linuxdebug/drivers/clk/bcm/clk-raspberrypi.c

490 lines
12 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Raspberry Pi driver for firmware controlled clocks
*
* Even though clk-bcm2835 provides an interface to the hardware registers for
* the system clocks we've had to factor out 'pllb' as the firmware 'owns' it.
* We're not allowed to change it directly as we might race with the
* over-temperature and under-voltage protections provided by the firmware.
*
* Copyright (C) 2019 Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
*/
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <soc/bcm2835/raspberrypi-firmware.h>
enum rpi_firmware_clk_id {
RPI_FIRMWARE_EMMC_CLK_ID = 1,
RPI_FIRMWARE_UART_CLK_ID,
RPI_FIRMWARE_ARM_CLK_ID,
RPI_FIRMWARE_CORE_CLK_ID,
RPI_FIRMWARE_V3D_CLK_ID,
RPI_FIRMWARE_H264_CLK_ID,
RPI_FIRMWARE_ISP_CLK_ID,
RPI_FIRMWARE_SDRAM_CLK_ID,
RPI_FIRMWARE_PIXEL_CLK_ID,
RPI_FIRMWARE_PWM_CLK_ID,
RPI_FIRMWARE_HEVC_CLK_ID,
RPI_FIRMWARE_EMMC2_CLK_ID,
RPI_FIRMWARE_M2MC_CLK_ID,
RPI_FIRMWARE_PIXEL_BVB_CLK_ID,
RPI_FIRMWARE_VEC_CLK_ID,
RPI_FIRMWARE_NUM_CLK_ID,
};
static char *rpi_firmware_clk_names[] = {
[RPI_FIRMWARE_EMMC_CLK_ID] = "emmc",
[RPI_FIRMWARE_UART_CLK_ID] = "uart",
[RPI_FIRMWARE_ARM_CLK_ID] = "arm",
[RPI_FIRMWARE_CORE_CLK_ID] = "core",
[RPI_FIRMWARE_V3D_CLK_ID] = "v3d",
[RPI_FIRMWARE_H264_CLK_ID] = "h264",
[RPI_FIRMWARE_ISP_CLK_ID] = "isp",
[RPI_FIRMWARE_SDRAM_CLK_ID] = "sdram",
[RPI_FIRMWARE_PIXEL_CLK_ID] = "pixel",
[RPI_FIRMWARE_PWM_CLK_ID] = "pwm",
[RPI_FIRMWARE_HEVC_CLK_ID] = "hevc",
[RPI_FIRMWARE_EMMC2_CLK_ID] = "emmc2",
[RPI_FIRMWARE_M2MC_CLK_ID] = "m2mc",
[RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = "pixel-bvb",
[RPI_FIRMWARE_VEC_CLK_ID] = "vec",
};
#define RPI_FIRMWARE_STATE_ENABLE_BIT BIT(0)
#define RPI_FIRMWARE_STATE_WAIT_BIT BIT(1)
struct raspberrypi_clk_variant;
struct raspberrypi_clk {
struct device *dev;
struct rpi_firmware *firmware;
struct platform_device *cpufreq;
};
struct raspberrypi_clk_data {
struct clk_hw hw;
unsigned int id;
struct raspberrypi_clk_variant *variant;
struct raspberrypi_clk *rpi;
};
struct raspberrypi_clk_variant {
bool export;
char *clkdev;
unsigned long min_rate;
bool minimize;
};
static struct raspberrypi_clk_variant
raspberrypi_clk_variants[RPI_FIRMWARE_NUM_CLK_ID] = {
[RPI_FIRMWARE_ARM_CLK_ID] = {
.export = true,
.clkdev = "cpu0",
},
[RPI_FIRMWARE_CORE_CLK_ID] = {
.export = true,
/*
* The clock is shared between the HVS and the CSI
* controllers, on the BCM2711 and will change depending
* on the pixels composited on the HVS and the capture
* resolution on Unicam.
*
* Since the rate can get quite large, and we need to
* coordinate between both driver instances, let's
* always use the minimum the drivers will let us.
*/
.minimize = true,
},
[RPI_FIRMWARE_M2MC_CLK_ID] = {
.export = true,
/*
* If we boot without any cable connected to any of the
* HDMI connector, the firmware will skip the HSM
* initialization and leave it with a rate of 0,
* resulting in a bus lockup when we're accessing the
* registers even if it's enabled.
*
* Let's put a sensible default so that we don't end up
* in this situation.
*/
.min_rate = 120000000,
/*
* The clock is shared between the two HDMI controllers
* on the BCM2711 and will change depending on the
* resolution output on each. Since the rate can get
* quite large, and we need to coordinate between both
* driver instances, let's always use the minimum the
* drivers will let us.
*/
.minimize = true,
},
[RPI_FIRMWARE_V3D_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_PIXEL_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_HEVC_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_VEC_CLK_ID] = {
.export = true,
},
};
/*
* Structure of the message passed to Raspberry Pi's firmware in order to
* change clock rates. The 'disable_turbo' option is only available to the ARM
* clock (pllb) which we enable by default as turbo mode will alter multiple
* clocks at once.
*
* Even though we're able to access the clock registers directly we're bound to
* use the firmware interface as the firmware ultimately takes care of
* mitigating overheating/undervoltage situations and we would be changing
* frequencies behind his back.
*
* For more information on the firmware interface check:
* https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
*/
struct raspberrypi_firmware_prop {
__le32 id;
__le32 val;
__le32 disable_turbo;
} __packed;
static int raspberrypi_clock_property(struct rpi_firmware *firmware,
const struct raspberrypi_clk_data *data,
u32 tag, u32 *val)
{
struct raspberrypi_firmware_prop msg = {
.id = cpu_to_le32(data->id),
.val = cpu_to_le32(*val),
.disable_turbo = cpu_to_le32(1),
};
int ret;
ret = rpi_firmware_property(firmware, tag, &msg, sizeof(msg));
if (ret)
return ret;
*val = le32_to_cpu(msg.val);
return 0;
}
static int raspberrypi_fw_is_prepared(struct clk_hw *hw)
{
struct raspberrypi_clk_data *data =
container_of(hw, struct raspberrypi_clk_data, hw);
struct raspberrypi_clk *rpi = data->rpi;
u32 val = 0;
int ret;
ret = raspberrypi_clock_property(rpi->firmware, data,
RPI_FIRMWARE_GET_CLOCK_STATE, &val);
if (ret)
return 0;
return !!(val & RPI_FIRMWARE_STATE_ENABLE_BIT);
}
static unsigned long raspberrypi_fw_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct raspberrypi_clk_data *data =
container_of(hw, struct raspberrypi_clk_data, hw);
struct raspberrypi_clk *rpi = data->rpi;
u32 val = 0;
int ret;
ret = raspberrypi_clock_property(rpi->firmware, data,
RPI_FIRMWARE_GET_CLOCK_RATE, &val);
if (ret)
return 0;
return val;
}
static int raspberrypi_fw_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct raspberrypi_clk_data *data =
container_of(hw, struct raspberrypi_clk_data, hw);
struct raspberrypi_clk *rpi = data->rpi;
u32 _rate = rate;
int ret;
ret = raspberrypi_clock_property(rpi->firmware, data,
RPI_FIRMWARE_SET_CLOCK_RATE, &_rate);
if (ret)
dev_err_ratelimited(rpi->dev, "Failed to change %s frequency: %d\n",
clk_hw_get_name(hw), ret);
return ret;
}
static int raspberrypi_fw_dumb_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct raspberrypi_clk_data *data =
container_of(hw, struct raspberrypi_clk_data, hw);
struct raspberrypi_clk_variant *variant = data->variant;
/*
* The firmware will do the rounding but that isn't part of
* the interface with the firmware, so we just do our best
* here.
*/
req->rate = clamp(req->rate, req->min_rate, req->max_rate);
/*
* We want to aggressively reduce the clock rate here, so let's
* just ignore the requested rate and return the bare minimum
* rate we can get away with.
*/
if (variant->minimize && req->min_rate > 0)
req->rate = req->min_rate;
return 0;
}
static const struct clk_ops raspberrypi_firmware_clk_ops = {
.is_prepared = raspberrypi_fw_is_prepared,
.recalc_rate = raspberrypi_fw_get_rate,
.determine_rate = raspberrypi_fw_dumb_determine_rate,
.set_rate = raspberrypi_fw_set_rate,
};
static struct clk_hw *raspberrypi_clk_register(struct raspberrypi_clk *rpi,
unsigned int parent,
unsigned int id,
struct raspberrypi_clk_variant *variant)
{
struct raspberrypi_clk_data *data;
struct clk_init_data init = {};
u32 min_rate, max_rate;
int ret;
data = devm_kzalloc(rpi->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
data->rpi = rpi;
data->id = id;
data->variant = variant;
init.name = devm_kasprintf(rpi->dev, GFP_KERNEL,
"fw-clk-%s",
rpi_firmware_clk_names[id]);
init.ops = &raspberrypi_firmware_clk_ops;
init.flags = CLK_GET_RATE_NOCACHE;
data->hw.init = &init;
ret = raspberrypi_clock_property(rpi->firmware, data,
RPI_FIRMWARE_GET_MIN_CLOCK_RATE,
&min_rate);
if (ret) {
dev_err(rpi->dev, "Failed to get clock %d min freq: %d\n",
id, ret);
return ERR_PTR(ret);
}
ret = raspberrypi_clock_property(rpi->firmware, data,
RPI_FIRMWARE_GET_MAX_CLOCK_RATE,
&max_rate);
if (ret) {
dev_err(rpi->dev, "Failed to get clock %d max freq: %d\n",
id, ret);
return ERR_PTR(ret);
}
ret = devm_clk_hw_register(rpi->dev, &data->hw);
if (ret)
return ERR_PTR(ret);
clk_hw_set_rate_range(&data->hw, min_rate, max_rate);
if (variant->clkdev) {
ret = devm_clk_hw_register_clkdev(rpi->dev, &data->hw,
NULL, variant->clkdev);
if (ret) {
dev_err(rpi->dev, "Failed to initialize clkdev\n");
return ERR_PTR(ret);
}
}
if (variant->min_rate) {
unsigned long rate;
clk_hw_set_rate_range(&data->hw, variant->min_rate, max_rate);
rate = raspberrypi_fw_get_rate(&data->hw, 0);
if (rate < variant->min_rate) {
ret = raspberrypi_fw_set_rate(&data->hw, variant->min_rate, 0);
if (ret)
return ERR_PTR(ret);
}
}
return &data->hw;
}
struct rpi_firmware_get_clocks_response {
u32 parent;
u32 id;
};
static int raspberrypi_discover_clocks(struct raspberrypi_clk *rpi,
struct clk_hw_onecell_data *data)
{
struct rpi_firmware_get_clocks_response *clks;
int ret;
/*
* The firmware doesn't guarantee that the last element of
* RPI_FIRMWARE_GET_CLOCKS is zeroed. So allocate an additional
* zero element as sentinel.
*/
clks = devm_kcalloc(rpi->dev,
RPI_FIRMWARE_NUM_CLK_ID + 1, sizeof(*clks),
GFP_KERNEL);
if (!clks)
return -ENOMEM;
ret = rpi_firmware_property(rpi->firmware, RPI_FIRMWARE_GET_CLOCKS,
clks,
sizeof(*clks) * RPI_FIRMWARE_NUM_CLK_ID);
if (ret)
return ret;
while (clks->id) {
struct raspberrypi_clk_variant *variant;
if (clks->id >= RPI_FIRMWARE_NUM_CLK_ID) {
dev_err(rpi->dev, "Unknown clock id: %u (max: %u)\n",
clks->id, RPI_FIRMWARE_NUM_CLK_ID - 1);
return -EINVAL;
}
variant = &raspberrypi_clk_variants[clks->id];
if (variant->export) {
struct clk_hw *hw;
hw = raspberrypi_clk_register(rpi, clks->parent,
clks->id, variant);
if (IS_ERR(hw))
return PTR_ERR(hw);
data->hws[clks->id] = hw;
data->num = clks->id + 1;
}
clks++;
}
return 0;
}
static int raspberrypi_clk_probe(struct platform_device *pdev)
{
struct clk_hw_onecell_data *clk_data;
struct device_node *firmware_node;
struct device *dev = &pdev->dev;
struct rpi_firmware *firmware;
struct raspberrypi_clk *rpi;
int ret;
/*
* We can be probed either through the an old-fashioned
* platform device registration or through a DT node that is a
* child of the firmware node. Handle both cases.
*/
if (dev->of_node)
firmware_node = of_get_parent(dev->of_node);
else
firmware_node = of_find_compatible_node(NULL, NULL,
"raspberrypi,bcm2835-firmware");
if (!firmware_node) {
dev_err(dev, "Missing firmware node\n");
return -ENOENT;
}
firmware = devm_rpi_firmware_get(&pdev->dev, firmware_node);
of_node_put(firmware_node);
if (!firmware)
return -EPROBE_DEFER;
rpi = devm_kzalloc(dev, sizeof(*rpi), GFP_KERNEL);
if (!rpi)
return -ENOMEM;
rpi->dev = dev;
rpi->firmware = firmware;
platform_set_drvdata(pdev, rpi);
clk_data = devm_kzalloc(dev, struct_size(clk_data, hws,
RPI_FIRMWARE_NUM_CLK_ID),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
ret = raspberrypi_discover_clocks(rpi, clk_data);
if (ret)
return ret;
ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
clk_data);
if (ret)
return ret;
rpi->cpufreq = platform_device_register_data(dev, "raspberrypi-cpufreq",
-1, NULL, 0);
return 0;
}
static int raspberrypi_clk_remove(struct platform_device *pdev)
{
struct raspberrypi_clk *rpi = platform_get_drvdata(pdev);
platform_device_unregister(rpi->cpufreq);
return 0;
}
static const struct of_device_id raspberrypi_clk_match[] = {
{ .compatible = "raspberrypi,firmware-clocks" },
{ },
};
MODULE_DEVICE_TABLE(of, raspberrypi_clk_match);
static struct platform_driver raspberrypi_clk_driver = {
.driver = {
.name = "raspberrypi-clk",
.of_match_table = raspberrypi_clk_match,
},
.probe = raspberrypi_clk_probe,
.remove = raspberrypi_clk_remove,
};
module_platform_driver(raspberrypi_clk_driver);
MODULE_AUTHOR("Nicolas Saenz Julienne <nsaenzjulienne@suse.de>");
MODULE_DESCRIPTION("Raspberry Pi firmware clock driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:raspberrypi-clk");