linuxdebug/arch/powerpc/kernel/smp.c

1771 lines
43 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SMP support for ppc.
*
* Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
* deal of code from the sparc and intel versions.
*
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
*
* PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
* Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched/mm.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/topology.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/profile.h>
#include <linux/processor.h>
#include <linux/random.h>
#include <linux/stackprotector.h>
#include <linux/pgtable.h>
#include <linux/clockchips.h>
#include <linux/kexec.h>
#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include <asm/kvm_ppc.h>
#include <asm/dbell.h>
#include <asm/page.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#include <asm/vdso.h>
#include <asm/debug.h>
#include <asm/cpu_has_feature.h>
#include <asm/ftrace.h>
#include <asm/kup.h>
#include <asm/fadump.h>
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
#endif
struct task_struct *secondary_current;
bool has_big_cores;
bool coregroup_enabled;
bool thread_group_shares_l2;
bool thread_group_shares_l3;
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
EXPORT_SYMBOL_GPL(has_big_cores);
enum {
#ifdef CONFIG_SCHED_SMT
smt_idx,
#endif
cache_idx,
mc_idx,
die_idx,
};
#define MAX_THREAD_LIST_SIZE 8
#define THREAD_GROUP_SHARE_L1 1
#define THREAD_GROUP_SHARE_L2_L3 2
struct thread_groups {
unsigned int property;
unsigned int nr_groups;
unsigned int threads_per_group;
unsigned int thread_list[MAX_THREAD_LIST_SIZE];
};
/* Maximum number of properties that groups of threads within a core can share */
#define MAX_THREAD_GROUP_PROPERTIES 2
struct thread_groups_list {
unsigned int nr_properties;
struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
};
static struct thread_groups_list tgl[NR_CPUS] __initdata;
/*
* On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
* the set its siblings that share the L1-cache.
*/
DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
/*
* On some big-cores system, thread_group_l2_cache_map for each CPU
* corresponds to the set its siblings within the core that share the
* L2-cache.
*/
DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
/*
* On P10, thread_group_l3_cache_map for each CPU is equal to the
* thread_group_l2_cache_map
*/
DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
/* SMP operations for this machine */
struct smp_ops_t *smp_ops;
/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];
int smt_enabled_at_boot = 1;
/*
* Returns 1 if the specified cpu should be brought up during boot.
* Used to inhibit booting threads if they've been disabled or
* limited on the command line
*/
int smp_generic_cpu_bootable(unsigned int nr)
{
/* Special case - we inhibit secondary thread startup
* during boot if the user requests it.
*/
if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
return 0;
if (smt_enabled_at_boot
&& cpu_thread_in_core(nr) >= smt_enabled_at_boot)
return 0;
}
return 1;
}
#ifdef CONFIG_PPC64
int smp_generic_kick_cpu(int nr)
{
if (nr < 0 || nr >= nr_cpu_ids)
return -EINVAL;
/*
* The processor is currently spinning, waiting for the
* cpu_start field to become non-zero After we set cpu_start,
* the processor will continue on to secondary_start
*/
if (!paca_ptrs[nr]->cpu_start) {
paca_ptrs[nr]->cpu_start = 1;
smp_mb();
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Ok it's not there, so it might be soft-unplugged, let's
* try to bring it back
*/
generic_set_cpu_up(nr);
smp_wmb();
smp_send_reschedule(nr);
#endif /* CONFIG_HOTPLUG_CPU */
return 0;
}
#endif /* CONFIG_PPC64 */
static irqreturn_t call_function_action(int irq, void *data)
{
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static irqreturn_t reschedule_action(int irq, void *data)
{
scheduler_ipi();
return IRQ_HANDLED;
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
{
timer_broadcast_interrupt();
return IRQ_HANDLED;
}
#endif
#ifdef CONFIG_NMI_IPI
static irqreturn_t nmi_ipi_action(int irq, void *data)
{
smp_handle_nmi_ipi(get_irq_regs());
return IRQ_HANDLED;
}
#endif
static irq_handler_t smp_ipi_action[] = {
[PPC_MSG_CALL_FUNCTION] = call_function_action,
[PPC_MSG_RESCHEDULE] = reschedule_action,
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
#endif
#ifdef CONFIG_NMI_IPI
[PPC_MSG_NMI_IPI] = nmi_ipi_action,
#endif
};
/*
* The NMI IPI is a fallback and not truly non-maskable. It is simpler
* than going through the call function infrastructure, and strongly
* serialized, so it is more appropriate for debugging.
*/
const char *smp_ipi_name[] = {
[PPC_MSG_CALL_FUNCTION] = "ipi call function",
[PPC_MSG_RESCHEDULE] = "ipi reschedule",
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
#endif
#ifdef CONFIG_NMI_IPI
[PPC_MSG_NMI_IPI] = "nmi ipi",
#endif
};
/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
int err;
if (msg < 0 || msg > PPC_MSG_NMI_IPI)
return -EINVAL;
#ifndef CONFIG_NMI_IPI
if (msg == PPC_MSG_NMI_IPI)
return 1;
#endif
err = request_irq(virq, smp_ipi_action[msg],
IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
smp_ipi_name[msg], NULL);
WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
virq, smp_ipi_name[msg], err);
return err;
}
#ifdef CONFIG_PPC_SMP_MUXED_IPI
struct cpu_messages {
long messages; /* current messages */
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
void smp_muxed_ipi_set_message(int cpu, int msg)
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
char *message = (char *)&info->messages;
/*
* Order previous accesses before accesses in the IPI handler.
*/
smp_mb();
message[msg] = 1;
}
void smp_muxed_ipi_message_pass(int cpu, int msg)
{
smp_muxed_ipi_set_message(cpu, msg);
/*
* cause_ipi functions are required to include a full barrier
* before doing whatever causes the IPI.
*/
smp_ops->cause_ipi(cpu);
}
#ifdef __BIG_ENDIAN__
#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
#else
#define IPI_MESSAGE(A) (1uL << (8 * (A)))
#endif
irqreturn_t smp_ipi_demux(void)
{
mb(); /* order any irq clear */
return smp_ipi_demux_relaxed();
}
/* sync-free variant. Callers should ensure synchronization */
irqreturn_t smp_ipi_demux_relaxed(void)
{
struct cpu_messages *info;
unsigned long all;
info = this_cpu_ptr(&ipi_message);
do {
all = xchg(&info->messages, 0);
#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
/*
* Must check for PPC_MSG_RM_HOST_ACTION messages
* before PPC_MSG_CALL_FUNCTION messages because when
* a VM is destroyed, we call kick_all_cpus_sync()
* to ensure that any pending PPC_MSG_RM_HOST_ACTION
* messages have completed before we free any VCPUs.
*/
if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
kvmppc_xics_ipi_action();
#endif
if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
generic_smp_call_function_interrupt();
if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
scheduler_ipi();
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
timer_broadcast_interrupt();
#endif
#ifdef CONFIG_NMI_IPI
if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
nmi_ipi_action(0, NULL);
#endif
} while (info->messages);
return IRQ_HANDLED;
}
#endif /* CONFIG_PPC_SMP_MUXED_IPI */
static inline void do_message_pass(int cpu, int msg)
{
if (smp_ops->message_pass)
smp_ops->message_pass(cpu, msg);
#ifdef CONFIG_PPC_SMP_MUXED_IPI
else
smp_muxed_ipi_message_pass(cpu, msg);
#endif
}
void smp_send_reschedule(int cpu)
{
if (likely(smp_ops))
do_message_pass(cpu, PPC_MSG_RESCHEDULE);
}
EXPORT_SYMBOL_GPL(smp_send_reschedule);
void arch_send_call_function_single_ipi(int cpu)
{
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
#ifdef CONFIG_NMI_IPI
/*
* "NMI IPI" system.
*
* NMI IPIs may not be recoverable, so should not be used as ongoing part of
* a running system. They can be used for crash, debug, halt/reboot, etc.
*
* The IPI call waits with interrupts disabled until all targets enter the
* NMI handler, then returns. Subsequent IPIs can be issued before targets
* have returned from their handlers, so there is no guarantee about
* concurrency or re-entrancy.
*
* A new NMI can be issued before all targets exit the handler.
*
* The IPI call may time out without all targets entering the NMI handler.
* In that case, there is some logic to recover (and ignore subsequent
* NMI interrupts that may eventually be raised), but the platform interrupt
* handler may not be able to distinguish this from other exception causes,
* which may cause a crash.
*/
static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
static struct cpumask nmi_ipi_pending_mask;
static bool nmi_ipi_busy = false;
static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
noinstr static void nmi_ipi_lock_start(unsigned long *flags)
{
raw_local_irq_save(*flags);
hard_irq_disable();
while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
raw_local_irq_restore(*flags);
spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
raw_local_irq_save(*flags);
hard_irq_disable();
}
}
noinstr static void nmi_ipi_lock(void)
{
while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
}
noinstr static void nmi_ipi_unlock(void)
{
smp_mb();
WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
arch_atomic_set(&__nmi_ipi_lock, 0);
}
noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
{
nmi_ipi_unlock();
raw_local_irq_restore(*flags);
}
/*
* Platform NMI handler calls this to ack
*/
noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
{
void (*fn)(struct pt_regs *) = NULL;
unsigned long flags;
int me = raw_smp_processor_id();
int ret = 0;
/*
* Unexpected NMIs are possible here because the interrupt may not
* be able to distinguish NMI IPIs from other types of NMIs, or
* because the caller may have timed out.
*/
nmi_ipi_lock_start(&flags);
if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
fn = READ_ONCE(nmi_ipi_function);
WARN_ON_ONCE(!fn);
ret = 1;
}
nmi_ipi_unlock_end(&flags);
if (fn)
fn(regs);
return ret;
}
static void do_smp_send_nmi_ipi(int cpu, bool safe)
{
if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
return;
if (cpu >= 0) {
do_message_pass(cpu, PPC_MSG_NMI_IPI);
} else {
int c;
for_each_online_cpu(c) {
if (c == raw_smp_processor_id())
continue;
do_message_pass(c, PPC_MSG_NMI_IPI);
}
}
}
/*
* - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
* - fn is the target callback function.
* - delay_us > 0 is the delay before giving up waiting for targets to
* begin executing the handler, == 0 specifies indefinite delay.
*/
static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
u64 delay_us, bool safe)
{
unsigned long flags;
int me = raw_smp_processor_id();
int ret = 1;
BUG_ON(cpu == me);
BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
if (unlikely(!smp_ops))
return 0;
nmi_ipi_lock_start(&flags);
while (nmi_ipi_busy) {
nmi_ipi_unlock_end(&flags);
spin_until_cond(!nmi_ipi_busy);
nmi_ipi_lock_start(&flags);
}
nmi_ipi_busy = true;
nmi_ipi_function = fn;
WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
if (cpu < 0) {
/* ALL_OTHERS */
cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
} else {
cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
}
nmi_ipi_unlock();
/* Interrupts remain hard disabled */
do_smp_send_nmi_ipi(cpu, safe);
nmi_ipi_lock();
/* nmi_ipi_busy is set here, so unlock/lock is okay */
while (!cpumask_empty(&nmi_ipi_pending_mask)) {
nmi_ipi_unlock();
udelay(1);
nmi_ipi_lock();
if (delay_us) {
delay_us--;
if (!delay_us)
break;
}
}
if (!cpumask_empty(&nmi_ipi_pending_mask)) {
/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
ret = 0;
cpumask_clear(&nmi_ipi_pending_mask);
}
nmi_ipi_function = NULL;
nmi_ipi_busy = false;
nmi_ipi_unlock_end(&flags);
return ret;
}
int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
}
int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
}
#endif /* CONFIG_NMI_IPI */
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
}
#endif
#ifdef CONFIG_DEBUGGER
static void debugger_ipi_callback(struct pt_regs *regs)
{
debugger_ipi(regs);
}
void smp_send_debugger_break(void)
{
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
}
#endif
#ifdef CONFIG_KEXEC_CORE
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
int cpu;
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
if (kdump_in_progress() && crash_wake_offline) {
for_each_present_cpu(cpu) {
if (cpu_online(cpu))
continue;
/*
* crash_ipi_callback will wait for
* all cpus, including offline CPUs.
* We don't care about nmi_ipi_function.
* Offline cpus will jump straight into
* crash_ipi_callback, we can skip the
* entire NMI dance and waiting for
* cpus to clear pending mask, etc.
*/
do_smp_send_nmi_ipi(cpu, false);
}
}
}
#endif
void crash_smp_send_stop(void)
{
static bool stopped = false;
/*
* In case of fadump, register data for all CPUs is captured by f/w
* on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
* this rtas call to avoid tricky post processing of those CPUs'
* backtraces.
*/
if (should_fadump_crash())
return;
if (stopped)
return;
stopped = true;
#ifdef CONFIG_KEXEC_CORE
if (kexec_crash_image) {
crash_kexec_prepare();
return;
}
#endif
smp_send_stop();
}
#ifdef CONFIG_NMI_IPI
static void nmi_stop_this_cpu(struct pt_regs *regs)
{
/*
* IRQs are already hard disabled by the smp_handle_nmi_ipi.
*/
set_cpu_online(smp_processor_id(), false);
spin_begin();
while (1)
spin_cpu_relax();
}
void smp_send_stop(void)
{
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
}
#else /* CONFIG_NMI_IPI */
static void stop_this_cpu(void *dummy)
{
hard_irq_disable();
/*
* Offlining CPUs in stop_this_cpu can result in scheduler warnings,
* (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
* to know other CPUs are offline before it breaks locks to flush
* printk buffers, in case we panic()ed while holding the lock.
*/
set_cpu_online(smp_processor_id(), false);
spin_begin();
while (1)
spin_cpu_relax();
}
void smp_send_stop(void)
{
static bool stopped = false;
/*
* Prevent waiting on csd lock from a previous smp_send_stop.
* This is racy, but in general callers try to do the right
* thing and only fire off one smp_send_stop (e.g., see
* kernel/panic.c)
*/
if (stopped)
return;
stopped = true;
smp_call_function(stop_this_cpu, NULL, 0);
}
#endif /* CONFIG_NMI_IPI */
static struct task_struct *current_set[NR_CPUS];
static void smp_store_cpu_info(int id)
{
per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
#ifdef CONFIG_PPC_E500
per_cpu(next_tlbcam_idx, id)
= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
#endif
}
/*
* Relationships between CPUs are maintained in a set of per-cpu cpumasks so
* rather than just passing around the cpumask we pass around a function that
* returns the that cpumask for the given CPU.
*/
static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
{
cpumask_set_cpu(i, get_cpumask(j));
cpumask_set_cpu(j, get_cpumask(i));
}
#ifdef CONFIG_HOTPLUG_CPU
static void set_cpus_unrelated(int i, int j,
struct cpumask *(*get_cpumask)(int))
{
cpumask_clear_cpu(i, get_cpumask(j));
cpumask_clear_cpu(j, get_cpumask(i));
}
#endif
/*
* Extends set_cpus_related. Instead of setting one CPU at a time in
* dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
*/
static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
struct cpumask *(*dstmask)(int))
{
struct cpumask *mask;
int k;
mask = srcmask(j);
for_each_cpu(k, srcmask(i))
cpumask_or(dstmask(k), dstmask(k), mask);
if (i == j)
return;
mask = srcmask(i);
for_each_cpu(k, srcmask(j))
cpumask_or(dstmask(k), dstmask(k), mask);
}
/*
* parse_thread_groups: Parses the "ibm,thread-groups" device tree
* property for the CPU device node @dn and stores
* the parsed output in the thread_groups_list
* structure @tglp.
*
* @dn: The device node of the CPU device.
* @tglp: Pointer to a thread group list structure into which the parsed
* output of "ibm,thread-groups" is stored.
*
* ibm,thread-groups[0..N-1] array defines which group of threads in
* the CPU-device node can be grouped together based on the property.
*
* This array can represent thread groupings for multiple properties.
*
* ibm,thread-groups[i + 0] tells us the property based on which the
* threads are being grouped together. If this value is 1, it implies
* that the threads in the same group share L1, translation cache. If
* the value is 2, it implies that the threads in the same group share
* the same L2 cache.
*
* ibm,thread-groups[i+1] tells us how many such thread groups exist for the
* property ibm,thread-groups[i]
*
* ibm,thread-groups[i+2] tells us the number of threads in each such
* group.
* Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
*
* ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
* "ibm,ppc-interrupt-server#s" arranged as per their membership in
* the grouping.
*
* Example:
* If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
* This can be decomposed up into two consecutive arrays:
* a) [1,2,4,8,10,12,14,9,11,13,15]
* b) [2,2,4,8,10,12,14,9,11,13,15]
*
* where in,
*
* a) provides information of Property "1" being shared by "2" groups,
* each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
* the first group is {8,10,12,14} and the
* "ibm,ppc-interrupt-server#s" of the second group is
* {9,11,13,15}. Property "1" is indicative of the thread in the
* group sharing L1 cache, translation cache and Instruction Data
* flow.
*
* b) provides information of Property "2" being shared by "2" groups,
* each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
* the first group is {8,10,12,14} and the
* "ibm,ppc-interrupt-server#s" of the second group is
* {9,11,13,15}. Property "2" indicates that the threads in each
* group share the L2-cache.
*
* Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*/
static int parse_thread_groups(struct device_node *dn,
struct thread_groups_list *tglp)
{
unsigned int property_idx = 0;
u32 *thread_group_array;
size_t total_threads;
int ret = 0, count;
u32 *thread_list;
int i = 0;
count = of_property_count_u32_elems(dn, "ibm,thread-groups");
thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
ret = of_property_read_u32_array(dn, "ibm,thread-groups",
thread_group_array, count);
if (ret)
goto out_free;
while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
int j;
struct thread_groups *tg = &tglp->property_tgs[property_idx++];
tg->property = thread_group_array[i];
tg->nr_groups = thread_group_array[i + 1];
tg->threads_per_group = thread_group_array[i + 2];
total_threads = tg->nr_groups * tg->threads_per_group;
thread_list = &thread_group_array[i + 3];
for (j = 0; j < total_threads; j++)
tg->thread_list[j] = thread_list[j];
i = i + 3 + total_threads;
}
tglp->nr_properties = property_idx;
out_free:
kfree(thread_group_array);
return ret;
}
/*
* get_cpu_thread_group_start : Searches the thread group in tg->thread_list
* that @cpu belongs to.
*
* @cpu : The logical CPU whose thread group is being searched.
* @tg : The thread-group structure of the CPU node which @cpu belongs
* to.
*
* Returns the index to tg->thread_list that points to the start
* of the thread_group that @cpu belongs to.
*
* Returns -1 if cpu doesn't belong to any of the groups pointed to by
* tg->thread_list.
*/
static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
{
int hw_cpu_id = get_hard_smp_processor_id(cpu);
int i, j;
for (i = 0; i < tg->nr_groups; i++) {
int group_start = i * tg->threads_per_group;
for (j = 0; j < tg->threads_per_group; j++) {
int idx = group_start + j;
if (tg->thread_list[idx] == hw_cpu_id)
return group_start;
}
}
return -1;
}
static struct thread_groups *__init get_thread_groups(int cpu,
int group_property,
int *err)
{
struct device_node *dn = of_get_cpu_node(cpu, NULL);
struct thread_groups_list *cpu_tgl = &tgl[cpu];
struct thread_groups *tg = NULL;
int i;
*err = 0;
if (!dn) {
*err = -ENODATA;
return NULL;
}
if (!cpu_tgl->nr_properties) {
*err = parse_thread_groups(dn, cpu_tgl);
if (*err)
goto out;
}
for (i = 0; i < cpu_tgl->nr_properties; i++) {
if (cpu_tgl->property_tgs[i].property == group_property) {
tg = &cpu_tgl->property_tgs[i];
break;
}
}
if (!tg)
*err = -EINVAL;
out:
of_node_put(dn);
return tg;
}
static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
int cpu, int cpu_group_start)
{
int first_thread = cpu_first_thread_sibling(cpu);
int i;
zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
for (i = first_thread; i < first_thread + threads_per_core; i++) {
int i_group_start = get_cpu_thread_group_start(i, tg);
if (unlikely(i_group_start == -1)) {
WARN_ON_ONCE(1);
return -ENODATA;
}
if (i_group_start == cpu_group_start)
cpumask_set_cpu(i, *mask);
}
return 0;
}
static int __init init_thread_group_cache_map(int cpu, int cache_property)
{
int cpu_group_start = -1, err = 0;
struct thread_groups *tg = NULL;
cpumask_var_t *mask = NULL;
if (cache_property != THREAD_GROUP_SHARE_L1 &&
cache_property != THREAD_GROUP_SHARE_L2_L3)
return -EINVAL;
tg = get_thread_groups(cpu, cache_property, &err);
if (!tg)
return err;
cpu_group_start = get_cpu_thread_group_start(cpu, tg);
if (unlikely(cpu_group_start == -1)) {
WARN_ON_ONCE(1);
return -ENODATA;
}
if (cache_property == THREAD_GROUP_SHARE_L1) {
mask = &per_cpu(thread_group_l1_cache_map, cpu);
update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
}
else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
mask = &per_cpu(thread_group_l2_cache_map, cpu);
update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
mask = &per_cpu(thread_group_l3_cache_map, cpu);
update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
}
return 0;
}
static bool shared_caches;
#ifdef CONFIG_SCHED_SMT
/* cpumask of CPUs with asymmetric SMT dependency */
static int powerpc_smt_flags(void)
{
int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
flags |= SD_ASYM_PACKING;
}
return flags;
}
#endif
/*
* P9 has a slightly odd architecture where pairs of cores share an L2 cache.
* This topology makes it *much* cheaper to migrate tasks between adjacent cores
* since the migrated task remains cache hot. We want to take advantage of this
* at the scheduler level so an extra topology level is required.
*/
static int powerpc_shared_cache_flags(void)
{
return SD_SHARE_PKG_RESOURCES;
}
/*
* We can't just pass cpu_l2_cache_mask() directly because
* returns a non-const pointer and the compiler barfs on that.
*/
static const struct cpumask *shared_cache_mask(int cpu)
{
return per_cpu(cpu_l2_cache_map, cpu);
}
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *smallcore_smt_mask(int cpu)
{
return cpu_smallcore_mask(cpu);
}
#endif
static struct cpumask *cpu_coregroup_mask(int cpu)
{
return per_cpu(cpu_coregroup_map, cpu);
}
static bool has_coregroup_support(void)
{
return coregroup_enabled;
}
static const struct cpumask *cpu_mc_mask(int cpu)
{
return cpu_coregroup_mask(cpu);
}
static struct sched_domain_topology_level powerpc_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
#endif
{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
{ cpu_mc_mask, SD_INIT_NAME(MC) },
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
static int __init init_big_cores(void)
{
int cpu;
for_each_possible_cpu(cpu) {
int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
if (err)
return err;
zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
GFP_KERNEL,
cpu_to_node(cpu));
}
has_big_cores = true;
for_each_possible_cpu(cpu) {
int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
if (err)
return err;
}
thread_group_shares_l2 = true;
thread_group_shares_l3 = true;
pr_debug("L2/L3 cache only shared by the threads in the small core\n");
return 0;
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu;
DBG("smp_prepare_cpus\n");
/*
* setup_cpu may need to be called on the boot cpu. We haven't
* spun any cpus up but lets be paranoid.
*/
BUG_ON(boot_cpuid != smp_processor_id());
/* Fixup boot cpu */
smp_store_cpu_info(boot_cpuid);
cpu_callin_map[boot_cpuid] = 1;
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
if (has_coregroup_support())
zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
#ifdef CONFIG_NUMA
/*
* numa_node_id() works after this.
*/
if (cpu_present(cpu)) {
set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
set_cpu_numa_mem(cpu,
local_memory_node(numa_cpu_lookup_table[cpu]));
}
#endif
}
/* Init the cpumasks so the boot CPU is related to itself */
cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
if (has_coregroup_support())
cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
init_big_cores();
if (has_big_cores) {
cpumask_set_cpu(boot_cpuid,
cpu_smallcore_mask(boot_cpuid));
}
if (cpu_to_chip_id(boot_cpuid) != -1) {
int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
/*
* All threads of a core will all belong to the same core,
* chip_id_lookup_table will have one entry per core.
* Assumption: if boot_cpuid doesn't have a chip-id, then no
* other CPUs, will also not have chip-id.
*/
chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
if (chip_id_lookup_table)
memset(chip_id_lookup_table, -1, sizeof(int) * idx);
}
if (smp_ops && smp_ops->probe)
smp_ops->probe();
}
void smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
paca_ptrs[boot_cpuid]->__current = current;
#endif
set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
current_set[boot_cpuid] = current;
}
#ifdef CONFIG_HOTPLUG_CPU
int generic_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == boot_cpuid)
return -EBUSY;
set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
vdso_data->processorCount--;
#endif
/* Update affinity of all IRQs previously aimed at this CPU */
irq_migrate_all_off_this_cpu();
/*
* Depending on the details of the interrupt controller, it's possible
* that one of the interrupts we just migrated away from this CPU is
* actually already pending on this CPU. If we leave it in that state
* the interrupt will never be EOI'ed, and will never fire again. So
* temporarily enable interrupts here, to allow any pending interrupt to
* be received (and EOI'ed), before we take this CPU offline.
*/
local_irq_enable();
mdelay(1);
local_irq_disable();
return 0;
}
void generic_cpu_die(unsigned int cpu)
{
int i;
for (i = 0; i < 100; i++) {
smp_rmb();
if (is_cpu_dead(cpu))
return;
msleep(100);
}
printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}
void generic_set_cpu_dead(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_DEAD;
}
/*
* The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
* the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
* which makes the delay in generic_cpu_die() not happen.
*/
void generic_set_cpu_up(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
}
int generic_check_cpu_restart(unsigned int cpu)
{
return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
}
int is_cpu_dead(unsigned int cpu)
{
return per_cpu(cpu_state, cpu) == CPU_DEAD;
}
static bool secondaries_inhibited(void)
{
return kvm_hv_mode_active();
}
#else /* HOTPLUG_CPU */
#define secondaries_inhibited() 0
#endif
static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
{
#ifdef CONFIG_PPC64
paca_ptrs[cpu]->__current = idle;
paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
THREAD_SIZE - STACK_FRAME_OVERHEAD;
#endif
task_thread_info(idle)->cpu = cpu;
secondary_current = current_set[cpu] = idle;
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
const bool booting = system_state < SYSTEM_RUNNING;
const unsigned long hp_spin_ms = 1;
unsigned long deadline;
int rc;
const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
/*
* Don't allow secondary threads to come online if inhibited
*/
if (threads_per_core > 1 && secondaries_inhibited() &&
cpu_thread_in_subcore(cpu))
return -EBUSY;
if (smp_ops == NULL ||
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
return -EINVAL;
cpu_idle_thread_init(cpu, tidle);
/*
* The platform might need to allocate resources prior to bringing
* up the CPU
*/
if (smp_ops->prepare_cpu) {
rc = smp_ops->prepare_cpu(cpu);
if (rc)
return rc;
}
/* Make sure callin-map entry is 0 (can be leftover a CPU
* hotplug
*/
cpu_callin_map[cpu] = 0;
/* The information for processor bringup must
* be written out to main store before we release
* the processor.
*/
smp_mb();
/* wake up cpus */
DBG("smp: kicking cpu %d\n", cpu);
rc = smp_ops->kick_cpu(cpu);
if (rc) {
pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
return rc;
}
/*
* At boot time, simply spin on the callin word until the
* deadline passes.
*
* At run time, spin for an optimistic amount of time to avoid
* sleeping in the common case.
*/
deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
fsleep(sleep_interval_us);
}
if (!cpu_callin_map[cpu]) {
printk(KERN_ERR "Processor %u is stuck.\n", cpu);
return -ENOENT;
}
DBG("Processor %u found.\n", cpu);
if (smp_ops->give_timebase)
smp_ops->give_timebase();
/* Wait until cpu puts itself in the online & active maps */
spin_until_cond(cpu_online(cpu));
return 0;
}
/* Return the value of the reg property corresponding to the given
* logical cpu.
*/
int cpu_to_core_id(int cpu)
{
struct device_node *np;
int id = -1;
np = of_get_cpu_node(cpu, NULL);
if (!np)
goto out;
id = of_get_cpu_hwid(np, 0);
out:
of_node_put(np);
return id;
}
EXPORT_SYMBOL_GPL(cpu_to_core_id);
/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
int cpu_first_thread_of_core(int core)
{
return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
/* Must be called when no change can occur to cpu_present_mask,
* i.e. during cpu online or offline.
*/
static struct device_node *cpu_to_l2cache(int cpu)
{
struct device_node *np;
struct device_node *cache;
if (!cpu_present(cpu))
return NULL;
np = of_get_cpu_node(cpu, NULL);
if (np == NULL)
return NULL;
cache = of_find_next_cache_node(np);
of_node_put(np);
return cache;
}
static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
{
struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
struct device_node *l2_cache, *np;
int i;
if (has_big_cores)
submask_fn = cpu_smallcore_mask;
/*
* If the threads in a thread-group share L2 cache, then the
* L2-mask can be obtained from thread_group_l2_cache_map.
*/
if (thread_group_shares_l2) {
cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
if (cpu_online(i))
set_cpus_related(i, cpu, cpu_l2_cache_mask);
}
/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
!cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
cpu);
}
return true;
}
l2_cache = cpu_to_l2cache(cpu);
if (!l2_cache || !*mask) {
/* Assume only core siblings share cache with this CPU */
for_each_cpu(i, cpu_sibling_mask(cpu))
set_cpus_related(cpu, i, cpu_l2_cache_mask);
return false;
}
cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
/* Update l2-cache mask with all the CPUs that are part of submask */
or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
/* Skip all CPUs already part of current CPU l2-cache mask */
cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
for_each_cpu(i, *mask) {
/*
* when updating the marks the current CPU has not been marked
* online, but we need to update the cache masks
*/
np = cpu_to_l2cache(i);
/* Skip all CPUs already part of current CPU l2-cache */
if (np == l2_cache) {
or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
cpumask_andnot(*mask, *mask, submask_fn(i));
} else {
cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
}
of_node_put(np);
}
of_node_put(l2_cache);
return true;
}
#ifdef CONFIG_HOTPLUG_CPU
static void remove_cpu_from_masks(int cpu)
{
struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
int i;
unmap_cpu_from_node(cpu);
if (shared_caches)
mask_fn = cpu_l2_cache_mask;
for_each_cpu(i, mask_fn(cpu)) {
set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
set_cpus_unrelated(cpu, i, cpu_sibling_mask);
if (has_big_cores)
set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
}
for_each_cpu(i, cpu_core_mask(cpu))
set_cpus_unrelated(cpu, i, cpu_core_mask);
if (has_coregroup_support()) {
for_each_cpu(i, cpu_coregroup_mask(cpu))
set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
}
}
#endif
static inline void add_cpu_to_smallcore_masks(int cpu)
{
int i;
if (!has_big_cores)
return;
cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
if (cpu_online(i))
set_cpus_related(i, cpu, cpu_smallcore_mask);
}
}
static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
{
struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
int coregroup_id = cpu_to_coregroup_id(cpu);
int i;
if (shared_caches)
submask_fn = cpu_l2_cache_mask;
if (!*mask) {
/* Assume only siblings are part of this CPU's coregroup */
for_each_cpu(i, submask_fn(cpu))
set_cpus_related(cpu, i, cpu_coregroup_mask);
return;
}
cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
/* Update coregroup mask with all the CPUs that are part of submask */
or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
/* Skip all CPUs already part of coregroup mask */
cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
for_each_cpu(i, *mask) {
/* Skip all CPUs not part of this coregroup */
if (coregroup_id == cpu_to_coregroup_id(i)) {
or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
cpumask_andnot(*mask, *mask, submask_fn(i));
} else {
cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
}
}
}
static void add_cpu_to_masks(int cpu)
{
struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
int first_thread = cpu_first_thread_sibling(cpu);
cpumask_var_t mask;
int chip_id = -1;
bool ret;
int i;
/*
* This CPU will not be in the online mask yet so we need to manually
* add it to it's own thread sibling mask.
*/
map_cpu_to_node(cpu, cpu_to_node(cpu));
cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
cpumask_set_cpu(cpu, cpu_core_mask(cpu));
for (i = first_thread; i < first_thread + threads_per_core; i++)
if (cpu_online(i))
set_cpus_related(i, cpu, cpu_sibling_mask);
add_cpu_to_smallcore_masks(cpu);
/* In CPU-hotplug path, hence use GFP_ATOMIC */
ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
update_mask_by_l2(cpu, &mask);
if (has_coregroup_support())
update_coregroup_mask(cpu, &mask);
if (chip_id_lookup_table && ret)
chip_id = cpu_to_chip_id(cpu);
if (shared_caches)
submask_fn = cpu_l2_cache_mask;
/* Update core_mask with all the CPUs that are part of submask */
or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
/* Skip all CPUs already part of current CPU core mask */
cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
if (chip_id == -1)
cpumask_and(mask, mask, cpu_cpu_mask(cpu));
for_each_cpu(i, mask) {
if (chip_id == cpu_to_chip_id(i)) {
or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
cpumask_andnot(mask, mask, submask_fn(i));
} else {
cpumask_andnot(mask, mask, cpu_core_mask(i));
}
}
free_cpumask_var(mask);
}
/* Activate a secondary processor. */
void start_secondary(void *unused)
{
unsigned int cpu = raw_smp_processor_id();
/* PPC64 calls setup_kup() in early_setup_secondary() */
if (IS_ENABLED(CONFIG_PPC32))
setup_kup();
mmgrab(&init_mm);
current->active_mm = &init_mm;
smp_store_cpu_info(cpu);
set_dec(tb_ticks_per_jiffy);
rcu_cpu_starting(cpu);
cpu_callin_map[cpu] = 1;
if (smp_ops->setup_cpu)
smp_ops->setup_cpu(cpu);
if (smp_ops->take_timebase)
smp_ops->take_timebase();
secondary_cpu_time_init();
#ifdef CONFIG_PPC64
if (system_state == SYSTEM_RUNNING)
vdso_data->processorCount++;
vdso_getcpu_init();
#endif
set_numa_node(numa_cpu_lookup_table[cpu]);
set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
/* Update topology CPU masks */
add_cpu_to_masks(cpu);
/*
* Check for any shared caches. Note that this must be done on a
* per-core basis because one core in the pair might be disabled.
*/
if (!shared_caches) {
struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
struct cpumask *mask = cpu_l2_cache_mask(cpu);
if (has_big_cores)
sibling_mask = cpu_smallcore_mask;
if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
shared_caches = true;
}
smp_wmb();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
boot_init_stack_canary();
local_irq_enable();
/* We can enable ftrace for secondary cpus now */
this_cpu_enable_ftrace();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
BUG();
}
static void __init fixup_topology(void)
{
int i;
#ifdef CONFIG_SCHED_SMT
if (has_big_cores) {
pr_info("Big cores detected but using small core scheduling\n");
powerpc_topology[smt_idx].mask = smallcore_smt_mask;
}
#endif
if (!has_coregroup_support())
powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
/*
* Try to consolidate topology levels here instead of
* allowing scheduler to degenerate.
* - Dont consolidate if masks are different.
* - Dont consolidate if sd_flags exists and are different.
*/
for (i = 1; i <= die_idx; i++) {
if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
continue;
if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
continue;
if (!powerpc_topology[i - 1].sd_flags)
powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
#ifdef CONFIG_SCHED_DEBUG
powerpc_topology[i].name = powerpc_topology[i + 1].name;
#endif
}
}
void __init smp_cpus_done(unsigned int max_cpus)
{
/*
* We are running pinned to the boot CPU, see rest_init().
*/
if (smp_ops && smp_ops->setup_cpu)
smp_ops->setup_cpu(boot_cpuid);
if (smp_ops && smp_ops->bringup_done)
smp_ops->bringup_done();
dump_numa_cpu_topology();
fixup_topology();
set_sched_topology(powerpc_topology);
}
#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
int cpu = smp_processor_id();
int err;
if (!smp_ops->cpu_disable)
return -ENOSYS;
this_cpu_disable_ftrace();
err = smp_ops->cpu_disable();
if (err)
return err;
/* Update sibling maps */
remove_cpu_from_masks(cpu);
return 0;
}
void __cpu_die(unsigned int cpu)
{
if (smp_ops->cpu_die)
smp_ops->cpu_die(cpu);
}
void arch_cpu_idle_dead(void)
{
/*
* Disable on the down path. This will be re-enabled by
* start_secondary() via start_secondary_resume() below
*/
this_cpu_disable_ftrace();
if (smp_ops->cpu_offline_self)
smp_ops->cpu_offline_self();
/* If we return, we re-enter start_secondary */
start_secondary_resume();
}
#endif