linuxdebug/arch/arm64/kvm/hyp/pgtable.c

1246 lines
30 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
* No bombay mix was harmed in the writing of this file.
*
* Copyright (C) 2020 Google LLC
* Author: Will Deacon <will@kernel.org>
*/
#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>
#define KVM_PTE_TYPE BIT(1)
#define KVM_PTE_TYPE_BLOCK 0
#define KVM_PTE_TYPE_PAGE 1
#define KVM_PTE_TYPE_TABLE 1
#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
KVM_PTE_LEAF_ATTR_HI_S2_XN)
#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
#define KVM_MAX_OWNER_ID 1
struct kvm_pgtable_walk_data {
struct kvm_pgtable *pgt;
struct kvm_pgtable_walker *walker;
u64 addr;
u64 end;
};
#define KVM_PHYS_INVALID (-1ULL)
static bool kvm_phys_is_valid(u64 phys)
{
return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
}
static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
{
u64 granule = kvm_granule_size(level);
if (!kvm_level_supports_block_mapping(level))
return false;
if (granule > (end - addr))
return false;
if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
return false;
return IS_ALIGNED(addr, granule);
}
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
{
u64 shift = kvm_granule_shift(level);
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
return (data->addr >> shift) & mask;
}
static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
u64 mask = BIT(pgt->ia_bits) - 1;
return (addr & mask) >> shift;
}
static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
{
return __kvm_pgd_page_idx(data->pgt, data->addr);
}
static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
{
struct kvm_pgtable pgt = {
.ia_bits = ia_bits,
.start_level = start_level,
};
return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}
static bool kvm_pte_table(kvm_pte_t pte, u32 level)
{
if (level == KVM_PGTABLE_MAX_LEVELS - 1)
return false;
if (!kvm_pte_valid(pte))
return false;
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}
static kvm_pte_t kvm_phys_to_pte(u64 pa)
{
kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
if (PAGE_SHIFT == 16)
pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
return pte;
}
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
{
return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
}
static void kvm_clear_pte(kvm_pte_t *ptep)
{
WRITE_ONCE(*ptep, 0);
}
static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
struct kvm_pgtable_mm_ops *mm_ops)
{
kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
pte |= KVM_PTE_VALID;
WARN_ON(kvm_pte_valid(old));
smp_store_release(ptep, pte);
}
static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
{
kvm_pte_t pte = kvm_phys_to_pte(pa);
u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
KVM_PTE_TYPE_BLOCK;
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
pte |= KVM_PTE_VALID;
return pte;
}
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
{
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag)
{
struct kvm_pgtable_walker *walker = data->walker;
return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
kvm_pte_t *pgtable, u32 level);
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
kvm_pte_t *ptep, u32 level)
{
int ret = 0;
u64 addr = data->addr;
kvm_pte_t *childp, pte = *ptep;
bool table = kvm_pte_table(pte, level);
enum kvm_pgtable_walk_flags flags = data->walker->flags;
if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_TABLE_PRE);
}
if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_LEAF);
pte = *ptep;
table = kvm_pte_table(pte, level);
}
if (ret)
goto out;
if (!table) {
data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
data->addr += kvm_granule_size(level);
goto out;
}
childp = kvm_pte_follow(pte, data->pgt->mm_ops);
ret = __kvm_pgtable_walk(data, childp, level + 1);
if (ret)
goto out;
if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_TABLE_POST);
}
out:
return ret;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
kvm_pte_t *pgtable, u32 level)
{
u32 idx;
int ret = 0;
if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
return -EINVAL;
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
kvm_pte_t *ptep = &pgtable[idx];
if (data->addr >= data->end)
break;
ret = __kvm_pgtable_visit(data, ptep, level);
if (ret)
break;
}
return ret;
}
static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
{
u32 idx;
int ret = 0;
struct kvm_pgtable *pgt = data->pgt;
u64 limit = BIT(pgt->ia_bits);
if (data->addr > limit || data->end > limit)
return -ERANGE;
if (!pgt->pgd)
return -EINVAL;
for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
if (ret)
break;
}
return ret;
}
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_pgtable_walker *walker)
{
struct kvm_pgtable_walk_data walk_data = {
.pgt = pgt,
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
.end = PAGE_ALIGN(walk_data.addr + size),
.walker = walker,
};
return _kvm_pgtable_walk(&walk_data);
}
struct leaf_walk_data {
kvm_pte_t pte;
u32 level;
};
static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
struct leaf_walk_data *data = arg;
data->pte = *ptep;
data->level = level;
return 0;
}
int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
kvm_pte_t *ptep, u32 *level)
{
struct leaf_walk_data data;
struct kvm_pgtable_walker walker = {
.cb = leaf_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &data,
};
int ret;
ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
PAGE_SIZE, &walker);
if (!ret) {
if (ptep)
*ptep = data.pte;
if (level)
*level = data.level;
}
return ret;
}
struct hyp_map_data {
u64 phys;
kvm_pte_t attr;
struct kvm_pgtable_mm_ops *mm_ops;
};
static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
if (!(prot & KVM_PGTABLE_PROT_R))
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_X) {
if (prot & KVM_PGTABLE_PROT_W)
return -EINVAL;
if (device)
return -EINVAL;
} else {
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
}
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
u32 ap;
if (!kvm_pte_valid(pte))
return prot;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
prot |= KVM_PGTABLE_PROT_X;
ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
prot |= KVM_PGTABLE_PROT_R;
else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
prot |= KVM_PGTABLE_PROT_RW;
return prot;
}
static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep, struct hyp_map_data *data)
{
kvm_pte_t new, old = *ptep;
u64 granule = kvm_granule_size(level), phys = data->phys;
if (!kvm_block_mapping_supported(addr, end, phys, level))
return false;
data->phys += granule;
new = kvm_init_valid_leaf_pte(phys, data->attr, level);
if (old == new)
return true;
if (!kvm_pte_valid(old))
data->mm_ops->get_page(ptep);
else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
return false;
smp_store_release(ptep, new);
return true;
}
static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
kvm_pte_t *childp;
struct hyp_map_data *data = arg;
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
return 0;
if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
if (!childp)
return -ENOMEM;
kvm_set_table_pte(ptep, childp, mm_ops);
mm_ops->get_page(ptep);
return 0;
}
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
enum kvm_pgtable_prot prot)
{
int ret;
struct hyp_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
.mm_ops = pgt->mm_ops,
};
struct kvm_pgtable_walker walker = {
.cb = hyp_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
ret = hyp_set_prot_attr(prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
isb();
return ret;
}
struct hyp_unmap_data {
u64 unmapped;
struct kvm_pgtable_mm_ops *mm_ops;
};
static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
kvm_pte_t pte = *ptep, *childp = NULL;
u64 granule = kvm_granule_size(level);
struct hyp_unmap_data *data = arg;
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
if (!kvm_pte_valid(pte))
return -EINVAL;
if (kvm_pte_table(pte, level)) {
childp = kvm_pte_follow(pte, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
kvm_clear_pte(ptep);
dsb(ishst);
__tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
} else {
if (end - addr < granule)
return -EINVAL;
kvm_clear_pte(ptep);
dsb(ishst);
__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
data->unmapped += granule;
}
dsb(ish);
isb();
mm_ops->put_page(ptep);
if (childp)
mm_ops->put_page(childp);
return 0;
}
u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct hyp_unmap_data unmap_data = {
.mm_ops = pgt->mm_ops,
};
struct kvm_pgtable_walker walker = {
.cb = hyp_unmap_walker,
.arg = &unmap_data,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
if (!pgt->mm_ops->page_count)
return 0;
kvm_pgtable_walk(pgt, addr, size, &walker);
return unmap_data.unmapped;
}
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
struct kvm_pgtable_mm_ops *mm_ops)
{
u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = va_bits;
pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
pgt->mm_ops = mm_ops;
pgt->mmu = NULL;
pgt->force_pte_cb = NULL;
return 0;
}
static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
struct kvm_pgtable_mm_ops *mm_ops = arg;
kvm_pte_t pte = *ptep;
if (!kvm_pte_valid(pte))
return 0;
mm_ops->put_page(ptep);
if (kvm_pte_table(pte, level))
mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
return 0;
}
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
struct kvm_pgtable_walker walker = {
.cb = hyp_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
.arg = pgt->mm_ops,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgt->mm_ops->put_page(pgt->pgd);
pgt->pgd = NULL;
}
struct stage2_map_data {
u64 phys;
kvm_pte_t attr;
u8 owner_id;
kvm_pte_t *anchor;
kvm_pte_t *childp;
struct kvm_s2_mmu *mmu;
void *memcache;
struct kvm_pgtable_mm_ops *mm_ops;
/* Force mappings to page granularity */
bool force_pte;
};
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
{
u64 vtcr = VTCR_EL2_FLAGS;
u8 lvls;
vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
vtcr |= VTCR_EL2_T0SZ(phys_shift);
/*
* Use a minimum 2 level page table to prevent splitting
* host PMD huge pages at stage2.
*/
lvls = stage2_pgtable_levels(phys_shift);
if (lvls < 2)
lvls = 2;
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* Enable the Hardware Access Flag management, unconditionally
* on all CPUs. In systems that have asymmetric support for the feature
* this allows KVM to leverage hardware support on the subset of cores
* that implement the feature.
*
* The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
* hardware) on implementations that do not advertise support for the
* feature. As such, setting HA unconditionally is safe, unless you
* happen to be running on a design that has unadvertised support for
* HAFDBS. Here be dragons.
*/
if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
vtcr |= VTCR_EL2_HA;
#endif /* CONFIG_ARM64_HW_AFDBM */
/* Set the vmid bits */
vtcr |= (get_vmid_bits(mmfr1) == 16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
return vtcr;
}
static bool stage2_has_fwb(struct kvm_pgtable *pgt)
{
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
return false;
return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
}
#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
kvm_pte_t *ptep)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
KVM_S2_MEMATTR(pgt, NORMAL);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
if (!(prot & KVM_PGTABLE_PROT_X))
attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
else if (device)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
*ptep = attr;
return 0;
}
enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
{
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
if (!kvm_pte_valid(pte))
return prot;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
prot |= KVM_PGTABLE_PROT_R;
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
prot |= KVM_PGTABLE_PROT_W;
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
prot |= KVM_PGTABLE_PROT_X;
return prot;
}
static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
{
if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
return true;
return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
}
static bool stage2_pte_is_counted(kvm_pte_t pte)
{
/*
* The refcount tracks valid entries as well as invalid entries if they
* encode ownership of a page to another entity than the page-table
* owner, whose id is 0.
*/
return !!pte;
}
static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
u32 level, struct kvm_pgtable_mm_ops *mm_ops)
{
/*
* Clear the existing PTE, and perform break-before-make with
* TLB maintenance if it was valid.
*/
if (kvm_pte_valid(*ptep)) {
kvm_clear_pte(ptep);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
}
mm_ops->put_page(ptep);
}
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
{
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
}
static bool stage2_pte_executable(kvm_pte_t pte)
{
return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
}
static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
struct stage2_map_data *data)
{
if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
return false;
return kvm_block_mapping_supported(addr, end, data->phys, level);
}
static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
kvm_pte_t new, old = *ptep;
u64 granule = kvm_granule_size(level), phys = data->phys;
struct kvm_pgtable *pgt = data->mmu->pgt;
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
if (!stage2_leaf_mapping_allowed(addr, end, level, data))
return -E2BIG;
if (kvm_phys_is_valid(phys))
new = kvm_init_valid_leaf_pte(phys, data->attr, level);
else
new = kvm_init_invalid_leaf_owner(data->owner_id);
if (stage2_pte_is_counted(old)) {
/*
* Skip updating the PTE if we are trying to recreate the exact
* same mapping or only change the access permissions. Instead,
* the vCPU will exit one more time from guest if still needed
* and then go through the path of relaxing permissions.
*/
if (!stage2_pte_needs_update(old, new))
return -EAGAIN;
stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
}
/* Perform CMOs before installation of the guest stage-2 PTE */
if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
granule);
if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
smp_store_release(ptep, new);
if (stage2_pte_is_counted(new))
mm_ops->get_page(ptep);
if (kvm_phys_is_valid(phys))
data->phys += granule;
return 0;
}
static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
if (data->anchor)
return 0;
if (!stage2_leaf_mapping_allowed(addr, end, level, data))
return 0;
data->childp = kvm_pte_follow(*ptep, data->mm_ops);
kvm_clear_pte(ptep);
/*
* Invalidate the whole stage-2, as we may have numerous leaf
* entries below us which would otherwise need invalidating
* individually.
*/
kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
data->anchor = ptep;
return 0;
}
static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
kvm_pte_t *childp, pte = *ptep;
int ret;
if (data->anchor) {
if (stage2_pte_is_counted(pte))
mm_ops->put_page(ptep);
return 0;
}
ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
if (ret != -E2BIG)
return ret;
if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
if (!data->memcache)
return -ENOMEM;
childp = mm_ops->zalloc_page(data->memcache);
if (!childp)
return -ENOMEM;
/*
* If we've run into an existing block mapping then replace it with
* a table. Accesses beyond 'end' that fall within the new table
* will be mapped lazily.
*/
if (stage2_pte_is_counted(pte))
stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
kvm_set_table_pte(ptep, childp, mm_ops);
mm_ops->get_page(ptep);
return 0;
}
static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
kvm_pte_t *childp;
int ret = 0;
if (!data->anchor)
return 0;
if (data->anchor == ptep) {
childp = data->childp;
data->anchor = NULL;
data->childp = NULL;
ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
} else {
childp = kvm_pte_follow(*ptep, mm_ops);
}
mm_ops->put_page(childp);
mm_ops->put_page(ptep);
return ret;
}
/*
* This is a little fiddly, as we use all three of the walk flags. The idea
* is that the TABLE_PRE callback runs for table entries on the way down,
* looking for table entries which we could conceivably replace with a
* block entry for this mapping. If it finds one, then it sets the 'anchor'
* field in 'struct stage2_map_data' to point at the table entry, before
* clearing the entry to zero and descending into the now detached table.
*
* The behaviour of the LEAF callback then depends on whether or not the
* anchor has been set. If not, then we're not using a block mapping higher
* up the table and we perform the mapping at the existing leaves instead.
* If, on the other hand, the anchor _is_ set, then we drop references to
* all valid leaves so that the pages beneath the anchor can be freed.
*
* Finally, the TABLE_POST callback does nothing if the anchor has not
* been set, but otherwise frees the page-table pages while walking back up
* the page-table, installing the block entry when it revisits the anchor
* pointer and clearing the anchor to NULL.
*/
static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
struct stage2_map_data *data = arg;
switch (flag) {
case KVM_PGTABLE_WALK_TABLE_PRE:
return stage2_map_walk_table_pre(addr, end, level, ptep, data);
case KVM_PGTABLE_WALK_LEAF:
return stage2_map_walk_leaf(addr, end, level, ptep, data);
case KVM_PGTABLE_WALK_TABLE_POST:
return stage2_map_walk_table_post(addr, end, level, ptep, data);
}
return -EINVAL;
}
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
void *mc)
{
int ret;
struct stage2_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
.mmu = pgt->mmu,
.memcache = mc,
.mm_ops = pgt->mm_ops,
.force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
.arg = &map_data,
};
if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
return -EINVAL;
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
return ret;
}
int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
void *mc, u8 owner_id)
{
int ret;
struct stage2_map_data map_data = {
.phys = KVM_PHYS_INVALID,
.mmu = pgt->mmu,
.memcache = mc,
.mm_ops = pgt->mm_ops,
.owner_id = owner_id,
.force_pte = true,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
.arg = &map_data,
};
if (owner_id > KVM_MAX_OWNER_ID)
return -EINVAL;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
return ret;
}
static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
struct kvm_pgtable *pgt = arg;
struct kvm_s2_mmu *mmu = pgt->mmu;
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
kvm_pte_t pte = *ptep, *childp = NULL;
bool need_flush = false;
if (!kvm_pte_valid(pte)) {
if (stage2_pte_is_counted(pte)) {
kvm_clear_pte(ptep);
mm_ops->put_page(ptep);
}
return 0;
}
if (kvm_pte_table(pte, level)) {
childp = kvm_pte_follow(pte, mm_ops);
if (mm_ops->page_count(childp) != 1)
return 0;
} else if (stage2_pte_cacheable(pgt, pte)) {
need_flush = !stage2_has_fwb(pgt);
}
/*
* This is similar to the map() path in that we unmap the entire
* block entry and rely on the remaining portions being faulted
* back lazily.
*/
stage2_put_pte(ptep, mmu, addr, level, mm_ops);
if (need_flush && mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
kvm_granule_size(level));
if (childp)
mm_ops->put_page(childp);
return 0;
}
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_unmap_walker,
.arg = pgt,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
struct stage2_attr_data {
kvm_pte_t attr_set;
kvm_pte_t attr_clr;
kvm_pte_t pte;
u32 level;
struct kvm_pgtable_mm_ops *mm_ops;
};
static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
kvm_pte_t pte = *ptep;
struct stage2_attr_data *data = arg;
struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
if (!kvm_pte_valid(pte))
return 0;
data->level = level;
data->pte = pte;
pte &= ~data->attr_clr;
pte |= data->attr_set;
/*
* We may race with the CPU trying to set the access flag here,
* but worst-case the access flag update gets lost and will be
* set on the next access instead.
*/
if (data->pte != pte) {
/*
* Invalidate instruction cache before updating the guest
* stage-2 PTE if we are going to add executable permission.
*/
if (mm_ops->icache_inval_pou &&
stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
kvm_granule_size(level));
WRITE_ONCE(*ptep, pte);
}
return 0;
}
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
u64 size, kvm_pte_t attr_set,
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
u32 *level)
{
int ret;
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
struct stage2_attr_data data = {
.attr_set = attr_set & attr_mask,
.attr_clr = attr_clr & attr_mask,
.mm_ops = pgt->mm_ops,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_attr_walker,
.arg = &data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (ret)
return ret;
if (orig_pte)
*orig_pte = data.pte;
if (level)
*level = data.level;
return 0;
}
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
return stage2_update_leaf_attrs(pgt, addr, size, 0,
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
NULL, NULL);
}
kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
&pte, NULL);
dsb(ishst);
return pte;
}
kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
&pte, NULL);
/*
* "But where's the TLBI?!", you scream.
* "Over in the core code", I sigh.
*
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
*/
return pte;
}
bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
}
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
enum kvm_pgtable_prot prot)
{
int ret;
u32 level;
kvm_pte_t set = 0, clr = 0;
if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
if (prot & KVM_PGTABLE_PROT_X)
clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
if (!ret)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
return ret;
}
static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
struct kvm_pgtable *pgt = arg;
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
kvm_pte_t pte = *ptep;
if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
return 0;
if (mm_ops->dcache_clean_inval_poc)
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
kvm_granule_size(level));
return 0;
}
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_flush_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = pgt,
};
if (stage2_has_fwb(pgt))
return 0;
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops,
enum kvm_pgtable_stage2_flags flags,
kvm_pgtable_force_pte_cb_t force_pte_cb)
{
size_t pgd_sz;
u64 vtcr = mmu->arch->vtcr;
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = ia_bits;
pgt->start_level = start_level;
pgt->mm_ops = mm_ops;
pgt->mmu = mmu;
pgt->flags = flags;
pgt->force_pte_cb = force_pte_cb;
/* Ensure zeroed PGD pages are visible to the hardware walker */
dsb(ishst);
return 0;
}
static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
struct kvm_pgtable_mm_ops *mm_ops = arg;
kvm_pte_t pte = *ptep;
if (!stage2_pte_is_counted(pte))
return 0;
mm_ops->put_page(ptep);
if (kvm_pte_table(pte, level))
mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
return 0;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
size_t pgd_sz;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
.arg = pgt->mm_ops,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
pgt->pgd = NULL;
}