test_pie/external/exact_ccd/rootparitycollisiontest.h

221 lines
9.0 KiB
C
Raw Permalink Normal View History

2023-09-14 11:12:02 +02:00
//
//
// Tyson Brochu 2011
//
#ifndef TUNICATE_ROOTPARITYCOLLISIONTEST_H
#define TUNICATE_ROOTPARITYCOLLISIONTEST_H
#include "vec.h"
#include "interval.h"
#include "expansion.h"
namespace CCD
{
namespace rootparity
{
typedef Vec<3,IntervalType> Vec3Interval;
typedef Vec<2,expansion> Vec2e;
typedef Vec<3,expansion> Vec3e;
typedef Vec<3,bool> Vec3b;
typedef Vec<4,bool> Vec4b;
/// --------------------------------------------------------
///
/// class RootParityCollisionTest: Encapsulates functions for continuous collision detection using the "root-parity" approach.
///
/// Terms used in documentation:
/// "Domain": The unit cube for edge-edge collision testing, and half the unit cube for point-triangle.
/// "Domain boundary vertices": Vertices of the unit cube or half-cube.
/// "Mapped domain boundary vertices": The set of points F(X), where X = the set of domain boundary vertices, F is either the
/// edge-edge collision function or the point-triangle collision function (i.e. F is zero where there is a collision).
///
/// --------------------------------------------------------
class RootParityCollisionTest
{
public:
/// Constructor, take a reference to the input vertex locations at t=0 and t=1. User also specifies whether the vertices
/// should be interpreted as representing an edge-edge collision test, or point-triangle.
///
inline RootParityCollisionTest(const Vec3d &x0old, const Vec3d &x1old, const Vec3d &x2old, const Vec3d &x3old,
const Vec3d &x0new, const Vec3d &x1new, const Vec3d &x2new, const Vec3d &x3new,
bool is_edge_edge );
/// Returns true if there is an odd number of ray intersections (corresponding to an odd number of roots of F in the domain).
///
inline bool run_test();
/// Run edge-edge continuous collision detection
///
bool edge_edge_collision();
/// Run point-triangle continuous collision detection
///
bool point_triangle_collision();
private:
/// Input vertex locations.
/// If point-triangle collision test, the point is vertex 0, and the triangle is vertices (1,2,3).
/// If edge-edge collision test, the edges are (0,1) and (2,3).
///
const Vec3d& m_x0old, m_x1old, m_x2old, m_x3old, m_x0new, m_x1new, m_x2new, m_x3new;
/// Whether this is an edge-edge collision test
///
const bool m_is_edge_edge;
/// The root-parity test uses a ray from the origin. We will actually use a finite line segment with one end point at the
/// origin, and the other end point equal to this variable, "ray". In the code, we will ensure that ray has magnitude
/// greater than the largest magnitude point in the object being tested.
///
Vec3d m_ray;
/// The mapped domain boundary vertices, computed in interval arithmetic.
///
Vec3Interval m_interval_hex_vertices[8];
/// The mapped domain boundary vertices, computed in fp-expansion arithmetic. We compute these only as needed, so for each
/// vertex, we track if it has been computed yet.
///
Vec3e m_expansion_hex_vertices[8];
/// Whether or not the mapping of each domain boundary vertex has been computed using floating-point expansions.
///
bool m_expansion_hex_vertices_computed[8];
//
// Functions
//
/// Determine if the given point is inside the tetrahedron given by tet_indices
///
bool point_tetrahedron_intersection( const Vec4ui& tet_indices, const Vec4b& ts, const Vec4b& us, const Vec4b& vs, const Vec3d& d_x );
/// Determine if the given segment intersects the triangle
///
bool edge_triangle_intersection(const Vec3ui& triangle,
const Vec3b& ts, const Vec3b& us, const Vec3b& vs,
const Vec3d& d_s0, const Vec3d& d_s1,
double* alphas );
/// Compute the sign of the implicit surface function which is zero on the bilinear patch defined by quad.
///
int implicit_surface_function_sign( const Vec4ui& quad, const Vec4b& ts, const Vec4b& us, const Vec4b& vs, const Vec3d& d_x );
/// Test the ray against the bilinear patch defined by a quad to determine whether there is an even or odd number of
/// intersections. Returns true if odd.
///
bool ray_quad_intersection_parity(const Vec4ui& quad,
const Vec4b& ts,
const Vec4b& us,
const Vec4b& vs,
const Vec3d& ray_origin,
const Vec3d& ray_direction,
bool& edge_hit,
bool& origin_on_surface );
/// Determine the parity of the number of intersections between a ray from the origin and the generalized prism made up
/// of f(G) where G = the vertices of the domain boundary.
///
bool ray_prism_parity_test();
/// Determine the parity of the number of intersections between a ray from the origin and the generalized hexahedron made
/// up of f(G) where G = the vertices of the domain boundary (corners of the unit cube).
///
bool ray_hex_parity_test();
/// For each triangle, form the plane it lies on, and determine if all interval_hex_vertices are on one side of the plane.
///
bool plane_culling( const std::vector<Vec3ui>& triangles, const std::vector<Vec3d>& boundary_vertices );
/// Take a set of planes defined by the mapped domain boundary, and determine if all interval_hex_vertices on one side of
/// any plane.
///
bool edge_edge_interval_plane_culling();
/// Take a set of planes defined by the mapped domain boundary, and determine if all interval_hex_vertices on one side of
/// any plane.
///
bool point_triangle_interval_plane_culling();
/// Take a fixed set of planes and determine if all interval_hex_vertices on one side of any plane.
///
bool fixed_plane_culling( unsigned int num_hex_vertices );
};
/// --------------------------------------------------------
///
/// Determine if the given AABB contains the origin.
///
/// --------------------------------------------------------
inline bool aabb_contains_origin( const Vec3d& xmin, const Vec3d& xmax )
{
return (xmin[0] <= 0 && xmin[1] <= 0 && xmin[2] <= 0) && (xmax[0] >= 0 && xmax[1] >= 0 && xmax[2] >= 0 );
}
/// --------------------------------------------------------
///
/// Determine if the given AABBs intersect each other.
///
/// --------------------------------------------------------
inline bool aabb_test( const Vec3d& xmin, const Vec3d& xmax, const Vec3d& oxmin, const Vec3d& oxmax )
{
return ((xmin[0] <= oxmax[0] && xmin[1] <= oxmax[1] && xmin[2] <= oxmax[2]) &&
(xmax[0] >= oxmin[0] && xmax[1] >= oxmin[1] && xmax[2] >= oxmin[2]) );
}
/// --------------------------------------------------------
///
/// RootParityCollisionTest constructor.
///
/// --------------------------------------------------------
inline RootParityCollisionTest::RootParityCollisionTest(const Vec3d &_x0old, const Vec3d &_x1old, const Vec3d &_x2old, const Vec3d &_x3old,
const Vec3d &_x0new, const Vec3d &_x1new, const Vec3d &_x2new, const Vec3d &_x3new,
bool _is_edge_edge ) :
m_x0old( _x0old ), m_x1old( _x1old ), m_x2old( _x2old ), m_x3old( _x3old ),
m_x0new( _x0new ), m_x1new( _x1new ), m_x2new( _x2new ), m_x3new( _x3new ),
m_is_edge_edge( _is_edge_edge ),
m_ray()
{
for ( unsigned int i = 0; i < 8; ++i )
{
m_expansion_hex_vertices_computed[i] = false;
}
}
/// --------------------------------------------------------
///
/// Run the appropriate continuous collision detection test.
///
/// --------------------------------------------------------
inline bool RootParityCollisionTest::run_test()
{
if ( m_is_edge_edge )
{
return edge_edge_collision();
}
else
{
return point_triangle_collision();
}
}
} // namespace rootparity
}
#endif