linuxdebug/Documentation/networking/device_drivers/qlogic/qlge.rst

119 lines
4.2 KiB
ReStructuredText
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
.. SPDX-License-Identifier: GPL-2.0
=======================================
QLogic QLGE 10Gb Ethernet device driver
=======================================
This driver use drgn and devlink for debugging.
Dump kernel data structures in drgn
-----------------------------------
To dump kernel data structures, the following Python script can be used
in drgn:
.. code-block:: python
def align(x, a):
"""the alignment a should be a power of 2
"""
mask = a - 1
return (x+ mask) & ~mask
def struct_size(struct_type):
struct_str = "struct {}".format(struct_type)
return sizeof(Object(prog, struct_str, address=0x0))
def netdev_priv(netdevice):
NETDEV_ALIGN = 32
return netdevice.value_() + align(struct_size("net_device"), NETDEV_ALIGN)
name = 'xxx'
qlge_device = None
netdevices = prog['init_net'].dev_base_head.address_of_()
for netdevice in list_for_each_entry("struct net_device", netdevices, "dev_list"):
if netdevice.name.string_().decode('ascii') == name:
print(netdevice.name)
ql_adapter = Object(prog, "struct ql_adapter", address=netdev_priv(qlge_device))
The struct ql_adapter will be printed in drgn as follows,
>>> ql_adapter
(struct ql_adapter){
.ricb = (struct ricb){
.base_cq = (u8)0,
.flags = (u8)120,
.mask = (__le16)26637,
.hash_cq_id = (u8 [1024]){ 172, 142, 255, 255 },
.ipv6_hash_key = (__le32 [10]){},
.ipv4_hash_key = (__le32 [4]){},
},
.flags = (unsigned long)0,
.wol = (u32)0,
.nic_stats = (struct nic_stats){
.tx_pkts = (u64)0,
.tx_bytes = (u64)0,
.tx_mcast_pkts = (u64)0,
.tx_bcast_pkts = (u64)0,
.tx_ucast_pkts = (u64)0,
.tx_ctl_pkts = (u64)0,
.tx_pause_pkts = (u64)0,
...
},
.active_vlans = (unsigned long [64]){
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52780853100545, 18446744073709551615,
18446619461681283072, 0, 42949673024, 2147483647,
},
.rx_ring = (struct rx_ring [17]){
{
.cqicb = (struct cqicb){
.msix_vect = (u8)0,
.reserved1 = (u8)0,
.reserved2 = (u8)0,
.flags = (u8)0,
.len = (__le16)0,
.rid = (__le16)0,
...
},
.cq_base = (void *)0x0,
.cq_base_dma = (dma_addr_t)0,
}
...
}
}
coredump via devlink
--------------------
And the coredump obtained via devlink in json format looks like,
.. code:: shell
$ devlink health dump show DEVICE reporter coredump -p -j
{
"Core Registers": {
"segment": 1,
"values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
},
"Test Logic Regs": {
"segment": 2,
"values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
},
"RMII Registers": {
"segment": 3,
"values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
},
...
"Sem Registers": {
"segment": 50,
"values": [ 0,0,0,0 ]
}
}
When the module parameter qlge_force_coredump is set to be true, the MPI
RISC reset before coredumping. So coredumping will much longer since
devlink tool has to wait for 5 secs for the resetting to be
finished.