_node = pixel2;
temp2->weight = weight;
temp2->to_node = pixel1;
m_neighbors[pixel1].addFront(temp1);
m_neighbors[pixel2].addFront(temp2);
}
MRF::EnergyVal ICM::smoothnessEnergy()
{
EnergyVal eng = (EnergyVal) 0;
EnergyVal weight;
int x,y,pix,i;
if ( m_grid_graph )
{
if ( m_smoothType != FUNCTION )
{
for ( y = 0; y < m_height; y++ )
for ( x = 1; x < m_width; x++ )
{
pix = x+y*m_width;
weight = m_varWeights ? m_horizWeights[pix-1] : 1;
eng = eng + m_V(m_answer[pix],m_answer[pix-1])*weight;
}
for ( y = 1; y < m_height; y++ )
for ( x = 0; x < m_width; x++ )
{
pix = x+y*m_width;
weight = m_varWeights ? m_vertWeights[pix-m_width] : 1;
eng = eng + m_V(m_answer[pix],m_answer[pix-m_width])*weight;
}
}
else
{
for ( y = 0; y < m_height; y++ )
for ( x = 1; x < m_width; x++ )
{
pix = x+y*m_width;
eng = eng + m_smoothFn(pix,pix-1,m_answer[pix],m_answer[pix-1]);
}
for ( y = 1; y < m_height; y++ )
for ( x = 0; x < m_width; x++ )
{
pix = x+y*m_width;
eng = eng + m_smoothFn(pix,pix-m_width,m_answer[pix],m_answer[pix-m_width]);
}
}
}
else
{
Neighbor *temp;
if ( m_smoothType != FUNCTION )
{
for ( i = 0; i < m_nPixels; i++ )
if ( !m_neighbors[i].isEmpty() )
{
m_neighbors[i].setCursorFront();
while ( m_neighbors[i].hasNext() )
{
temp = (Neighbor *) m_neighbors[i].next();
if ( i < temp->to_node )
eng = eng + m_V(m_answer[i],m_answer[temp->to_node])*(temp->weight);
}
}
}
else
{
for ( i = 0; i < m_nPixels; i++ )
if ( !m_neighbors[i].isEmpty() )
{
m_neighbors[i].setCursorFront();
while ( m_neighbors[i].hasNext() )
{
temp = (Neighbor *) m_neighbors[i].next();
if ( i < temp->to_node )
eng = eng + m_smoothFn(i,temp->to_node, m_answer[i],m_answer[temp->to_node]);
}
}
}
}
return(eng);
}
MRF::EnergyVal ICM::dataEnergy()
{
EnergyVal eng = (EnergyVal) 0;
if ( m_dataType == ARRAY)
{
for ( int i = 0; i < m_nPixels; i++ )
eng = eng + m_D(i,m_answer[i]);
}
else
{
for ( int i = 0; i < m_nPixels; i++ )
eng = eng + m_dataFn(i,m_answer[i]);
}
return(eng);
}
void ICM::setData(DataCostFn dcost)
{
m_dataFn = dcost;
}
void ICM::setData(CostVal* data)
{
m_D = data;
}
void ICM::setSmoothness(SmoothCostGeneralFn cost)
{
m_smoothFn = cost;
}
void ICM::setSmoothness(CostVal* V)
{
m_V = V;
}
void ICM::setSmoothness(int smoothExp,CostVal smoothMax, CostVal lambda)
{
int i, j;
CostVal cost;
m_needToFreeV = 1;
m_V = (CostVal *) new CostVal[m_nLabels*m_nLabels*sizeof(CostVal)];
if (!m_V) { fprintf(stderr, "Not enough memory!\n"); exit(1); }
for (i=0; i<m_nLabels; i++)
for (j=i; j<m_nLabels; j++)
{
cost = (CostVal) ((smoothExp == 1) ? j - i : (j - i)*(j - i));
if (cost > smoothMax) cost = smoothMax;
m_V[i*m_nLabels + j] = m_V[j*m_nLabels + i] = cost*lambda;
}
}
void ICM::setCues(CostVal* hCue, CostVal* vCue)
{
m_horizWeights = hCue;
m_vertWeights = vCue;
}
void ICM::optimizeAlg(int nIterations)
{
int x, y, i, j, n;
Label* l;
CostVal* dataPtr;
CostVal *D = (CostVal *) new CostVal[m_nLabels];
if ( !D ) {printf("\nNot enough memory, exiting");exit(0);}
if ( !m_grid_graph) {printf("\nICM is not implemented for nongrids yet!");exit(1);}
for ( ; nIterations > 0; nIterations --)
{
n = 0;
l = m_answer;
dataPtr = m_D;
for (y=0; y<m_height; y++)
for (x=0; x<m_width; x++, l++, dataPtr+=m_nLabels, n++)
{
// set array D
if (m_dataType == FUNCTION)
{
for (i=0; i<m_nLabels; i++)
{
D[i] = m_dataFn(x+y*m_width, i);
}
}
else memcpy(D, dataPtr, m_nLabels*sizeof(CostVal));
// add smoothness costs
if (m_smoothType == FUNCTION)
{
if (x > 0)
{
j = *(l-1);
for (i=0; i<m_nLabels; i++) D[i] += m_smoothFn(x+y*m_width-1, x+y*m_width, j, i);
}
if (y > 0)
{
j = *(l-m_width);
for (i=0; i<m_nLabels; i++) D[i] += m_smoothFn(x+y*m_width-m_width,x+y*m_width , j, i);
}
if (x < m_width-1)
{
j = *(l+1);
for (i=0; i<m_nLabels; i++) D[i] += m_smoothFn(x+y*m_width+1, x+y*m_width, i, j);
}
if (y < m_height-1)
{
j = *(l+m_width);
for (i=0; i<m_nLabels; i++) D[i] += m_smoothFn(x+y*m_width+m_width, x+y*m_width, i, j);
}
}
else
{
if (x > 0)
{
j = *(l-1);
CostVal lambda = (m_varWeights) ? m_horizWeights[n-1] : 1;
for (i=0; i<m_nLabels; i++) D[i] += lambda * m_V[j*m_nLabels + i];
}
if (y > 0)
{
j = *(l-m_width);
CostVal lambda = (m_varWeights) ? m_vertWeights[n-m_width] : 1;
for (i=0; i<m_nLabels; i++) D[i] += lambda * m_V[j*m_nLabels + i];
}
if (x < m_width-1)
{
j = *(l+1);
CostVal lambda = (m_varWeights) ? m_horizWeights[n] : 1;
for (i=0; i<m_nLabels; i++) D[i] += lambda * m_V[j*m_nLabels + i];
}
if (y < m_height-1)
{
j = *(l+m_width);
CostVal lambda = (m_varWeights) ? m_vertWeights[n] : 1;
for (i=0; i<m_nLabels; i++) D[i] += lambda * m_V[j*m_nLabels + i];
}
}
// compute minimum of D, set new label for (x,y)
CostVal D_min = D[0];
*l = 0;
for (i=1; i<m_nLabels; i++)
{
if (D_min > D[i])
{
D_min = D[i];
*l = i;
}
}
}
}
delete[] D;
}