linuxdebug/drivers/gpu/drm/amd/amdgpu/amdgpu_atomfirmware.c

921 lines
28 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "atom.h"
#include "atombios.h"
#include "soc15_hw_ip.h"
union firmware_info {
struct atom_firmware_info_v3_1 v31;
struct atom_firmware_info_v3_2 v32;
struct atom_firmware_info_v3_3 v33;
struct atom_firmware_info_v3_4 v34;
};
/*
* Helper function to query firmware capability
*
* @adev: amdgpu_device pointer
*
* Return firmware_capability in firmwareinfo table on success or 0 if not
*/
uint32_t amdgpu_atomfirmware_query_firmware_capability(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union firmware_info *firmware_info;
u8 frev, crev;
u32 fw_cap = 0;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context,
index, &size, &frev, &crev, &data_offset)) {
/* support firmware_info 3.1 + */
if ((frev == 3 && crev >=1) || (frev > 3)) {
firmware_info = (union firmware_info *)
(mode_info->atom_context->bios + data_offset);
fw_cap = le32_to_cpu(firmware_info->v31.firmware_capability);
}
}
return fw_cap;
}
/*
* Helper function to query gpu virtualizaiton capability
*
* @adev: amdgpu_device pointer
*
* Return true if gpu virtualization is supported or false if not
*/
bool amdgpu_atomfirmware_gpu_virtualization_supported(struct amdgpu_device *adev)
{
u32 fw_cap;
fw_cap = adev->mode_info.firmware_flags;
return (fw_cap & ATOM_FIRMWARE_CAP_GPU_VIRTUALIZATION) ? true : false;
}
void amdgpu_atomfirmware_scratch_regs_init(struct amdgpu_device *adev)
{
int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
uint16_t data_offset;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL,
NULL, NULL, &data_offset)) {
struct atom_firmware_info_v3_1 *firmware_info =
(struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios +
data_offset);
adev->bios_scratch_reg_offset =
le32_to_cpu(firmware_info->bios_scratch_reg_startaddr);
}
}
static int amdgpu_atomfirmware_allocate_fb_v2_1(struct amdgpu_device *adev,
struct vram_usagebyfirmware_v2_1 *fw_usage, int *usage_bytes)
{
uint32_t start_addr, fw_size, drv_size;
start_addr = le32_to_cpu(fw_usage->start_address_in_kb);
fw_size = le16_to_cpu(fw_usage->used_by_firmware_in_kb);
drv_size = le16_to_cpu(fw_usage->used_by_driver_in_kb);
DRM_DEBUG("atom firmware v2_1 requested %08x %dkb fw %dkb drv\n",
start_addr,
fw_size,
drv_size);
if ((start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) ==
(uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION <<
ATOM_VRAM_OPERATION_FLAGS_SHIFT)) {
/* Firmware request VRAM reservation for SR-IOV */
adev->mman.fw_vram_usage_start_offset = (start_addr &
(~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10;
adev->mman.fw_vram_usage_size = fw_size << 10;
/* Use the default scratch size */
*usage_bytes = 0;
} else {
*usage_bytes = drv_size << 10;
}
return 0;
}
static int amdgpu_atomfirmware_allocate_fb_v2_2(struct amdgpu_device *adev,
struct vram_usagebyfirmware_v2_2 *fw_usage, int *usage_bytes)
{
uint32_t fw_start_addr, fw_size, drv_start_addr, drv_size;
fw_start_addr = le32_to_cpu(fw_usage->fw_region_start_address_in_kb);
fw_size = le16_to_cpu(fw_usage->used_by_firmware_in_kb);
drv_start_addr = le32_to_cpu(fw_usage->driver_region0_start_address_in_kb);
drv_size = le32_to_cpu(fw_usage->used_by_driver_region0_in_kb);
DRM_DEBUG("atom requested fw start at %08x %dkb and drv start at %08x %dkb\n",
fw_start_addr,
fw_size,
drv_start_addr,
drv_size);
if ((fw_start_addr & (ATOM_VRAM_BLOCK_NEEDS_NO_RESERVATION << 30)) == 0) {
/* Firmware request VRAM reservation for SR-IOV */
adev->mman.fw_vram_usage_start_offset = (fw_start_addr &
(~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10;
adev->mman.fw_vram_usage_size = fw_size << 10;
}
if ((drv_start_addr & (ATOM_VRAM_BLOCK_NEEDS_NO_RESERVATION << 30)) == 0) {
/* driver request VRAM reservation for SR-IOV */
adev->mman.drv_vram_usage_start_offset = (drv_start_addr &
(~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10;
adev->mman.drv_vram_usage_size = drv_size << 10;
}
*usage_bytes = 0;
return 0;
}
int amdgpu_atomfirmware_allocate_fb_scratch(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
vram_usagebyfirmware);
struct vram_usagebyfirmware_v2_1 *fw_usage_v2_1;
struct vram_usagebyfirmware_v2_2 *fw_usage_v2_2;
uint16_t data_offset;
uint8_t frev, crev;
int usage_bytes = 0;
if (amdgpu_atom_parse_data_header(ctx, index, NULL, &frev, &crev, &data_offset)) {
if (frev == 2 && crev == 1) {
fw_usage_v2_1 =
(struct vram_usagebyfirmware_v2_1 *)(ctx->bios + data_offset);
amdgpu_atomfirmware_allocate_fb_v2_1(adev,
fw_usage_v2_1,
&usage_bytes);
} else if (frev >= 2 && crev >= 2) {
fw_usage_v2_2 =
(struct vram_usagebyfirmware_v2_2 *)(ctx->bios + data_offset);
amdgpu_atomfirmware_allocate_fb_v2_2(adev,
fw_usage_v2_2,
&usage_bytes);
}
}
ctx->scratch_size_bytes = 0;
if (usage_bytes == 0)
usage_bytes = 20 * 1024;
/* allocate some scratch memory */
ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL);
if (!ctx->scratch)
return -ENOMEM;
ctx->scratch_size_bytes = usage_bytes;
return 0;
}
union igp_info {
struct atom_integrated_system_info_v1_11 v11;
struct atom_integrated_system_info_v1_12 v12;
struct atom_integrated_system_info_v2_1 v21;
};
union umc_info {
struct atom_umc_info_v3_1 v31;
struct atom_umc_info_v3_2 v32;
struct atom_umc_info_v3_3 v33;
};
union vram_info {
struct atom_vram_info_header_v2_3 v23;
struct atom_vram_info_header_v2_4 v24;
struct atom_vram_info_header_v2_5 v25;
struct atom_vram_info_header_v2_6 v26;
struct atom_vram_info_header_v3_0 v30;
};
union vram_module {
struct atom_vram_module_v9 v9;
struct atom_vram_module_v10 v10;
struct atom_vram_module_v11 v11;
struct atom_vram_module_v3_0 v30;
};
static int convert_atom_mem_type_to_vram_type(struct amdgpu_device *adev,
int atom_mem_type)
{
int vram_type;
if (adev->flags & AMD_IS_APU) {
switch (atom_mem_type) {
case Ddr2MemType:
case LpDdr2MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR2;
break;
case Ddr3MemType:
case LpDdr3MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR3;
break;
case Ddr4MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR4;
break;
case LpDdr4MemType:
vram_type = AMDGPU_VRAM_TYPE_LPDDR4;
break;
case Ddr5MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR5;
break;
case LpDdr5MemType:
vram_type = AMDGPU_VRAM_TYPE_LPDDR5;
break;
default:
vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
break;
}
} else {
switch (atom_mem_type) {
case ATOM_DGPU_VRAM_TYPE_GDDR5:
vram_type = AMDGPU_VRAM_TYPE_GDDR5;
break;
case ATOM_DGPU_VRAM_TYPE_HBM2:
case ATOM_DGPU_VRAM_TYPE_HBM2E:
vram_type = AMDGPU_VRAM_TYPE_HBM;
break;
case ATOM_DGPU_VRAM_TYPE_GDDR6:
vram_type = AMDGPU_VRAM_TYPE_GDDR6;
break;
default:
vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
break;
}
}
return vram_type;
}
int
amdgpu_atomfirmware_get_vram_info(struct amdgpu_device *adev,
int *vram_width, int *vram_type,
int *vram_vendor)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index, i = 0;
u16 data_offset, size;
union igp_info *igp_info;
union vram_info *vram_info;
union vram_module *vram_module;
u8 frev, crev;
u8 mem_type;
u8 mem_vendor;
u32 mem_channel_number;
u32 mem_channel_width;
u32 module_id;
if (adev->flags & AMD_IS_APU)
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
integratedsysteminfo);
else
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
vram_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context,
index, &size,
&frev, &crev, &data_offset)) {
if (adev->flags & AMD_IS_APU) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (frev) {
case 1:
switch (crev) {
case 11:
case 12:
mem_channel_number = igp_info->v11.umachannelnumber;
if (!mem_channel_number)
mem_channel_number = 1;
/* channel width is 64 */
if (vram_width)
*vram_width = mem_channel_number * 64;
mem_type = igp_info->v11.memorytype;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
break;
default:
return -EINVAL;
}
break;
case 2:
switch (crev) {
case 1:
case 2:
mem_channel_number = igp_info->v21.umachannelnumber;
if (!mem_channel_number)
mem_channel_number = 1;
/* channel width is 64 */
if (vram_width)
*vram_width = mem_channel_number * 64;
mem_type = igp_info->v21.memorytype;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
} else {
vram_info = (union vram_info *)
(mode_info->atom_context->bios + data_offset);
module_id = (RREG32(adev->bios_scratch_reg_offset + 4) & 0x00ff0000) >> 16;
if (frev == 3) {
switch (crev) {
/* v30 */
case 0:
vram_module = (union vram_module *)vram_info->v30.vram_module;
mem_vendor = (vram_module->v30.dram_vendor_id) & 0xF;
if (vram_vendor)
*vram_vendor = mem_vendor;
mem_type = vram_info->v30.memory_type;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
mem_channel_number = vram_info->v30.channel_num;
mem_channel_width = vram_info->v30.channel_width;
if (vram_width)
*vram_width = mem_channel_number * (1 << mem_channel_width);
break;
default:
return -EINVAL;
}
} else if (frev == 2) {
switch (crev) {
/* v23 */
case 3:
if (module_id > vram_info->v23.vram_module_num)
module_id = 0;
vram_module = (union vram_module *)vram_info->v23.vram_module;
while (i < module_id) {
vram_module = (union vram_module *)
((u8 *)vram_module + vram_module->v9.vram_module_size);
i++;
}
mem_type = vram_module->v9.memory_type;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
mem_channel_number = vram_module->v9.channel_num;
mem_channel_width = vram_module->v9.channel_width;
if (vram_width)
*vram_width = mem_channel_number * (1 << mem_channel_width);
mem_vendor = (vram_module->v9.vender_rev_id) & 0xF;
if (vram_vendor)
*vram_vendor = mem_vendor;
break;
/* v24 */
case 4:
if (module_id > vram_info->v24.vram_module_num)
module_id = 0;
vram_module = (union vram_module *)vram_info->v24.vram_module;
while (i < module_id) {
vram_module = (union vram_module *)
((u8 *)vram_module + vram_module->v10.vram_module_size);
i++;
}
mem_type = vram_module->v10.memory_type;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
mem_channel_number = vram_module->v10.channel_num;
mem_channel_width = vram_module->v10.channel_width;
if (vram_width)
*vram_width = mem_channel_number * (1 << mem_channel_width);
mem_vendor = (vram_module->v10.vender_rev_id) & 0xF;
if (vram_vendor)
*vram_vendor = mem_vendor;
break;
/* v25 */
case 5:
if (module_id > vram_info->v25.vram_module_num)
module_id = 0;
vram_module = (union vram_module *)vram_info->v25.vram_module;
while (i < module_id) {
vram_module = (union vram_module *)
((u8 *)vram_module + vram_module->v11.vram_module_size);
i++;
}
mem_type = vram_module->v11.memory_type;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
mem_channel_number = vram_module->v11.channel_num;
mem_channel_width = vram_module->v11.channel_width;
if (vram_width)
*vram_width = mem_channel_number * (1 << mem_channel_width);
mem_vendor = (vram_module->v11.vender_rev_id) & 0xF;
if (vram_vendor)
*vram_vendor = mem_vendor;
break;
/* v26 */
case 6:
if (module_id > vram_info->v26.vram_module_num)
module_id = 0;
vram_module = (union vram_module *)vram_info->v26.vram_module;
while (i < module_id) {
vram_module = (union vram_module *)
((u8 *)vram_module + vram_module->v9.vram_module_size);
i++;
}
mem_type = vram_module->v9.memory_type;
if (vram_type)
*vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type);
mem_channel_number = vram_module->v9.channel_num;
mem_channel_width = vram_module->v9.channel_width;
if (vram_width)
*vram_width = mem_channel_number * (1 << mem_channel_width);
mem_vendor = (vram_module->v9.vender_rev_id) & 0xF;
if (vram_vendor)
*vram_vendor = mem_vendor;
break;
default:
return -EINVAL;
}
} else {
/* invalid frev */
return -EINVAL;
}
}
}
return 0;
}
/*
* Return true if vbios enabled ecc by default, if umc info table is available
* or false if ecc is not enabled or umc info table is not available
*/
bool amdgpu_atomfirmware_mem_ecc_supported(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union umc_info *umc_info;
u8 frev, crev;
bool ecc_default_enabled = false;
u8 umc_config;
u32 umc_config1;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
umc_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context,
index, &size, &frev, &crev, &data_offset)) {
if (frev == 3) {
umc_info = (union umc_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 1:
umc_config = le32_to_cpu(umc_info->v31.umc_config);
ecc_default_enabled =
(umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false;
break;
case 2:
umc_config = le32_to_cpu(umc_info->v32.umc_config);
ecc_default_enabled =
(umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false;
break;
case 3:
umc_config = le32_to_cpu(umc_info->v33.umc_config);
umc_config1 = le32_to_cpu(umc_info->v33.umc_config1);
ecc_default_enabled =
((umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ||
(umc_config1 & UMC_CONFIG1__ENABLE_ECC_CAPABLE)) ? true : false;
break;
default:
/* unsupported crev */
return false;
}
}
}
return ecc_default_enabled;
}
/*
* Helper function to query sram ecc capablity
*
* @adev: amdgpu_device pointer
*
* Return true if vbios supports sram ecc or false if not
*/
bool amdgpu_atomfirmware_sram_ecc_supported(struct amdgpu_device *adev)
{
u32 fw_cap;
fw_cap = adev->mode_info.firmware_flags;
return (fw_cap & ATOM_FIRMWARE_CAP_SRAM_ECC) ? true : false;
}
/*
* Helper function to query dynamic boot config capability
*
* @adev: amdgpu_device pointer
*
* Return true if vbios supports dynamic boot config or false if not
*/
bool amdgpu_atomfirmware_dynamic_boot_config_supported(struct amdgpu_device *adev)
{
u32 fw_cap;
fw_cap = adev->mode_info.firmware_flags;
return (fw_cap & ATOM_FIRMWARE_CAP_DYNAMIC_BOOT_CFG_ENABLE) ? true : false;
}
/**
* amdgpu_atomfirmware_ras_rom_addr -- Get the RAS EEPROM addr from VBIOS
* @adev: amdgpu_device pointer
* @i2c_address: pointer to u8; if not NULL, will contain
* the RAS EEPROM address if the function returns true
*
* Return true if VBIOS supports RAS EEPROM address reporting,
* else return false. If true and @i2c_address is not NULL,
* will contain the RAS ROM address.
*/
bool amdgpu_atomfirmware_ras_rom_addr(struct amdgpu_device *adev,
u8 *i2c_address)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union firmware_info *firmware_info;
u8 frev, crev;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context,
index, &size, &frev, &crev,
&data_offset)) {
/* support firmware_info 3.4 + */
if ((frev == 3 && crev >=4) || (frev > 3)) {
firmware_info = (union firmware_info *)
(mode_info->atom_context->bios + data_offset);
/* The ras_rom_i2c_slave_addr should ideally
* be a 19-bit EEPROM address, which would be
* used as is by the driver; see top of
* amdgpu_eeprom.c.
*
* When this is the case, 0 is of course a
* valid RAS EEPROM address, in which case,
* we'll drop the first "if (firm...)" and only
* leave the check for the pointer.
*
* The reason this works right now is because
* ras_rom_i2c_slave_addr contains the EEPROM
* device type qualifier 1010b in the top 4
* bits.
*/
if (firmware_info->v34.ras_rom_i2c_slave_addr) {
if (i2c_address)
*i2c_address = firmware_info->v34.ras_rom_i2c_slave_addr;
return true;
}
}
}
return false;
}
union smu_info {
struct atom_smu_info_v3_1 v31;
struct atom_smu_info_v4_0 v40;
};
union gfx_info {
struct atom_gfx_info_v2_2 v22;
struct atom_gfx_info_v2_4 v24;
struct atom_gfx_info_v2_7 v27;
struct atom_gfx_info_v3_0 v30;
};
int amdgpu_atomfirmware_get_clock_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct amdgpu_pll *spll = &adev->clock.spll;
struct amdgpu_pll *mpll = &adev->clock.mpll;
uint8_t frev, crev;
uint16_t data_offset;
int ret = -EINVAL, index;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union firmware_info *firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
adev->clock.default_sclk =
le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz);
adev->clock.default_mclk =
le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz);
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
ret = 0;
}
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smu_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union smu_info *smu_info =
(union smu_info *)(mode_info->atom_context->bios +
data_offset);
/* system clock */
if (frev == 3)
spll->reference_freq = le32_to_cpu(smu_info->v31.core_refclk_10khz);
else if (frev == 4)
spll->reference_freq = le32_to_cpu(smu_info->v40.core_refclk_10khz);
spll->reference_div = 0;
spll->min_post_div = 1;
spll->max_post_div = 1;
spll->min_ref_div = 2;
spll->max_ref_div = 0xff;
spll->min_feedback_div = 4;
spll->max_feedback_div = 0xff;
spll->best_vco = 0;
ret = 0;
}
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
umc_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union umc_info *umc_info =
(union umc_info *)(mode_info->atom_context->bios +
data_offset);
/* memory clock */
mpll->reference_freq = le32_to_cpu(umc_info->v31.mem_refclk_10khz);
mpll->reference_div = 0;
mpll->min_post_div = 1;
mpll->max_post_div = 1;
mpll->min_ref_div = 2;
mpll->max_ref_div = 0xff;
mpll->min_feedback_div = 4;
mpll->max_feedback_div = 0xff;
mpll->best_vco = 0;
ret = 0;
}
/* if asic is Navi+, the rlc reference clock is used for system clock
* from vbios gfx_info table */
if (adev->asic_type >= CHIP_NAVI10) {
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
gfx_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union gfx_info *gfx_info = (union gfx_info *)
(mode_info->atom_context->bios + data_offset);
if ((frev == 3) ||
(frev == 2 && crev == 6)) {
spll->reference_freq = le32_to_cpu(gfx_info->v30.golden_tsc_count_lower_refclk);
ret = 0;
} else if ((frev == 2) &&
(crev >= 2) &&
(crev != 6)) {
spll->reference_freq = le32_to_cpu(gfx_info->v22.rlc_gpu_timer_refclk);
ret = 0;
} else {
BUG();
}
}
}
return ret;
}
int amdgpu_atomfirmware_get_gfx_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
uint8_t frev, crev;
uint16_t data_offset;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
gfx_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union gfx_info *gfx_info = (union gfx_info *)
(mode_info->atom_context->bios + data_offset);
if (frev == 2) {
switch (crev) {
case 4:
adev->gfx.config.max_shader_engines = gfx_info->v24.max_shader_engines;
adev->gfx.config.max_cu_per_sh = gfx_info->v24.max_cu_per_sh;
adev->gfx.config.max_sh_per_se = gfx_info->v24.max_sh_per_se;
adev->gfx.config.max_backends_per_se = gfx_info->v24.max_backends_per_se;
adev->gfx.config.max_texture_channel_caches = gfx_info->v24.max_texture_channel_caches;
adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v24.gc_num_gprs);
adev->gfx.config.max_gs_threads = gfx_info->v24.gc_num_max_gs_thds;
adev->gfx.config.gs_vgt_table_depth = gfx_info->v24.gc_gs_table_depth;
adev->gfx.config.gs_prim_buffer_depth =
le16_to_cpu(gfx_info->v24.gc_gsprim_buff_depth);
adev->gfx.config.double_offchip_lds_buf =
gfx_info->v24.gc_double_offchip_lds_buffer;
adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v24.gc_wave_size);
adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v24.gc_max_waves_per_simd);
adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v24.gc_max_scratch_slots_per_cu;
adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v24.gc_lds_size);
return 0;
case 7:
adev->gfx.config.max_shader_engines = gfx_info->v27.max_shader_engines;
adev->gfx.config.max_cu_per_sh = gfx_info->v27.max_cu_per_sh;
adev->gfx.config.max_sh_per_se = gfx_info->v27.max_sh_per_se;
adev->gfx.config.max_backends_per_se = gfx_info->v27.max_backends_per_se;
adev->gfx.config.max_texture_channel_caches = gfx_info->v27.max_texture_channel_caches;
adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v27.gc_num_gprs);
adev->gfx.config.max_gs_threads = gfx_info->v27.gc_num_max_gs_thds;
adev->gfx.config.gs_vgt_table_depth = gfx_info->v27.gc_gs_table_depth;
adev->gfx.config.gs_prim_buffer_depth = le16_to_cpu(gfx_info->v27.gc_gsprim_buff_depth);
adev->gfx.config.double_offchip_lds_buf = gfx_info->v27.gc_double_offchip_lds_buffer;
adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v27.gc_wave_size);
adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v27.gc_max_waves_per_simd);
adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v27.gc_max_scratch_slots_per_cu;
adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v27.gc_lds_size);
return 0;
default:
return -EINVAL;
}
} else if (frev == 3) {
switch (crev) {
case 0:
adev->gfx.config.max_shader_engines = gfx_info->v30.max_shader_engines;
adev->gfx.config.max_cu_per_sh = gfx_info->v30.max_cu_per_sh;
adev->gfx.config.max_sh_per_se = gfx_info->v30.max_sh_per_se;
adev->gfx.config.max_backends_per_se = gfx_info->v30.max_backends_per_se;
adev->gfx.config.max_texture_channel_caches = gfx_info->v30.max_texture_channel_caches;
return 0;
default:
return -EINVAL;
}
} else {
return -EINVAL;
}
}
return -EINVAL;
}
/*
* Helper function to query two stage mem training capability
*
* @adev: amdgpu_device pointer
*
* Return true if two stage mem training is supported or false if not
*/
bool amdgpu_atomfirmware_mem_training_supported(struct amdgpu_device *adev)
{
u32 fw_cap;
fw_cap = adev->mode_info.firmware_flags;
return (fw_cap & ATOM_FIRMWARE_CAP_ENABLE_2STAGE_BIST_TRAINING) ? true : false;
}
int amdgpu_atomfirmware_get_fw_reserved_fb_size(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
union firmware_info *firmware_info;
int index;
u16 data_offset, size;
u8 frev, crev;
int fw_reserved_fb_size;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (!amdgpu_atom_parse_data_header(ctx, index, &size,
&frev, &crev, &data_offset))
/* fail to parse data_header */
return 0;
firmware_info = (union firmware_info *)(ctx->bios + data_offset);
if (frev !=3)
return -EINVAL;
switch (crev) {
case 4:
fw_reserved_fb_size =
(firmware_info->v34.fw_reserved_size_in_kb << 10);
break;
default:
fw_reserved_fb_size = 0;
break;
}
return fw_reserved_fb_size;
}
/*
* Helper function to execute asic_init table
*
* @adev: amdgpu_device pointer
* @fb_reset: flag to indicate whether fb is reset or not
*
* Return 0 if succeed, otherwise failed
*/
int amdgpu_atomfirmware_asic_init(struct amdgpu_device *adev, bool fb_reset)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct atom_context *ctx;
uint8_t frev, crev;
uint16_t data_offset;
uint32_t bootup_sclk_in10khz, bootup_mclk_in10khz;
struct asic_init_ps_allocation_v2_1 asic_init_ps_v2_1;
int index;
if (!mode_info)
return -EINVAL;
ctx = mode_info->atom_context;
if (!ctx)
return -EINVAL;
/* query bootup sclk/mclk from firmware_info table */
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(ctx, index, NULL,
&frev, &crev, &data_offset)) {
union firmware_info *firmware_info =
(union firmware_info *)(ctx->bios +
data_offset);
bootup_sclk_in10khz =
le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz);
bootup_mclk_in10khz =
le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz);
} else {
return -EINVAL;
}
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
asic_init);
if (amdgpu_atom_parse_cmd_header(mode_info->atom_context, index, &frev, &crev)) {
if (frev == 2 && crev >= 1) {
memset(&asic_init_ps_v2_1, 0, sizeof(asic_init_ps_v2_1));
asic_init_ps_v2_1.param.engineparam.sclkfreqin10khz = bootup_sclk_in10khz;
asic_init_ps_v2_1.param.memparam.mclkfreqin10khz = bootup_mclk_in10khz;
asic_init_ps_v2_1.param.engineparam.engineflag = b3NORMAL_ENGINE_INIT;
if (!fb_reset)
asic_init_ps_v2_1.param.memparam.memflag = b3DRAM_SELF_REFRESH_EXIT;
else
asic_init_ps_v2_1.param.memparam.memflag = 0;
} else {
return -EINVAL;
}
} else {
return -EINVAL;
}
return amdgpu_atom_execute_table(ctx, ATOM_CMD_INIT, (uint32_t *)&asic_init_ps_v2_1);
}