linuxdebug/arch/x86/kernel/smp.c

299 lines
8.9 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Intel SMP support routines.
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* (c) 2002,2003 Andi Kleen, SuSE Labs.
*
* i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/gfp.h>
#include <linux/kexec.h>
#include <asm/mtrr.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/apic.h>
#include <asm/cpu.h>
#include <asm/idtentry.h>
#include <asm/nmi.h>
#include <asm/mce.h>
#include <asm/trace/irq_vectors.h>
#include <asm/kexec.h>
#include <asm/reboot.h>
/*
* Some notes on x86 processor bugs affecting SMP operation:
*
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
* The Linux implications for SMP are handled as follows:
*
* Pentium III / [Xeon]
* None of the E1AP-E3AP errata are visible to the user.
*
* E1AP. see PII A1AP
* E2AP. see PII A2AP
* E3AP. see PII A3AP
*
* Pentium II / [Xeon]
* None of the A1AP-A3AP errata are visible to the user.
*
* A1AP. see PPro 1AP
* A2AP. see PPro 2AP
* A3AP. see PPro 7AP
*
* Pentium Pro
* None of 1AP-9AP errata are visible to the normal user,
* except occasional delivery of 'spurious interrupt' as trap #15.
* This is very rare and a non-problem.
*
* 1AP. Linux maps APIC as non-cacheable
* 2AP. worked around in hardware
* 3AP. fixed in C0 and above steppings microcode update.
* Linux does not use excessive STARTUP_IPIs.
* 4AP. worked around in hardware
* 5AP. symmetric IO mode (normal Linux operation) not affected.
* 'noapic' mode has vector 0xf filled out properly.
* 6AP. 'noapic' mode might be affected - fixed in later steppings
* 7AP. We do not assume writes to the LVT deasserting IRQs
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
* 9AP. We do not use mixed mode
*
* Pentium
* There is a marginal case where REP MOVS on 100MHz SMP
* machines with B stepping processors can fail. XXX should provide
* an L1cache=Writethrough or L1cache=off option.
*
* B stepping CPUs may hang. There are hardware work arounds
* for this. We warn about it in case your board doesn't have the work
* arounds. Basically that's so I can tell anyone with a B stepping
* CPU and SMP problems "tough".
*
* Specific items [From Pentium Processor Specification Update]
*
* 1AP. Linux doesn't use remote read
* 2AP. Linux doesn't trust APIC errors
* 3AP. We work around this
* 4AP. Linux never generated 3 interrupts of the same priority
* to cause a lost local interrupt.
* 5AP. Remote read is never used
* 6AP. not affected - worked around in hardware
* 7AP. not affected - worked around in hardware
* 8AP. worked around in hardware - we get explicit CS errors if not
* 9AP. only 'noapic' mode affected. Might generate spurious
* interrupts, we log only the first one and count the
* rest silently.
* 10AP. not affected - worked around in hardware
* 11AP. Linux reads the APIC between writes to avoid this, as per
* the documentation. Make sure you preserve this as it affects
* the C stepping chips too.
* 12AP. not affected - worked around in hardware
* 13AP. not affected - worked around in hardware
* 14AP. we always deassert INIT during bootup
* 15AP. not affected - worked around in hardware
* 16AP. not affected - worked around in hardware
* 17AP. not affected - worked around in hardware
* 18AP. not affected - worked around in hardware
* 19AP. not affected - worked around in BIOS
*
* If this sounds worrying believe me these bugs are either ___RARE___,
* or are signal timing bugs worked around in hardware and there's
* about nothing of note with C stepping upwards.
*/
static atomic_t stopping_cpu = ATOMIC_INIT(-1);
static bool smp_no_nmi_ipi = false;
static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
{
/* We are registered on stopping cpu too, avoid spurious NMI */
if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
return NMI_HANDLED;
cpu_emergency_disable_virtualization();
stop_this_cpu(NULL);
return NMI_HANDLED;
}
/*
* this function calls the 'stop' function on all other CPUs in the system.
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
{
ack_APIC_irq();
cpu_emergency_disable_virtualization();
stop_this_cpu(NULL);
}
static int register_stop_handler(void)
{
return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
NMI_FLAG_FIRST, "smp_stop");
}
static void native_stop_other_cpus(int wait)
{
unsigned int cpu = smp_processor_id();
unsigned long flags, timeout;
if (reboot_force)
return;
/* Only proceed if this is the first CPU to reach this code */
if (atomic_cmpxchg(&stopping_cpu, -1, cpu) != -1)
return;
/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
if (kexec_in_progress)
smp_kick_mwait_play_dead();
/*
* 1) Send an IPI on the reboot vector to all other CPUs.
*
* The other CPUs should react on it after leaving critical
* sections and re-enabling interrupts. They might still hold
* locks, but there is nothing which can be done about that.
*
* 2) Wait for all other CPUs to report that they reached the
* HLT loop in stop_this_cpu()
*
* 3) If #2 timed out send an NMI to the CPUs which did not
* yet report
*
* 4) Wait for all other CPUs to report that they reached the
* HLT loop in stop_this_cpu()
*
* #3 can obviously race against a CPU reaching the HLT loop late.
* That CPU will have reported already and the "have all CPUs
* reached HLT" condition will be true despite the fact that the
* other CPU is still handling the NMI. Again, there is no
* protection against that as "disabled" APICs still respond to
* NMIs.
*/
cpumask_copy(&cpus_stop_mask, cpu_online_mask);
cpumask_clear_cpu(cpu, &cpus_stop_mask);
if (!cpumask_empty(&cpus_stop_mask)) {
apic_send_IPI_allbutself(REBOOT_VECTOR);
/*
* Don't wait longer than a second for IPI completion. The
* wait request is not checked here because that would
* prevent an NMI shutdown attempt in case that not all
* CPUs reach shutdown state.
*/
timeout = USEC_PER_SEC;
while (!cpumask_empty(&cpus_stop_mask) && timeout--)
udelay(1);
}
/* if the REBOOT_VECTOR didn't work, try with the NMI */
if (!cpumask_empty(&cpus_stop_mask)) {
/*
* If NMI IPI is enabled, try to register the stop handler
* and send the IPI. In any case try to wait for the other
* CPUs to stop.
*/
if (!smp_no_nmi_ipi && !register_stop_handler()) {
pr_emerg("Shutting down cpus with NMI\n");
for_each_cpu(cpu, &cpus_stop_mask)
apic->send_IPI(cpu, NMI_VECTOR);
}
/*
* Don't wait longer than 10 ms if the caller didn't
* request it. If wait is true, the machine hangs here if
* one or more CPUs do not reach shutdown state.
*/
timeout = USEC_PER_MSEC * 10;
while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
udelay(1);
}
local_irq_save(flags);
disable_local_APIC();
mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
local_irq_restore(flags);
/*
* Ensure that the cpus_stop_mask cache lines are invalidated on
* the other CPUs. See comment vs. SME in stop_this_cpu().
*/
cpumask_clear(&cpus_stop_mask);
}
/*
* Reschedule call back. KVM uses this interrupt to force a cpu out of
* guest mode.
*/
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
{
ack_APIC_irq();
trace_reschedule_entry(RESCHEDULE_VECTOR);
inc_irq_stat(irq_resched_count);
scheduler_ipi();
trace_reschedule_exit(RESCHEDULE_VECTOR);
}
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
{
ack_APIC_irq();
trace_call_function_entry(CALL_FUNCTION_VECTOR);
inc_irq_stat(irq_call_count);
generic_smp_call_function_interrupt();
trace_call_function_exit(CALL_FUNCTION_VECTOR);
}
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
{
ack_APIC_irq();
trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
inc_irq_stat(irq_call_count);
generic_smp_call_function_single_interrupt();
trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
}
static int __init nonmi_ipi_setup(char *str)
{
smp_no_nmi_ipi = true;
return 1;
}
__setup("nonmi_ipi", nonmi_ipi_setup);
struct smp_ops smp_ops = {
.smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
.smp_prepare_cpus = native_smp_prepare_cpus,
.smp_cpus_done = native_smp_cpus_done,
.stop_other_cpus = native_stop_other_cpus,
#if defined(CONFIG_KEXEC_CORE)
.crash_stop_other_cpus = kdump_nmi_shootdown_cpus,
#endif
.smp_send_reschedule = native_smp_send_reschedule,
.cpu_up = native_cpu_up,
.cpu_die = native_cpu_die,
.cpu_disable = native_cpu_disable,
.play_dead = native_play_dead,
.send_call_func_ipi = native_send_call_func_ipi,
.send_call_func_single_ipi = native_send_call_func_single_ipi,
};
EXPORT_SYMBOL_GPL(smp_ops);