linuxdebug/drivers/gpu/drm/amd/amdgpu/amdgpu_device.c

6196 lines
167 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/power_supply.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/console.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/pci.h>
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>
#include <linux/pci-p2pdma.h>
#include <linux/apple-gmux.h>
#include <drm/drm_aperture.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/amdgpu_drm.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
#include <linux/efi.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_i2c.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "amdgpu_atomfirmware.h"
#include "amd_pcie.h"
#ifdef CONFIG_DRM_AMDGPU_SI
#include "si.h"
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
#include "cik.h"
#endif
#include "vi.h"
#include "soc15.h"
#include "nv.h"
#include "bif/bif_4_1_d.h"
#include <linux/firmware.h>
#include "amdgpu_vf_error.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_pm.h"
#include "amdgpu_xgmi.h"
#include "amdgpu_ras.h"
#include "amdgpu_pmu.h"
#include "amdgpu_fru_eeprom.h"
#include "amdgpu_reset.h"
#include <linux/suspend.h>
#include <drm/task_barrier.h>
#include <linux/pm_runtime.h>
#include <drm/drm_drv.h>
#if IS_ENABLED(CONFIG_X86)
#include <asm/intel-family.h>
#endif
MODULE_FIRMWARE("amdgpu/vega10_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/vega12_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/raven_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/picasso_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/raven2_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/arcturus_gpu_info.bin");
MODULE_FIRMWARE("amdgpu/navi12_gpu_info.bin");
#define AMDGPU_RESUME_MS 2000
#define AMDGPU_MAX_RETRY_LIMIT 2
#define AMDGPU_RETRY_SRIOV_RESET(r) ((r) == -EBUSY || (r) == -ETIMEDOUT || (r) == -EINVAL)
static const struct drm_driver amdgpu_kms_driver;
const char *amdgpu_asic_name[] = {
"TAHITI",
"PITCAIRN",
"VERDE",
"OLAND",
"HAINAN",
"BONAIRE",
"KAVERI",
"KABINI",
"HAWAII",
"MULLINS",
"TOPAZ",
"TONGA",
"FIJI",
"CARRIZO",
"STONEY",
"POLARIS10",
"POLARIS11",
"POLARIS12",
"VEGAM",
"VEGA10",
"VEGA12",
"VEGA20",
"RAVEN",
"ARCTURUS",
"RENOIR",
"ALDEBARAN",
"NAVI10",
"CYAN_SKILLFISH",
"NAVI14",
"NAVI12",
"SIENNA_CICHLID",
"NAVY_FLOUNDER",
"VANGOGH",
"DIMGREY_CAVEFISH",
"BEIGE_GOBY",
"YELLOW_CARP",
"IP DISCOVERY",
"LAST",
};
/**
* DOC: pcie_replay_count
*
* The amdgpu driver provides a sysfs API for reporting the total number
* of PCIe replays (NAKs)
* The file pcie_replay_count is used for this and returns the total
* number of replays as a sum of the NAKs generated and NAKs received
*/
static ssize_t amdgpu_device_get_pcie_replay_count(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t cnt = amdgpu_asic_get_pcie_replay_count(adev);
return sysfs_emit(buf, "%llu\n", cnt);
}
static DEVICE_ATTR(pcie_replay_count, S_IRUGO,
amdgpu_device_get_pcie_replay_count, NULL);
static void amdgpu_device_get_pcie_info(struct amdgpu_device *adev);
/**
* DOC: product_name
*
* The amdgpu driver provides a sysfs API for reporting the product name
* for the device
* The file serial_number is used for this and returns the product name
* as returned from the FRU.
* NOTE: This is only available for certain server cards
*/
static ssize_t amdgpu_device_get_product_name(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s\n", adev->product_name);
}
static DEVICE_ATTR(product_name, S_IRUGO,
amdgpu_device_get_product_name, NULL);
/**
* DOC: product_number
*
* The amdgpu driver provides a sysfs API for reporting the part number
* for the device
* The file serial_number is used for this and returns the part number
* as returned from the FRU.
* NOTE: This is only available for certain server cards
*/
static ssize_t amdgpu_device_get_product_number(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s\n", adev->product_number);
}
static DEVICE_ATTR(product_number, S_IRUGO,
amdgpu_device_get_product_number, NULL);
/**
* DOC: serial_number
*
* The amdgpu driver provides a sysfs API for reporting the serial number
* for the device
* The file serial_number is used for this and returns the serial number
* as returned from the FRU.
* NOTE: This is only available for certain server cards
*/
static ssize_t amdgpu_device_get_serial_number(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s\n", adev->serial);
}
static DEVICE_ATTR(serial_number, S_IRUGO,
amdgpu_device_get_serial_number, NULL);
/**
* amdgpu_device_supports_px - Is the device a dGPU with ATPX power control
*
* @dev: drm_device pointer
*
* Returns true if the device is a dGPU with ATPX power control,
* otherwise return false.
*/
bool amdgpu_device_supports_px(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
if ((adev->flags & AMD_IS_PX) && !amdgpu_is_atpx_hybrid())
return true;
return false;
}
/**
* amdgpu_device_supports_boco - Is the device a dGPU with ACPI power resources
*
* @dev: drm_device pointer
*
* Returns true if the device is a dGPU with ACPI power control,
* otherwise return false.
*/
bool amdgpu_device_supports_boco(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
if (adev->has_pr3 ||
((adev->flags & AMD_IS_PX) && amdgpu_is_atpx_hybrid()))
return true;
return false;
}
/**
* amdgpu_device_supports_baco - Does the device support BACO
*
* @dev: drm_device pointer
*
* Returns true if the device supporte BACO,
* otherwise return false.
*/
bool amdgpu_device_supports_baco(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
return amdgpu_asic_supports_baco(adev);
}
/**
* amdgpu_device_supports_smart_shift - Is the device dGPU with
* smart shift support
*
* @dev: drm_device pointer
*
* Returns true if the device is a dGPU with Smart Shift support,
* otherwise returns false.
*/
bool amdgpu_device_supports_smart_shift(struct drm_device *dev)
{
return (amdgpu_device_supports_boco(dev) &&
amdgpu_acpi_is_power_shift_control_supported());
}
/*
* VRAM access helper functions
*/
/**
* amdgpu_device_mm_access - access vram by MM_INDEX/MM_DATA
*
* @adev: amdgpu_device pointer
* @pos: offset of the buffer in vram
* @buf: virtual address of the buffer in system memory
* @size: read/write size, sizeof(@buf) must > @size
* @write: true - write to vram, otherwise - read from vram
*/
void amdgpu_device_mm_access(struct amdgpu_device *adev, loff_t pos,
void *buf, size_t size, bool write)
{
unsigned long flags;
uint32_t hi = ~0, tmp = 0;
uint32_t *data = buf;
uint64_t last;
int idx;
if (!drm_dev_enter(adev_to_drm(adev), &idx))
return;
BUG_ON(!IS_ALIGNED(pos, 4) || !IS_ALIGNED(size, 4));
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
for (last = pos + size; pos < last; pos += 4) {
tmp = pos >> 31;
WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)pos) | 0x80000000);
if (tmp != hi) {
WREG32_NO_KIQ(mmMM_INDEX_HI, tmp);
hi = tmp;
}
if (write)
WREG32_NO_KIQ(mmMM_DATA, *data++);
else
*data++ = RREG32_NO_KIQ(mmMM_DATA);
}
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
drm_dev_exit(idx);
}
/**
* amdgpu_device_aper_access - access vram by vram aperature
*
* @adev: amdgpu_device pointer
* @pos: offset of the buffer in vram
* @buf: virtual address of the buffer in system memory
* @size: read/write size, sizeof(@buf) must > @size
* @write: true - write to vram, otherwise - read from vram
*
* The return value means how many bytes have been transferred.
*/
size_t amdgpu_device_aper_access(struct amdgpu_device *adev, loff_t pos,
void *buf, size_t size, bool write)
{
#ifdef CONFIG_64BIT
void __iomem *addr;
size_t count = 0;
uint64_t last;
if (!adev->mman.aper_base_kaddr)
return 0;
last = min(pos + size, adev->gmc.visible_vram_size);
if (last > pos) {
addr = adev->mman.aper_base_kaddr + pos;
count = last - pos;
if (write) {
memcpy_toio(addr, buf, count);
mb();
amdgpu_device_flush_hdp(adev, NULL);
} else {
amdgpu_device_invalidate_hdp(adev, NULL);
mb();
memcpy_fromio(buf, addr, count);
}
}
return count;
#else
return 0;
#endif
}
/**
* amdgpu_device_vram_access - read/write a buffer in vram
*
* @adev: amdgpu_device pointer
* @pos: offset of the buffer in vram
* @buf: virtual address of the buffer in system memory
* @size: read/write size, sizeof(@buf) must > @size
* @write: true - write to vram, otherwise - read from vram
*/
void amdgpu_device_vram_access(struct amdgpu_device *adev, loff_t pos,
void *buf, size_t size, bool write)
{
size_t count;
/* try to using vram apreature to access vram first */
count = amdgpu_device_aper_access(adev, pos, buf, size, write);
size -= count;
if (size) {
/* using MM to access rest vram */
pos += count;
buf += count;
amdgpu_device_mm_access(adev, pos, buf, size, write);
}
}
/*
* register access helper functions.
*/
/* Check if hw access should be skipped because of hotplug or device error */
bool amdgpu_device_skip_hw_access(struct amdgpu_device *adev)
{
if (adev->no_hw_access)
return true;
#ifdef CONFIG_LOCKDEP
/*
* This is a bit complicated to understand, so worth a comment. What we assert
* here is that the GPU reset is not running on another thread in parallel.
*
* For this we trylock the read side of the reset semaphore, if that succeeds
* we know that the reset is not running in paralell.
*
* If the trylock fails we assert that we are either already holding the read
* side of the lock or are the reset thread itself and hold the write side of
* the lock.
*/
if (in_task()) {
if (down_read_trylock(&adev->reset_domain->sem))
up_read(&adev->reset_domain->sem);
else
lockdep_assert_held(&adev->reset_domain->sem);
}
#endif
return false;
}
/**
* amdgpu_device_rreg - read a memory mapped IO or indirect register
*
* @adev: amdgpu_device pointer
* @reg: dword aligned register offset
* @acc_flags: access flags which require special behavior
*
* Returns the 32 bit value from the offset specified.
*/
uint32_t amdgpu_device_rreg(struct amdgpu_device *adev,
uint32_t reg, uint32_t acc_flags)
{
uint32_t ret;
if (amdgpu_device_skip_hw_access(adev))
return 0;
if ((reg * 4) < adev->rmmio_size) {
if (!(acc_flags & AMDGPU_REGS_NO_KIQ) &&
amdgpu_sriov_runtime(adev) &&
down_read_trylock(&adev->reset_domain->sem)) {
ret = amdgpu_kiq_rreg(adev, reg);
up_read(&adev->reset_domain->sem);
} else {
ret = readl(((void __iomem *)adev->rmmio) + (reg * 4));
}
} else {
ret = adev->pcie_rreg(adev, reg * 4);
}
trace_amdgpu_device_rreg(adev->pdev->device, reg, ret);
return ret;
}
/*
* MMIO register read with bytes helper functions
* @offset:bytes offset from MMIO start
*
*/
/**
* amdgpu_mm_rreg8 - read a memory mapped IO register
*
* @adev: amdgpu_device pointer
* @offset: byte aligned register offset
*
* Returns the 8 bit value from the offset specified.
*/
uint8_t amdgpu_mm_rreg8(struct amdgpu_device *adev, uint32_t offset)
{
if (amdgpu_device_skip_hw_access(adev))
return 0;
if (offset < adev->rmmio_size)
return (readb(adev->rmmio + offset));
BUG();
}
/*
* MMIO register write with bytes helper functions
* @offset:bytes offset from MMIO start
* @value: the value want to be written to the register
*
*/
/**
* amdgpu_mm_wreg8 - read a memory mapped IO register
*
* @adev: amdgpu_device pointer
* @offset: byte aligned register offset
* @value: 8 bit value to write
*
* Writes the value specified to the offset specified.
*/
void amdgpu_mm_wreg8(struct amdgpu_device *adev, uint32_t offset, uint8_t value)
{
if (amdgpu_device_skip_hw_access(adev))
return;
if (offset < adev->rmmio_size)
writeb(value, adev->rmmio + offset);
else
BUG();
}
/**
* amdgpu_device_wreg - write to a memory mapped IO or indirect register
*
* @adev: amdgpu_device pointer
* @reg: dword aligned register offset
* @v: 32 bit value to write to the register
* @acc_flags: access flags which require special behavior
*
* Writes the value specified to the offset specified.
*/
void amdgpu_device_wreg(struct amdgpu_device *adev,
uint32_t reg, uint32_t v,
uint32_t acc_flags)
{
if (amdgpu_device_skip_hw_access(adev))
return;
if ((reg * 4) < adev->rmmio_size) {
if (!(acc_flags & AMDGPU_REGS_NO_KIQ) &&
amdgpu_sriov_runtime(adev) &&
down_read_trylock(&adev->reset_domain->sem)) {
amdgpu_kiq_wreg(adev, reg, v);
up_read(&adev->reset_domain->sem);
} else {
writel(v, ((void __iomem *)adev->rmmio) + (reg * 4));
}
} else {
adev->pcie_wreg(adev, reg * 4, v);
}
trace_amdgpu_device_wreg(adev->pdev->device, reg, v);
}
/**
* amdgpu_mm_wreg_mmio_rlc - write register either with direct/indirect mmio or with RLC path if in range
*
* @adev: amdgpu_device pointer
* @reg: mmio/rlc register
* @v: value to write
*
* this function is invoked only for the debugfs register access
*/
void amdgpu_mm_wreg_mmio_rlc(struct amdgpu_device *adev,
uint32_t reg, uint32_t v)
{
if (amdgpu_device_skip_hw_access(adev))
return;
if (amdgpu_sriov_fullaccess(adev) &&
adev->gfx.rlc.funcs &&
adev->gfx.rlc.funcs->is_rlcg_access_range) {
if (adev->gfx.rlc.funcs->is_rlcg_access_range(adev, reg))
return amdgpu_sriov_wreg(adev, reg, v, 0, 0);
} else if ((reg * 4) >= adev->rmmio_size) {
adev->pcie_wreg(adev, reg * 4, v);
} else {
writel(v, ((void __iomem *)adev->rmmio) + (reg * 4));
}
}
/**
* amdgpu_mm_rdoorbell - read a doorbell dword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
*
* Returns the value in the doorbell aperture at the
* requested doorbell index (CIK).
*/
u32 amdgpu_mm_rdoorbell(struct amdgpu_device *adev, u32 index)
{
if (amdgpu_device_skip_hw_access(adev))
return 0;
if (index < adev->doorbell.num_doorbells) {
return readl(adev->doorbell.ptr + index);
} else {
DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index);
return 0;
}
}
/**
* amdgpu_mm_wdoorbell - write a doorbell dword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
* @v: value to write
*
* Writes @v to the doorbell aperture at the
* requested doorbell index (CIK).
*/
void amdgpu_mm_wdoorbell(struct amdgpu_device *adev, u32 index, u32 v)
{
if (amdgpu_device_skip_hw_access(adev))
return;
if (index < adev->doorbell.num_doorbells) {
writel(v, adev->doorbell.ptr + index);
} else {
DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index);
}
}
/**
* amdgpu_mm_rdoorbell64 - read a doorbell Qword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
*
* Returns the value in the doorbell aperture at the
* requested doorbell index (VEGA10+).
*/
u64 amdgpu_mm_rdoorbell64(struct amdgpu_device *adev, u32 index)
{
if (amdgpu_device_skip_hw_access(adev))
return 0;
if (index < adev->doorbell.num_doorbells) {
return atomic64_read((atomic64_t *)(adev->doorbell.ptr + index));
} else {
DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index);
return 0;
}
}
/**
* amdgpu_mm_wdoorbell64 - write a doorbell Qword
*
* @adev: amdgpu_device pointer
* @index: doorbell index
* @v: value to write
*
* Writes @v to the doorbell aperture at the
* requested doorbell index (VEGA10+).
*/
void amdgpu_mm_wdoorbell64(struct amdgpu_device *adev, u32 index, u64 v)
{
if (amdgpu_device_skip_hw_access(adev))
return;
if (index < adev->doorbell.num_doorbells) {
atomic64_set((atomic64_t *)(adev->doorbell.ptr + index), v);
} else {
DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index);
}
}
/**
* amdgpu_device_indirect_rreg - read an indirect register
*
* @adev: amdgpu_device pointer
* @pcie_index: mmio register offset
* @pcie_data: mmio register offset
* @reg_addr: indirect register address to read from
*
* Returns the value of indirect register @reg_addr
*/
u32 amdgpu_device_indirect_rreg(struct amdgpu_device *adev,
u32 pcie_index, u32 pcie_data,
u32 reg_addr)
{
unsigned long flags;
u32 r;
void __iomem *pcie_index_offset;
void __iomem *pcie_data_offset;
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4;
pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4;
writel(reg_addr, pcie_index_offset);
readl(pcie_index_offset);
r = readl(pcie_data_offset);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
return r;
}
/**
* amdgpu_device_indirect_rreg64 - read a 64bits indirect register
*
* @adev: amdgpu_device pointer
* @pcie_index: mmio register offset
* @pcie_data: mmio register offset
* @reg_addr: indirect register address to read from
*
* Returns the value of indirect register @reg_addr
*/
u64 amdgpu_device_indirect_rreg64(struct amdgpu_device *adev,
u32 pcie_index, u32 pcie_data,
u32 reg_addr)
{
unsigned long flags;
u64 r;
void __iomem *pcie_index_offset;
void __iomem *pcie_data_offset;
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4;
pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4;
/* read low 32 bits */
writel(reg_addr, pcie_index_offset);
readl(pcie_index_offset);
r = readl(pcie_data_offset);
/* read high 32 bits */
writel(reg_addr + 4, pcie_index_offset);
readl(pcie_index_offset);
r |= ((u64)readl(pcie_data_offset) << 32);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
return r;
}
/**
* amdgpu_device_indirect_wreg - write an indirect register address
*
* @adev: amdgpu_device pointer
* @pcie_index: mmio register offset
* @pcie_data: mmio register offset
* @reg_addr: indirect register offset
* @reg_data: indirect register data
*
*/
void amdgpu_device_indirect_wreg(struct amdgpu_device *adev,
u32 pcie_index, u32 pcie_data,
u32 reg_addr, u32 reg_data)
{
unsigned long flags;
void __iomem *pcie_index_offset;
void __iomem *pcie_data_offset;
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4;
pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4;
writel(reg_addr, pcie_index_offset);
readl(pcie_index_offset);
writel(reg_data, pcie_data_offset);
readl(pcie_data_offset);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
}
/**
* amdgpu_device_indirect_wreg64 - write a 64bits indirect register address
*
* @adev: amdgpu_device pointer
* @pcie_index: mmio register offset
* @pcie_data: mmio register offset
* @reg_addr: indirect register offset
* @reg_data: indirect register data
*
*/
void amdgpu_device_indirect_wreg64(struct amdgpu_device *adev,
u32 pcie_index, u32 pcie_data,
u32 reg_addr, u64 reg_data)
{
unsigned long flags;
void __iomem *pcie_index_offset;
void __iomem *pcie_data_offset;
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4;
pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4;
/* write low 32 bits */
writel(reg_addr, pcie_index_offset);
readl(pcie_index_offset);
writel((u32)(reg_data & 0xffffffffULL), pcie_data_offset);
readl(pcie_data_offset);
/* write high 32 bits */
writel(reg_addr + 4, pcie_index_offset);
readl(pcie_index_offset);
writel((u32)(reg_data >> 32), pcie_data_offset);
readl(pcie_data_offset);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
}
/**
* amdgpu_invalid_rreg - dummy reg read function
*
* @adev: amdgpu_device pointer
* @reg: offset of register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
* Returns the value in the register.
*/
static uint32_t amdgpu_invalid_rreg(struct amdgpu_device *adev, uint32_t reg)
{
DRM_ERROR("Invalid callback to read register 0x%04X\n", reg);
BUG();
return 0;
}
/**
* amdgpu_invalid_wreg - dummy reg write function
*
* @adev: amdgpu_device pointer
* @reg: offset of register
* @v: value to write to the register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
*/
static void amdgpu_invalid_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
{
DRM_ERROR("Invalid callback to write register 0x%04X with 0x%08X\n",
reg, v);
BUG();
}
/**
* amdgpu_invalid_rreg64 - dummy 64 bit reg read function
*
* @adev: amdgpu_device pointer
* @reg: offset of register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
* Returns the value in the register.
*/
static uint64_t amdgpu_invalid_rreg64(struct amdgpu_device *adev, uint32_t reg)
{
DRM_ERROR("Invalid callback to read 64 bit register 0x%04X\n", reg);
BUG();
return 0;
}
/**
* amdgpu_invalid_wreg64 - dummy reg write function
*
* @adev: amdgpu_device pointer
* @reg: offset of register
* @v: value to write to the register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
*/
static void amdgpu_invalid_wreg64(struct amdgpu_device *adev, uint32_t reg, uint64_t v)
{
DRM_ERROR("Invalid callback to write 64 bit register 0x%04X with 0x%08llX\n",
reg, v);
BUG();
}
/**
* amdgpu_block_invalid_rreg - dummy reg read function
*
* @adev: amdgpu_device pointer
* @block: offset of instance
* @reg: offset of register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
* Returns the value in the register.
*/
static uint32_t amdgpu_block_invalid_rreg(struct amdgpu_device *adev,
uint32_t block, uint32_t reg)
{
DRM_ERROR("Invalid callback to read register 0x%04X in block 0x%04X\n",
reg, block);
BUG();
return 0;
}
/**
* amdgpu_block_invalid_wreg - dummy reg write function
*
* @adev: amdgpu_device pointer
* @block: offset of instance
* @reg: offset of register
* @v: value to write to the register
*
* Dummy register read function. Used for register blocks
* that certain asics don't have (all asics).
*/
static void amdgpu_block_invalid_wreg(struct amdgpu_device *adev,
uint32_t block,
uint32_t reg, uint32_t v)
{
DRM_ERROR("Invalid block callback to write register 0x%04X in block 0x%04X with 0x%08X\n",
reg, block, v);
BUG();
}
/**
* amdgpu_device_asic_init - Wrapper for atom asic_init
*
* @adev: amdgpu_device pointer
*
* Does any asic specific work and then calls atom asic init.
*/
static int amdgpu_device_asic_init(struct amdgpu_device *adev)
{
amdgpu_asic_pre_asic_init(adev);
if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(11, 0, 0))
return amdgpu_atomfirmware_asic_init(adev, true);
else
return amdgpu_atom_asic_init(adev->mode_info.atom_context);
}
/**
* amdgpu_device_vram_scratch_init - allocate the VRAM scratch page
*
* @adev: amdgpu_device pointer
*
* Allocates a scratch page of VRAM for use by various things in the
* driver.
*/
static int amdgpu_device_vram_scratch_init(struct amdgpu_device *adev)
{
return amdgpu_bo_create_kernel(adev, AMDGPU_GPU_PAGE_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM,
&adev->vram_scratch.robj,
&adev->vram_scratch.gpu_addr,
(void **)&adev->vram_scratch.ptr);
}
/**
* amdgpu_device_vram_scratch_fini - Free the VRAM scratch page
*
* @adev: amdgpu_device pointer
*
* Frees the VRAM scratch page.
*/
static void amdgpu_device_vram_scratch_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->vram_scratch.robj, NULL, NULL);
}
/**
* amdgpu_device_program_register_sequence - program an array of registers.
*
* @adev: amdgpu_device pointer
* @registers: pointer to the register array
* @array_size: size of the register array
*
* Programs an array or registers with and and or masks.
* This is a helper for setting golden registers.
*/
void amdgpu_device_program_register_sequence(struct amdgpu_device *adev,
const u32 *registers,
const u32 array_size)
{
u32 tmp, reg, and_mask, or_mask;
int i;
if (array_size % 3)
return;
for (i = 0; i < array_size; i +=3) {
reg = registers[i + 0];
and_mask = registers[i + 1];
or_mask = registers[i + 2];
if (and_mask == 0xffffffff) {
tmp = or_mask;
} else {
tmp = RREG32(reg);
tmp &= ~and_mask;
if (adev->family >= AMDGPU_FAMILY_AI)
tmp |= (or_mask & and_mask);
else
tmp |= or_mask;
}
WREG32(reg, tmp);
}
}
/**
* amdgpu_device_pci_config_reset - reset the GPU
*
* @adev: amdgpu_device pointer
*
* Resets the GPU using the pci config reset sequence.
* Only applicable to asics prior to vega10.
*/
void amdgpu_device_pci_config_reset(struct amdgpu_device *adev)
{
pci_write_config_dword(adev->pdev, 0x7c, AMDGPU_ASIC_RESET_DATA);
}
/**
* amdgpu_device_pci_reset - reset the GPU using generic PCI means
*
* @adev: amdgpu_device pointer
*
* Resets the GPU using generic pci reset interfaces (FLR, SBR, etc.).
*/
int amdgpu_device_pci_reset(struct amdgpu_device *adev)
{
return pci_reset_function(adev->pdev);
}
/*
* GPU doorbell aperture helpers function.
*/
/**
* amdgpu_device_doorbell_init - Init doorbell driver information.
*
* @adev: amdgpu_device pointer
*
* Init doorbell driver information (CIK)
* Returns 0 on success, error on failure.
*/
static int amdgpu_device_doorbell_init(struct amdgpu_device *adev)
{
/* No doorbell on SI hardware generation */
if (adev->asic_type < CHIP_BONAIRE) {
adev->doorbell.base = 0;
adev->doorbell.size = 0;
adev->doorbell.num_doorbells = 0;
adev->doorbell.ptr = NULL;
return 0;
}
if (pci_resource_flags(adev->pdev, 2) & IORESOURCE_UNSET)
return -EINVAL;
amdgpu_asic_init_doorbell_index(adev);
/* doorbell bar mapping */
adev->doorbell.base = pci_resource_start(adev->pdev, 2);
adev->doorbell.size = pci_resource_len(adev->pdev, 2);
if (adev->enable_mes) {
adev->doorbell.num_doorbells =
adev->doorbell.size / sizeof(u32);
} else {
adev->doorbell.num_doorbells =
min_t(u32, adev->doorbell.size / sizeof(u32),
adev->doorbell_index.max_assignment+1);
if (adev->doorbell.num_doorbells == 0)
return -EINVAL;
/* For Vega, reserve and map two pages on doorbell BAR since SDMA
* paging queue doorbell use the second page. The
* AMDGPU_DOORBELL64_MAX_ASSIGNMENT definition assumes all the
* doorbells are in the first page. So with paging queue enabled,
* the max num_doorbells should + 1 page (0x400 in dword)
*/
if (adev->asic_type >= CHIP_VEGA10)
adev->doorbell.num_doorbells += 0x400;
}
adev->doorbell.ptr = ioremap(adev->doorbell.base,
adev->doorbell.num_doorbells *
sizeof(u32));
if (adev->doorbell.ptr == NULL)
return -ENOMEM;
return 0;
}
/**
* amdgpu_device_doorbell_fini - Tear down doorbell driver information.
*
* @adev: amdgpu_device pointer
*
* Tear down doorbell driver information (CIK)
*/
static void amdgpu_device_doorbell_fini(struct amdgpu_device *adev)
{
iounmap(adev->doorbell.ptr);
adev->doorbell.ptr = NULL;
}
/*
* amdgpu_device_wb_*()
* Writeback is the method by which the GPU updates special pages in memory
* with the status of certain GPU events (fences, ring pointers,etc.).
*/
/**
* amdgpu_device_wb_fini - Disable Writeback and free memory
*
* @adev: amdgpu_device pointer
*
* Disables Writeback and frees the Writeback memory (all asics).
* Used at driver shutdown.
*/
static void amdgpu_device_wb_fini(struct amdgpu_device *adev)
{
if (adev->wb.wb_obj) {
amdgpu_bo_free_kernel(&adev->wb.wb_obj,
&adev->wb.gpu_addr,
(void **)&adev->wb.wb);
adev->wb.wb_obj = NULL;
}
}
/**
* amdgpu_device_wb_init - Init Writeback driver info and allocate memory
*
* @adev: amdgpu_device pointer
*
* Initializes writeback and allocates writeback memory (all asics).
* Used at driver startup.
* Returns 0 on success or an -error on failure.
*/
static int amdgpu_device_wb_init(struct amdgpu_device *adev)
{
int r;
if (adev->wb.wb_obj == NULL) {
/* AMDGPU_MAX_WB * sizeof(uint32_t) * 8 = AMDGPU_MAX_WB 256bit slots */
r = amdgpu_bo_create_kernel(adev, AMDGPU_MAX_WB * sizeof(uint32_t) * 8,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->wb.wb_obj, &adev->wb.gpu_addr,
(void **)&adev->wb.wb);
if (r) {
dev_warn(adev->dev, "(%d) create WB bo failed\n", r);
return r;
}
adev->wb.num_wb = AMDGPU_MAX_WB;
memset(&adev->wb.used, 0, sizeof(adev->wb.used));
/* clear wb memory */
memset((char *)adev->wb.wb, 0, AMDGPU_MAX_WB * sizeof(uint32_t) * 8);
}
return 0;
}
/**
* amdgpu_device_wb_get - Allocate a wb entry
*
* @adev: amdgpu_device pointer
* @wb: wb index
*
* Allocate a wb slot for use by the driver (all asics).
* Returns 0 on success or -EINVAL on failure.
*/
int amdgpu_device_wb_get(struct amdgpu_device *adev, u32 *wb)
{
unsigned long offset = find_first_zero_bit(adev->wb.used, adev->wb.num_wb);
if (offset < adev->wb.num_wb) {
__set_bit(offset, adev->wb.used);
*wb = offset << 3; /* convert to dw offset */
return 0;
} else {
return -EINVAL;
}
}
/**
* amdgpu_device_wb_free - Free a wb entry
*
* @adev: amdgpu_device pointer
* @wb: wb index
*
* Free a wb slot allocated for use by the driver (all asics)
*/
void amdgpu_device_wb_free(struct amdgpu_device *adev, u32 wb)
{
wb >>= 3;
if (wb < adev->wb.num_wb)
__clear_bit(wb, adev->wb.used);
}
/**
* amdgpu_device_resize_fb_bar - try to resize FB BAR
*
* @adev: amdgpu_device pointer
*
* Try to resize FB BAR to make all VRAM CPU accessible. We try very hard not
* to fail, but if any of the BARs is not accessible after the size we abort
* driver loading by returning -ENODEV.
*/
int amdgpu_device_resize_fb_bar(struct amdgpu_device *adev)
{
int rbar_size = pci_rebar_bytes_to_size(adev->gmc.real_vram_size);
struct pci_bus *root;
struct resource *res;
unsigned i;
u16 cmd;
int r;
if (!IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT))
return 0;
/* Bypass for VF */
if (amdgpu_sriov_vf(adev))
return 0;
/* skip if the bios has already enabled large BAR */
if (adev->gmc.real_vram_size &&
(pci_resource_len(adev->pdev, 0) >= adev->gmc.real_vram_size))
return 0;
/* Check if the root BUS has 64bit memory resources */
root = adev->pdev->bus;
while (root->parent)
root = root->parent;
pci_bus_for_each_resource(root, res, i) {
if (res && res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
res->start > 0x100000000ull)
break;
}
/* Trying to resize is pointless without a root hub window above 4GB */
if (!res)
return 0;
/* Limit the BAR size to what is available */
rbar_size = min(fls(pci_rebar_get_possible_sizes(adev->pdev, 0)) - 1,
rbar_size);
/* Disable memory decoding while we change the BAR addresses and size */
pci_read_config_word(adev->pdev, PCI_COMMAND, &cmd);
pci_write_config_word(adev->pdev, PCI_COMMAND,
cmd & ~PCI_COMMAND_MEMORY);
/* Free the VRAM and doorbell BAR, we most likely need to move both. */
amdgpu_device_doorbell_fini(adev);
if (adev->asic_type >= CHIP_BONAIRE)
pci_release_resource(adev->pdev, 2);
pci_release_resource(adev->pdev, 0);
r = pci_resize_resource(adev->pdev, 0, rbar_size);
if (r == -ENOSPC)
DRM_INFO("Not enough PCI address space for a large BAR.");
else if (r && r != -ENOTSUPP)
DRM_ERROR("Problem resizing BAR0 (%d).", r);
pci_assign_unassigned_bus_resources(adev->pdev->bus);
/* When the doorbell or fb BAR isn't available we have no chance of
* using the device.
*/
r = amdgpu_device_doorbell_init(adev);
if (r || (pci_resource_flags(adev->pdev, 0) & IORESOURCE_UNSET))
return -ENODEV;
pci_write_config_word(adev->pdev, PCI_COMMAND, cmd);
return 0;
}
/*
* GPU helpers function.
*/
/**
* amdgpu_device_need_post - check if the hw need post or not
*
* @adev: amdgpu_device pointer
*
* Check if the asic has been initialized (all asics) at driver startup
* or post is needed if hw reset is performed.
* Returns true if need or false if not.
*/
bool amdgpu_device_need_post(struct amdgpu_device *adev)
{
uint32_t reg;
if (amdgpu_sriov_vf(adev))
return false;
if (amdgpu_passthrough(adev)) {
/* for FIJI: In whole GPU pass-through virtualization case, after VM reboot
* some old smc fw still need driver do vPost otherwise gpu hang, while
* those smc fw version above 22.15 doesn't have this flaw, so we force
* vpost executed for smc version below 22.15
*/
if (adev->asic_type == CHIP_FIJI) {
int err;
uint32_t fw_ver;
err = request_firmware(&adev->pm.fw, "amdgpu/fiji_smc.bin", adev->dev);
/* force vPost if error occured */
if (err)
return true;
fw_ver = *((uint32_t *)adev->pm.fw->data + 69);
if (fw_ver < 0x00160e00)
return true;
}
}
/* Don't post if we need to reset whole hive on init */
if (adev->gmc.xgmi.pending_reset)
return false;
if (adev->has_hw_reset) {
adev->has_hw_reset = false;
return true;
}
/* bios scratch used on CIK+ */
if (adev->asic_type >= CHIP_BONAIRE)
return amdgpu_atombios_scratch_need_asic_init(adev);
/* check MEM_SIZE for older asics */
reg = amdgpu_asic_get_config_memsize(adev);
if ((reg != 0) && (reg != 0xffffffff))
return false;
return true;
}
/*
* Intel hosts such as Raptor Lake and Sapphire Rapids don't support dynamic
* speed switching. Until we have confirmation from Intel that a specific host
* supports it, it's safer that we keep it disabled for all.
*
* https://edc.intel.com/content/www/us/en/design/products/platforms/details/raptor-lake-s/13th-generation-core-processors-datasheet-volume-1-of-2/005/pci-express-support/
* https://gitlab.freedesktop.org/drm/amd/-/issues/2663
*/
bool amdgpu_device_pcie_dynamic_switching_supported(void)
{
#if IS_ENABLED(CONFIG_X86)
struct cpuinfo_x86 *c = &cpu_data(0);
if (c->x86_vendor == X86_VENDOR_INTEL)
return false;
#endif
return true;
}
/**
* amdgpu_device_should_use_aspm - check if the device should program ASPM
*
* @adev: amdgpu_device pointer
*
* Confirm whether the module parameter and pcie bridge agree that ASPM should
* be set for this device.
*
* Returns true if it should be used or false if not.
*/
bool amdgpu_device_should_use_aspm(struct amdgpu_device *adev)
{
switch (amdgpu_aspm) {
case -1:
break;
case 0:
return false;
case 1:
return true;
default:
return false;
}
return pcie_aspm_enabled(adev->pdev);
}
bool amdgpu_device_aspm_support_quirk(void)
{
#if IS_ENABLED(CONFIG_X86)
struct cpuinfo_x86 *c = &cpu_data(0);
return !(c->x86 == 6 && c->x86_model == INTEL_FAM6_ALDERLAKE);
#else
return true;
#endif
}
/* if we get transitioned to only one device, take VGA back */
/**
* amdgpu_device_vga_set_decode - enable/disable vga decode
*
* @pdev: PCI device pointer
* @state: enable/disable vga decode
*
* Enable/disable vga decode (all asics).
* Returns VGA resource flags.
*/
static unsigned int amdgpu_device_vga_set_decode(struct pci_dev *pdev,
bool state)
{
struct amdgpu_device *adev = drm_to_adev(pci_get_drvdata(pdev));
amdgpu_asic_set_vga_state(adev, state);
if (state)
return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
else
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
}
/**
* amdgpu_device_check_block_size - validate the vm block size
*
* @adev: amdgpu_device pointer
*
* Validates the vm block size specified via module parameter.
* The vm block size defines number of bits in page table versus page directory,
* a page is 4KB so we have 12 bits offset, minimum 9 bits in the
* page table and the remaining bits are in the page directory.
*/
static void amdgpu_device_check_block_size(struct amdgpu_device *adev)
{
/* defines number of bits in page table versus page directory,
* a page is 4KB so we have 12 bits offset, minimum 9 bits in the
* page table and the remaining bits are in the page directory */
if (amdgpu_vm_block_size == -1)
return;
if (amdgpu_vm_block_size < 9) {
dev_warn(adev->dev, "VM page table size (%d) too small\n",
amdgpu_vm_block_size);
amdgpu_vm_block_size = -1;
}
}
/**
* amdgpu_device_check_vm_size - validate the vm size
*
* @adev: amdgpu_device pointer
*
* Validates the vm size in GB specified via module parameter.
* The VM size is the size of the GPU virtual memory space in GB.
*/
static void amdgpu_device_check_vm_size(struct amdgpu_device *adev)
{
/* no need to check the default value */
if (amdgpu_vm_size == -1)
return;
if (amdgpu_vm_size < 1) {
dev_warn(adev->dev, "VM size (%d) too small, min is 1GB\n",
amdgpu_vm_size);
amdgpu_vm_size = -1;
}
}
static void amdgpu_device_check_smu_prv_buffer_size(struct amdgpu_device *adev)
{
struct sysinfo si;
bool is_os_64 = (sizeof(void *) == 8);
uint64_t total_memory;
uint64_t dram_size_seven_GB = 0x1B8000000;
uint64_t dram_size_three_GB = 0xB8000000;
if (amdgpu_smu_memory_pool_size == 0)
return;
if (!is_os_64) {
DRM_WARN("Not 64-bit OS, feature not supported\n");
goto def_value;
}
si_meminfo(&si);
total_memory = (uint64_t)si.totalram * si.mem_unit;
if ((amdgpu_smu_memory_pool_size == 1) ||
(amdgpu_smu_memory_pool_size == 2)) {
if (total_memory < dram_size_three_GB)
goto def_value1;
} else if ((amdgpu_smu_memory_pool_size == 4) ||
(amdgpu_smu_memory_pool_size == 8)) {
if (total_memory < dram_size_seven_GB)
goto def_value1;
} else {
DRM_WARN("Smu memory pool size not supported\n");
goto def_value;
}
adev->pm.smu_prv_buffer_size = amdgpu_smu_memory_pool_size << 28;
return;
def_value1:
DRM_WARN("No enough system memory\n");
def_value:
adev->pm.smu_prv_buffer_size = 0;
}
static int amdgpu_device_init_apu_flags(struct amdgpu_device *adev)
{
if (!(adev->flags & AMD_IS_APU) ||
adev->asic_type < CHIP_RAVEN)
return 0;
switch (adev->asic_type) {
case CHIP_RAVEN:
if (adev->pdev->device == 0x15dd)
adev->apu_flags |= AMD_APU_IS_RAVEN;
if (adev->pdev->device == 0x15d8)
adev->apu_flags |= AMD_APU_IS_PICASSO;
break;
case CHIP_RENOIR:
if ((adev->pdev->device == 0x1636) ||
(adev->pdev->device == 0x164c))
adev->apu_flags |= AMD_APU_IS_RENOIR;
else
adev->apu_flags |= AMD_APU_IS_GREEN_SARDINE;
break;
case CHIP_VANGOGH:
adev->apu_flags |= AMD_APU_IS_VANGOGH;
break;
case CHIP_YELLOW_CARP:
break;
case CHIP_CYAN_SKILLFISH:
if ((adev->pdev->device == 0x13FE) ||
(adev->pdev->device == 0x143F))
adev->apu_flags |= AMD_APU_IS_CYAN_SKILLFISH2;
break;
default:
break;
}
return 0;
}
/**
* amdgpu_device_check_arguments - validate module params
*
* @adev: amdgpu_device pointer
*
* Validates certain module parameters and updates
* the associated values used by the driver (all asics).
*/
static int amdgpu_device_check_arguments(struct amdgpu_device *adev)
{
if (amdgpu_sched_jobs < 4) {
dev_warn(adev->dev, "sched jobs (%d) must be at least 4\n",
amdgpu_sched_jobs);
amdgpu_sched_jobs = 4;
} else if (!is_power_of_2(amdgpu_sched_jobs)){
dev_warn(adev->dev, "sched jobs (%d) must be a power of 2\n",
amdgpu_sched_jobs);
amdgpu_sched_jobs = roundup_pow_of_two(amdgpu_sched_jobs);
}
if (amdgpu_gart_size != -1 && amdgpu_gart_size < 32) {
/* gart size must be greater or equal to 32M */
dev_warn(adev->dev, "gart size (%d) too small\n",
amdgpu_gart_size);
amdgpu_gart_size = -1;
}
if (amdgpu_gtt_size != -1 && amdgpu_gtt_size < 32) {
/* gtt size must be greater or equal to 32M */
dev_warn(adev->dev, "gtt size (%d) too small\n",
amdgpu_gtt_size);
amdgpu_gtt_size = -1;
}
/* valid range is between 4 and 9 inclusive */
if (amdgpu_vm_fragment_size != -1 &&
(amdgpu_vm_fragment_size > 9 || amdgpu_vm_fragment_size < 4)) {
dev_warn(adev->dev, "valid range is between 4 and 9\n");
amdgpu_vm_fragment_size = -1;
}
if (amdgpu_sched_hw_submission < 2) {
dev_warn(adev->dev, "sched hw submission jobs (%d) must be at least 2\n",
amdgpu_sched_hw_submission);
amdgpu_sched_hw_submission = 2;
} else if (!is_power_of_2(amdgpu_sched_hw_submission)) {
dev_warn(adev->dev, "sched hw submission jobs (%d) must be a power of 2\n",
amdgpu_sched_hw_submission);
amdgpu_sched_hw_submission = roundup_pow_of_two(amdgpu_sched_hw_submission);
}
if (amdgpu_reset_method < -1 || amdgpu_reset_method > 4) {
dev_warn(adev->dev, "invalid option for reset method, reverting to default\n");
amdgpu_reset_method = -1;
}
amdgpu_device_check_smu_prv_buffer_size(adev);
amdgpu_device_check_vm_size(adev);
amdgpu_device_check_block_size(adev);
adev->firmware.load_type = amdgpu_ucode_get_load_type(adev, amdgpu_fw_load_type);
return 0;
}
/**
* amdgpu_switcheroo_set_state - set switcheroo state
*
* @pdev: pci dev pointer
* @state: vga_switcheroo state
*
* Callback for the switcheroo driver. Suspends or resumes the
* the asics before or after it is powered up using ACPI methods.
*/
static void amdgpu_switcheroo_set_state(struct pci_dev *pdev,
enum vga_switcheroo_state state)
{
struct drm_device *dev = pci_get_drvdata(pdev);
int r;
if (amdgpu_device_supports_px(dev) && state == VGA_SWITCHEROO_OFF)
return;
if (state == VGA_SWITCHEROO_ON) {
pr_info("switched on\n");
/* don't suspend or resume card normally */
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
pci_set_power_state(pdev, PCI_D0);
amdgpu_device_load_pci_state(pdev);
r = pci_enable_device(pdev);
if (r)
DRM_WARN("pci_enable_device failed (%d)\n", r);
amdgpu_device_resume(dev, true);
dev->switch_power_state = DRM_SWITCH_POWER_ON;
} else {
pr_info("switched off\n");
dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
amdgpu_device_suspend(dev, true);
amdgpu_device_cache_pci_state(pdev);
/* Shut down the device */
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3cold);
dev->switch_power_state = DRM_SWITCH_POWER_OFF;
}
}
/**
* amdgpu_switcheroo_can_switch - see if switcheroo state can change
*
* @pdev: pci dev pointer
*
* Callback for the switcheroo driver. Check of the switcheroo
* state can be changed.
* Returns true if the state can be changed, false if not.
*/
static bool amdgpu_switcheroo_can_switch(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
/*
* FIXME: open_count is protected by drm_global_mutex but that would lead to
* locking inversion with the driver load path. And the access here is
* completely racy anyway. So don't bother with locking for now.
*/
return atomic_read(&dev->open_count) == 0;
}
static const struct vga_switcheroo_client_ops amdgpu_switcheroo_ops = {
.set_gpu_state = amdgpu_switcheroo_set_state,
.reprobe = NULL,
.can_switch = amdgpu_switcheroo_can_switch,
};
/**
* amdgpu_device_ip_set_clockgating_state - set the CG state
*
* @dev: amdgpu_device pointer
* @block_type: Type of hardware IP (SMU, GFX, UVD, etc.)
* @state: clockgating state (gate or ungate)
*
* Sets the requested clockgating state for all instances of
* the hardware IP specified.
* Returns the error code from the last instance.
*/
int amdgpu_device_ip_set_clockgating_state(void *dev,
enum amd_ip_block_type block_type,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = dev;
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type != block_type)
continue;
if (!adev->ip_blocks[i].version->funcs->set_clockgating_state)
continue;
r = adev->ip_blocks[i].version->funcs->set_clockgating_state(
(void *)adev, state);
if (r)
DRM_ERROR("set_clockgating_state of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
return r;
}
/**
* amdgpu_device_ip_set_powergating_state - set the PG state
*
* @dev: amdgpu_device pointer
* @block_type: Type of hardware IP (SMU, GFX, UVD, etc.)
* @state: powergating state (gate or ungate)
*
* Sets the requested powergating state for all instances of
* the hardware IP specified.
* Returns the error code from the last instance.
*/
int amdgpu_device_ip_set_powergating_state(void *dev,
enum amd_ip_block_type block_type,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = dev;
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type != block_type)
continue;
if (!adev->ip_blocks[i].version->funcs->set_powergating_state)
continue;
r = adev->ip_blocks[i].version->funcs->set_powergating_state(
(void *)adev, state);
if (r)
DRM_ERROR("set_powergating_state of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
return r;
}
/**
* amdgpu_device_ip_get_clockgating_state - get the CG state
*
* @adev: amdgpu_device pointer
* @flags: clockgating feature flags
*
* Walks the list of IPs on the device and updates the clockgating
* flags for each IP.
* Updates @flags with the feature flags for each hardware IP where
* clockgating is enabled.
*/
void amdgpu_device_ip_get_clockgating_state(struct amdgpu_device *adev,
u64 *flags)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->funcs->get_clockgating_state)
adev->ip_blocks[i].version->funcs->get_clockgating_state((void *)adev, flags);
}
}
/**
* amdgpu_device_ip_wait_for_idle - wait for idle
*
* @adev: amdgpu_device pointer
* @block_type: Type of hardware IP (SMU, GFX, UVD, etc.)
*
* Waits for the request hardware IP to be idle.
* Returns 0 for success or a negative error code on failure.
*/
int amdgpu_device_ip_wait_for_idle(struct amdgpu_device *adev,
enum amd_ip_block_type block_type)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == block_type) {
r = adev->ip_blocks[i].version->funcs->wait_for_idle((void *)adev);
if (r)
return r;
break;
}
}
return 0;
}
/**
* amdgpu_device_ip_is_idle - is the hardware IP idle
*
* @adev: amdgpu_device pointer
* @block_type: Type of hardware IP (SMU, GFX, UVD, etc.)
*
* Check if the hardware IP is idle or not.
* Returns true if it the IP is idle, false if not.
*/
bool amdgpu_device_ip_is_idle(struct amdgpu_device *adev,
enum amd_ip_block_type block_type)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->type == block_type)
return adev->ip_blocks[i].version->funcs->is_idle((void *)adev);
}
return true;
}
/**
* amdgpu_device_ip_get_ip_block - get a hw IP pointer
*
* @adev: amdgpu_device pointer
* @type: Type of hardware IP (SMU, GFX, UVD, etc.)
*
* Returns a pointer to the hardware IP block structure
* if it exists for the asic, otherwise NULL.
*/
struct amdgpu_ip_block *
amdgpu_device_ip_get_ip_block(struct amdgpu_device *adev,
enum amd_ip_block_type type)
{
int i;
for (i = 0; i < adev->num_ip_blocks; i++)
if (adev->ip_blocks[i].version->type == type)
return &adev->ip_blocks[i];
return NULL;
}
/**
* amdgpu_device_ip_block_version_cmp
*
* @adev: amdgpu_device pointer
* @type: enum amd_ip_block_type
* @major: major version
* @minor: minor version
*
* return 0 if equal or greater
* return 1 if smaller or the ip_block doesn't exist
*/
int amdgpu_device_ip_block_version_cmp(struct amdgpu_device *adev,
enum amd_ip_block_type type,
u32 major, u32 minor)
{
struct amdgpu_ip_block *ip_block = amdgpu_device_ip_get_ip_block(adev, type);
if (ip_block && ((ip_block->version->major > major) ||
((ip_block->version->major == major) &&
(ip_block->version->minor >= minor))))
return 0;
return 1;
}
/**
* amdgpu_device_ip_block_add
*
* @adev: amdgpu_device pointer
* @ip_block_version: pointer to the IP to add
*
* Adds the IP block driver information to the collection of IPs
* on the asic.
*/
int amdgpu_device_ip_block_add(struct amdgpu_device *adev,
const struct amdgpu_ip_block_version *ip_block_version)
{
if (!ip_block_version)
return -EINVAL;
switch (ip_block_version->type) {
case AMD_IP_BLOCK_TYPE_VCN:
if (adev->harvest_ip_mask & AMD_HARVEST_IP_VCN_MASK)
return 0;
break;
case AMD_IP_BLOCK_TYPE_JPEG:
if (adev->harvest_ip_mask & AMD_HARVEST_IP_JPEG_MASK)
return 0;
break;
default:
break;
}
DRM_INFO("add ip block number %d <%s>\n", adev->num_ip_blocks,
ip_block_version->funcs->name);
adev->ip_blocks[adev->num_ip_blocks++].version = ip_block_version;
return 0;
}
/**
* amdgpu_device_enable_virtual_display - enable virtual display feature
*
* @adev: amdgpu_device pointer
*
* Enabled the virtual display feature if the user has enabled it via
* the module parameter virtual_display. This feature provides a virtual
* display hardware on headless boards or in virtualized environments.
* This function parses and validates the configuration string specified by
* the user and configues the virtual display configuration (number of
* virtual connectors, crtcs, etc.) specified.
*/
static void amdgpu_device_enable_virtual_display(struct amdgpu_device *adev)
{
adev->enable_virtual_display = false;
if (amdgpu_virtual_display) {
const char *pci_address_name = pci_name(adev->pdev);
char *pciaddstr, *pciaddstr_tmp, *pciaddname_tmp, *pciaddname;
pciaddstr = kstrdup(amdgpu_virtual_display, GFP_KERNEL);
pciaddstr_tmp = pciaddstr;
while ((pciaddname_tmp = strsep(&pciaddstr_tmp, ";"))) {
pciaddname = strsep(&pciaddname_tmp, ",");
if (!strcmp("all", pciaddname)
|| !strcmp(pci_address_name, pciaddname)) {
long num_crtc;
int res = -1;
adev->enable_virtual_display = true;
if (pciaddname_tmp)
res = kstrtol(pciaddname_tmp, 10,
&num_crtc);
if (!res) {
if (num_crtc < 1)
num_crtc = 1;
if (num_crtc > 6)
num_crtc = 6;
adev->mode_info.num_crtc = num_crtc;
} else {
adev->mode_info.num_crtc = 1;
}
break;
}
}
DRM_INFO("virtual display string:%s, %s:virtual_display:%d, num_crtc:%d\n",
amdgpu_virtual_display, pci_address_name,
adev->enable_virtual_display, adev->mode_info.num_crtc);
kfree(pciaddstr);
}
}
/**
* amdgpu_device_parse_gpu_info_fw - parse gpu info firmware
*
* @adev: amdgpu_device pointer
*
* Parses the asic configuration parameters specified in the gpu info
* firmware and makes them availale to the driver for use in configuring
* the asic.
* Returns 0 on success, -EINVAL on failure.
*/
static int amdgpu_device_parse_gpu_info_fw(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[40];
int err;
const struct gpu_info_firmware_header_v1_0 *hdr;
adev->firmware.gpu_info_fw = NULL;
if (adev->mman.discovery_bin) {
/*
* FIXME: The bounding box is still needed by Navi12, so
* temporarily read it from gpu_info firmware. Should be dropped
* when DAL no longer needs it.
*/
if (adev->asic_type != CHIP_NAVI12)
return 0;
}
switch (adev->asic_type) {
default:
return 0;
case CHIP_VEGA10:
chip_name = "vega10";
break;
case CHIP_VEGA12:
chip_name = "vega12";
break;
case CHIP_RAVEN:
if (adev->apu_flags & AMD_APU_IS_RAVEN2)
chip_name = "raven2";
else if (adev->apu_flags & AMD_APU_IS_PICASSO)
chip_name = "picasso";
else
chip_name = "raven";
break;
case CHIP_ARCTURUS:
chip_name = "arcturus";
break;
case CHIP_NAVI12:
chip_name = "navi12";
break;
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_gpu_info.bin", chip_name);
err = request_firmware(&adev->firmware.gpu_info_fw, fw_name, adev->dev);
if (err) {
dev_err(adev->dev,
"Failed to load gpu_info firmware \"%s\"\n",
fw_name);
goto out;
}
err = amdgpu_ucode_validate(adev->firmware.gpu_info_fw);
if (err) {
dev_err(adev->dev,
"Failed to validate gpu_info firmware \"%s\"\n",
fw_name);
goto out;
}
hdr = (const struct gpu_info_firmware_header_v1_0 *)adev->firmware.gpu_info_fw->data;
amdgpu_ucode_print_gpu_info_hdr(&hdr->header);
switch (hdr->version_major) {
case 1:
{
const struct gpu_info_firmware_v1_0 *gpu_info_fw =
(const struct gpu_info_firmware_v1_0 *)(adev->firmware.gpu_info_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
/*
* Should be droped when DAL no longer needs it.
*/
if (adev->asic_type == CHIP_NAVI12)
goto parse_soc_bounding_box;
adev->gfx.config.max_shader_engines = le32_to_cpu(gpu_info_fw->gc_num_se);
adev->gfx.config.max_cu_per_sh = le32_to_cpu(gpu_info_fw->gc_num_cu_per_sh);
adev->gfx.config.max_sh_per_se = le32_to_cpu(gpu_info_fw->gc_num_sh_per_se);
adev->gfx.config.max_backends_per_se = le32_to_cpu(gpu_info_fw->gc_num_rb_per_se);
adev->gfx.config.max_texture_channel_caches =
le32_to_cpu(gpu_info_fw->gc_num_tccs);
adev->gfx.config.max_gprs = le32_to_cpu(gpu_info_fw->gc_num_gprs);
adev->gfx.config.max_gs_threads = le32_to_cpu(gpu_info_fw->gc_num_max_gs_thds);
adev->gfx.config.gs_vgt_table_depth = le32_to_cpu(gpu_info_fw->gc_gs_table_depth);
adev->gfx.config.gs_prim_buffer_depth = le32_to_cpu(gpu_info_fw->gc_gsprim_buff_depth);
adev->gfx.config.double_offchip_lds_buf =
le32_to_cpu(gpu_info_fw->gc_double_offchip_lds_buffer);
adev->gfx.cu_info.wave_front_size = le32_to_cpu(gpu_info_fw->gc_wave_size);
adev->gfx.cu_info.max_waves_per_simd =
le32_to_cpu(gpu_info_fw->gc_max_waves_per_simd);
adev->gfx.cu_info.max_scratch_slots_per_cu =
le32_to_cpu(gpu_info_fw->gc_max_scratch_slots_per_cu);
adev->gfx.cu_info.lds_size = le32_to_cpu(gpu_info_fw->gc_lds_size);
if (hdr->version_minor >= 1) {
const struct gpu_info_firmware_v1_1 *gpu_info_fw =
(const struct gpu_info_firmware_v1_1 *)(adev->firmware.gpu_info_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
adev->gfx.config.num_sc_per_sh =
le32_to_cpu(gpu_info_fw->num_sc_per_sh);
adev->gfx.config.num_packer_per_sc =
le32_to_cpu(gpu_info_fw->num_packer_per_sc);
}
parse_soc_bounding_box:
/*
* soc bounding box info is not integrated in disocovery table,
* we always need to parse it from gpu info firmware if needed.
*/
if (hdr->version_minor == 2) {
const struct gpu_info_firmware_v1_2 *gpu_info_fw =
(const struct gpu_info_firmware_v1_2 *)(adev->firmware.gpu_info_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
adev->dm.soc_bounding_box = &gpu_info_fw->soc_bounding_box;
}
break;
}
default:
dev_err(adev->dev,
"Unsupported gpu_info table %d\n", hdr->header.ucode_version);
err = -EINVAL;
goto out;
}
out:
return err;
}
/**
* amdgpu_device_ip_early_init - run early init for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Early initialization pass for hardware IPs. The hardware IPs that make
* up each asic are discovered each IP's early_init callback is run. This
* is the first stage in initializing the asic.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_early_init(struct amdgpu_device *adev)
{
struct drm_device *dev = adev_to_drm(adev);
struct pci_dev *parent;
int i, r;
amdgpu_device_enable_virtual_display(adev);
if (amdgpu_sriov_vf(adev)) {
r = amdgpu_virt_request_full_gpu(adev, true);
if (r)
return r;
}
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_VERDE:
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_OLAND:
case CHIP_HAINAN:
adev->family = AMDGPU_FAMILY_SI;
r = si_set_ip_blocks(adev);
if (r)
return r;
break;
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
if (adev->flags & AMD_IS_APU)
adev->family = AMDGPU_FAMILY_KV;
else
adev->family = AMDGPU_FAMILY_CI;
r = cik_set_ip_blocks(adev);
if (r)
return r;
break;
#endif
case CHIP_TOPAZ:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_CARRIZO:
case CHIP_STONEY:
if (adev->flags & AMD_IS_APU)
adev->family = AMDGPU_FAMILY_CZ;
else
adev->family = AMDGPU_FAMILY_VI;
r = vi_set_ip_blocks(adev);
if (r)
return r;
break;
default:
r = amdgpu_discovery_set_ip_blocks(adev);
if (r)
return r;
break;
}
if (amdgpu_has_atpx() &&
(amdgpu_is_atpx_hybrid() ||
amdgpu_has_atpx_dgpu_power_cntl()) &&
((adev->flags & AMD_IS_APU) == 0) &&
!pci_is_thunderbolt_attached(to_pci_dev(dev->dev)))
adev->flags |= AMD_IS_PX;
if (!(adev->flags & AMD_IS_APU)) {
parent = pci_upstream_bridge(adev->pdev);
adev->has_pr3 = parent ? pci_pr3_present(parent) : false;
}
amdgpu_amdkfd_device_probe(adev);
adev->pm.pp_feature = amdgpu_pp_feature_mask;
if (amdgpu_sriov_vf(adev) || sched_policy == KFD_SCHED_POLICY_NO_HWS)
adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
if (amdgpu_sriov_vf(adev) && adev->asic_type == CHIP_SIENNA_CICHLID)
adev->pm.pp_feature &= ~PP_OVERDRIVE_MASK;
for (i = 0; i < adev->num_ip_blocks; i++) {
if ((amdgpu_ip_block_mask & (1 << i)) == 0) {
DRM_ERROR("disabled ip block: %d <%s>\n",
i, adev->ip_blocks[i].version->funcs->name);
adev->ip_blocks[i].status.valid = false;
} else {
if (adev->ip_blocks[i].version->funcs->early_init) {
r = adev->ip_blocks[i].version->funcs->early_init((void *)adev);
if (r == -ENOENT) {
adev->ip_blocks[i].status.valid = false;
} else if (r) {
DRM_ERROR("early_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
} else {
adev->ip_blocks[i].status.valid = true;
}
} else {
adev->ip_blocks[i].status.valid = true;
}
}
/* get the vbios after the asic_funcs are set up */
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON) {
r = amdgpu_device_parse_gpu_info_fw(adev);
if (r)
return r;
/* Read BIOS */
if (!amdgpu_get_bios(adev))
return -EINVAL;
r = amdgpu_atombios_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atombios_init failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_INIT_FAIL, 0, 0);
return r;
}
/*get pf2vf msg info at it's earliest time*/
if (amdgpu_sriov_vf(adev))
amdgpu_virt_init_data_exchange(adev);
}
}
adev->cg_flags &= amdgpu_cg_mask;
adev->pg_flags &= amdgpu_pg_mask;
return 0;
}
static int amdgpu_device_ip_hw_init_phase1(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.sw)
continue;
if (adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
(amdgpu_sriov_vf(adev) && (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP)) ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH) {
r = adev->ip_blocks[i].version->funcs->hw_init(adev);
if (r) {
DRM_ERROR("hw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = true;
}
}
return 0;
}
static int amdgpu_device_ip_hw_init_phase2(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.sw)
continue;
if (adev->ip_blocks[i].status.hw)
continue;
r = adev->ip_blocks[i].version->funcs->hw_init(adev);
if (r) {
DRM_ERROR("hw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = true;
}
return 0;
}
static int amdgpu_device_fw_loading(struct amdgpu_device *adev)
{
int r = 0;
int i;
uint32_t smu_version;
if (adev->asic_type >= CHIP_VEGA10) {
for (i = 0; i < adev->num_ip_blocks; i++) {
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_PSP)
continue;
if (!adev->ip_blocks[i].status.sw)
continue;
/* no need to do the fw loading again if already done*/
if (adev->ip_blocks[i].status.hw == true)
break;
if (amdgpu_in_reset(adev) || adev->in_suspend) {
r = adev->ip_blocks[i].version->funcs->resume(adev);
if (r) {
DRM_ERROR("resume of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
} else {
r = adev->ip_blocks[i].version->funcs->hw_init(adev);
if (r) {
DRM_ERROR("hw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
adev->ip_blocks[i].status.hw = true;
break;
}
}
if (!amdgpu_sriov_vf(adev) || adev->asic_type == CHIP_TONGA)
r = amdgpu_pm_load_smu_firmware(adev, &smu_version);
return r;
}
static int amdgpu_device_init_schedulers(struct amdgpu_device *adev)
{
long timeout;
int r, i;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
/* No need to setup the GPU scheduler for rings that don't need it */
if (!ring || ring->no_scheduler)
continue;
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_GFX:
timeout = adev->gfx_timeout;
break;
case AMDGPU_RING_TYPE_COMPUTE:
timeout = adev->compute_timeout;
break;
case AMDGPU_RING_TYPE_SDMA:
timeout = adev->sdma_timeout;
break;
default:
timeout = adev->video_timeout;
break;
}
r = drm_sched_init(&ring->sched, &amdgpu_sched_ops,
ring->num_hw_submission, amdgpu_job_hang_limit,
timeout, adev->reset_domain->wq,
ring->sched_score, ring->name,
adev->dev);
if (r) {
DRM_ERROR("Failed to create scheduler on ring %s.\n",
ring->name);
return r;
}
}
return 0;
}
/**
* amdgpu_device_ip_init - run init for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Main initialization pass for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked and the sw_init and hw_init callbacks
* are run. sw_init initializes the software state associated with each IP
* and hw_init initializes the hardware associated with each IP.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_init(struct amdgpu_device *adev)
{
int i, r;
r = amdgpu_ras_init(adev);
if (r)
return r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
r = adev->ip_blocks[i].version->funcs->sw_init((void *)adev);
if (r) {
DRM_ERROR("sw_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
goto init_failed;
}
adev->ip_blocks[i].status.sw = true;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON) {
/* need to do common hw init early so everything is set up for gmc */
r = adev->ip_blocks[i].version->funcs->hw_init((void *)adev);
if (r) {
DRM_ERROR("hw_init %d failed %d\n", i, r);
goto init_failed;
}
adev->ip_blocks[i].status.hw = true;
} else if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) {
/* need to do gmc hw init early so we can allocate gpu mem */
/* Try to reserve bad pages early */
if (amdgpu_sriov_vf(adev))
amdgpu_virt_exchange_data(adev);
r = amdgpu_device_vram_scratch_init(adev);
if (r) {
DRM_ERROR("amdgpu_vram_scratch_init failed %d\n", r);
goto init_failed;
}
r = adev->ip_blocks[i].version->funcs->hw_init((void *)adev);
if (r) {
DRM_ERROR("hw_init %d failed %d\n", i, r);
goto init_failed;
}
r = amdgpu_device_wb_init(adev);
if (r) {
DRM_ERROR("amdgpu_device_wb_init failed %d\n", r);
goto init_failed;
}
adev->ip_blocks[i].status.hw = true;
/* right after GMC hw init, we create CSA */
if (amdgpu_mcbp || amdgpu_sriov_vf(adev)) {
r = amdgpu_allocate_static_csa(adev, &adev->virt.csa_obj,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_CSA_SIZE);
if (r) {
DRM_ERROR("allocate CSA failed %d\n", r);
goto init_failed;
}
}
}
}
if (amdgpu_sriov_vf(adev))
amdgpu_virt_init_data_exchange(adev);
r = amdgpu_ib_pool_init(adev);
if (r) {
dev_err(adev->dev, "IB initialization failed (%d).\n", r);
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_IB_INIT_FAIL, 0, r);
goto init_failed;
}
r = amdgpu_ucode_create_bo(adev); /* create ucode bo when sw_init complete*/
if (r)
goto init_failed;
r = amdgpu_device_ip_hw_init_phase1(adev);
if (r)
goto init_failed;
r = amdgpu_device_fw_loading(adev);
if (r)
goto init_failed;
r = amdgpu_device_ip_hw_init_phase2(adev);
if (r)
goto init_failed;
/*
* retired pages will be loaded from eeprom and reserved here,
* it should be called after amdgpu_device_ip_hw_init_phase2 since
* for some ASICs the RAS EEPROM code relies on SMU fully functioning
* for I2C communication which only true at this point.
*
* amdgpu_ras_recovery_init may fail, but the upper only cares the
* failure from bad gpu situation and stop amdgpu init process
* accordingly. For other failed cases, it will still release all
* the resource and print error message, rather than returning one
* negative value to upper level.
*
* Note: theoretically, this should be called before all vram allocations
* to protect retired page from abusing
*/
r = amdgpu_ras_recovery_init(adev);
if (r)
goto init_failed;
/**
* In case of XGMI grab extra reference for reset domain for this device
*/
if (adev->gmc.xgmi.num_physical_nodes > 1) {
if (amdgpu_xgmi_add_device(adev) == 0) {
if (!amdgpu_sriov_vf(adev)) {
struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(adev);
if (WARN_ON(!hive)) {
r = -ENOENT;
goto init_failed;
}
if (!hive->reset_domain ||
!amdgpu_reset_get_reset_domain(hive->reset_domain)) {
r = -ENOENT;
amdgpu_put_xgmi_hive(hive);
goto init_failed;
}
/* Drop the early temporary reset domain we created for device */
amdgpu_reset_put_reset_domain(adev->reset_domain);
adev->reset_domain = hive->reset_domain;
amdgpu_put_xgmi_hive(hive);
}
}
}
r = amdgpu_device_init_schedulers(adev);
if (r)
goto init_failed;
/* Don't init kfd if whole hive need to be reset during init */
if (!adev->gmc.xgmi.pending_reset)
amdgpu_amdkfd_device_init(adev);
amdgpu_fru_get_product_info(adev);
init_failed:
return r;
}
/**
* amdgpu_device_fill_reset_magic - writes reset magic to gart pointer
*
* @adev: amdgpu_device pointer
*
* Writes a reset magic value to the gart pointer in VRAM. The driver calls
* this function before a GPU reset. If the value is retained after a
* GPU reset, VRAM has not been lost. Some GPU resets may destry VRAM contents.
*/
static void amdgpu_device_fill_reset_magic(struct amdgpu_device *adev)
{
memcpy(adev->reset_magic, adev->gart.ptr, AMDGPU_RESET_MAGIC_NUM);
}
/**
* amdgpu_device_check_vram_lost - check if vram is valid
*
* @adev: amdgpu_device pointer
*
* Checks the reset magic value written to the gart pointer in VRAM.
* The driver calls this after a GPU reset to see if the contents of
* VRAM is lost or now.
* returns true if vram is lost, false if not.
*/
static bool amdgpu_device_check_vram_lost(struct amdgpu_device *adev)
{
if (memcmp(adev->gart.ptr, adev->reset_magic,
AMDGPU_RESET_MAGIC_NUM))
return true;
if (!amdgpu_in_reset(adev))
return false;
/*
* For all ASICs with baco/mode1 reset, the VRAM is
* always assumed to be lost.
*/
switch (amdgpu_asic_reset_method(adev)) {
case AMD_RESET_METHOD_BACO:
case AMD_RESET_METHOD_MODE1:
return true;
default:
return false;
}
}
/**
* amdgpu_device_set_cg_state - set clockgating for amdgpu device
*
* @adev: amdgpu_device pointer
* @state: clockgating state (gate or ungate)
*
* The list of all the hardware IPs that make up the asic is walked and the
* set_clockgating_state callbacks are run.
* Late initialization pass enabling clockgating for hardware IPs.
* Fini or suspend, pass disabling clockgating for hardware IPs.
* Returns 0 on success, negative error code on failure.
*/
int amdgpu_device_set_cg_state(struct amdgpu_device *adev,
enum amd_clockgating_state state)
{
int i, j, r;
if (amdgpu_emu_mode == 1)
return 0;
for (j = 0; j < adev->num_ip_blocks; j++) {
i = state == AMD_CG_STATE_GATE ? j : adev->num_ip_blocks - j - 1;
if (!adev->ip_blocks[i].status.late_initialized)
continue;
/* skip CG for GFX on S0ix */
if (adev->in_s0ix &&
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX)
continue;
/* skip CG for VCE/UVD, it's handled specially */
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCN &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_JPEG &&
adev->ip_blocks[i].version->funcs->set_clockgating_state) {
/* enable clockgating to save power */
r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev,
state);
if (r) {
DRM_ERROR("set_clockgating_state(gate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
}
return 0;
}
int amdgpu_device_set_pg_state(struct amdgpu_device *adev,
enum amd_powergating_state state)
{
int i, j, r;
if (amdgpu_emu_mode == 1)
return 0;
for (j = 0; j < adev->num_ip_blocks; j++) {
i = state == AMD_PG_STATE_GATE ? j : adev->num_ip_blocks - j - 1;
if (!adev->ip_blocks[i].status.late_initialized)
continue;
/* skip PG for GFX on S0ix */
if (adev->in_s0ix &&
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX)
continue;
/* skip CG for VCE/UVD, it's handled specially */
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCN &&
adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_JPEG &&
adev->ip_blocks[i].version->funcs->set_powergating_state) {
/* enable powergating to save power */
r = adev->ip_blocks[i].version->funcs->set_powergating_state((void *)adev,
state);
if (r) {
DRM_ERROR("set_powergating_state(gate) of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
}
return 0;
}
static int amdgpu_device_enable_mgpu_fan_boost(void)
{
struct amdgpu_gpu_instance *gpu_ins;
struct amdgpu_device *adev;
int i, ret = 0;
mutex_lock(&mgpu_info.mutex);
/*
* MGPU fan boost feature should be enabled
* only when there are two or more dGPUs in
* the system
*/
if (mgpu_info.num_dgpu < 2)
goto out;
for (i = 0; i < mgpu_info.num_dgpu; i++) {
gpu_ins = &(mgpu_info.gpu_ins[i]);
adev = gpu_ins->adev;
if (!(adev->flags & AMD_IS_APU) &&
!gpu_ins->mgpu_fan_enabled) {
ret = amdgpu_dpm_enable_mgpu_fan_boost(adev);
if (ret)
break;
gpu_ins->mgpu_fan_enabled = 1;
}
}
out:
mutex_unlock(&mgpu_info.mutex);
return ret;
}
/**
* amdgpu_device_ip_late_init - run late init for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Late initialization pass for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked and the late_init callbacks are run.
* late_init covers any special initialization that an IP requires
* after all of the have been initialized or something that needs to happen
* late in the init process.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_late_init(struct amdgpu_device *adev)
{
struct amdgpu_gpu_instance *gpu_instance;
int i = 0, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->funcs->late_init) {
r = adev->ip_blocks[i].version->funcs->late_init((void *)adev);
if (r) {
DRM_ERROR("late_init of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
}
adev->ip_blocks[i].status.late_initialized = true;
}
r = amdgpu_ras_late_init(adev);
if (r) {
DRM_ERROR("amdgpu_ras_late_init failed %d", r);
return r;
}
amdgpu_ras_set_error_query_ready(adev, true);
amdgpu_device_set_cg_state(adev, AMD_CG_STATE_GATE);
amdgpu_device_set_pg_state(adev, AMD_PG_STATE_GATE);
amdgpu_device_fill_reset_magic(adev);
r = amdgpu_device_enable_mgpu_fan_boost();
if (r)
DRM_ERROR("enable mgpu fan boost failed (%d).\n", r);
/* For passthrough configuration on arcturus and aldebaran, enable special handling SBR */
if (amdgpu_passthrough(adev) && ((adev->asic_type == CHIP_ARCTURUS && adev->gmc.xgmi.num_physical_nodes > 1)||
adev->asic_type == CHIP_ALDEBARAN ))
amdgpu_dpm_handle_passthrough_sbr(adev, true);
if (adev->gmc.xgmi.num_physical_nodes > 1) {
mutex_lock(&mgpu_info.mutex);
/*
* Reset device p-state to low as this was booted with high.
*
* This should be performed only after all devices from the same
* hive get initialized.
*
* However, it's unknown how many device in the hive in advance.
* As this is counted one by one during devices initializations.
*
* So, we wait for all XGMI interlinked devices initialized.
* This may bring some delays as those devices may come from
* different hives. But that should be OK.
*/
if (mgpu_info.num_dgpu == adev->gmc.xgmi.num_physical_nodes) {
for (i = 0; i < mgpu_info.num_gpu; i++) {
gpu_instance = &(mgpu_info.gpu_ins[i]);
if (gpu_instance->adev->flags & AMD_IS_APU)
continue;
r = amdgpu_xgmi_set_pstate(gpu_instance->adev,
AMDGPU_XGMI_PSTATE_MIN);
if (r) {
DRM_ERROR("pstate setting failed (%d).\n", r);
break;
}
}
}
mutex_unlock(&mgpu_info.mutex);
}
return 0;
}
/**
* amdgpu_device_smu_fini_early - smu hw_fini wrapper
*
* @adev: amdgpu_device pointer
*
* For ASICs need to disable SMC first
*/
static void amdgpu_device_smu_fini_early(struct amdgpu_device *adev)
{
int i, r;
if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
return;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) {
r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("hw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.hw = false;
break;
}
}
}
static int amdgpu_device_ip_fini_early(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].version->funcs->early_fini)
continue;
r = adev->ip_blocks[i].version->funcs->early_fini((void *)adev);
if (r) {
DRM_DEBUG("early_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
}
amdgpu_device_set_pg_state(adev, AMD_PG_STATE_UNGATE);
amdgpu_device_set_cg_state(adev, AMD_CG_STATE_UNGATE);
amdgpu_amdkfd_suspend(adev, false);
/* Workaroud for ASICs need to disable SMC first */
amdgpu_device_smu_fini_early(adev);
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.hw)
continue;
r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("hw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.hw = false;
}
if (amdgpu_sriov_vf(adev)) {
if (amdgpu_virt_release_full_gpu(adev, false))
DRM_ERROR("failed to release exclusive mode on fini\n");
}
return 0;
}
/**
* amdgpu_device_ip_fini - run fini for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Main teardown pass for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked and the hw_fini and sw_fini callbacks
* are run. hw_fini tears down the hardware associated with each IP
* and sw_fini tears down any software state associated with each IP.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_fini(struct amdgpu_device *adev)
{
int i, r;
if (amdgpu_sriov_vf(adev) && adev->virt.ras_init_done)
amdgpu_virt_release_ras_err_handler_data(adev);
if (adev->gmc.xgmi.num_physical_nodes > 1)
amdgpu_xgmi_remove_device(adev);
amdgpu_amdkfd_device_fini_sw(adev);
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.sw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) {
amdgpu_ucode_free_bo(adev);
amdgpu_free_static_csa(&adev->virt.csa_obj);
amdgpu_device_wb_fini(adev);
amdgpu_device_vram_scratch_fini(adev);
amdgpu_ib_pool_fini(adev);
}
r = adev->ip_blocks[i].version->funcs->sw_fini((void *)adev);
/* XXX handle errors */
if (r) {
DRM_DEBUG("sw_fini of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.sw = false;
adev->ip_blocks[i].status.valid = false;
}
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.late_initialized)
continue;
if (adev->ip_blocks[i].version->funcs->late_fini)
adev->ip_blocks[i].version->funcs->late_fini((void *)adev);
adev->ip_blocks[i].status.late_initialized = false;
}
amdgpu_ras_fini(adev);
return 0;
}
/**
* amdgpu_device_delayed_init_work_handler - work handler for IB tests
*
* @work: work_struct.
*/
static void amdgpu_device_delayed_init_work_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device, delayed_init_work.work);
int r;
r = amdgpu_ib_ring_tests(adev);
if (r)
DRM_ERROR("ib ring test failed (%d).\n", r);
}
static void amdgpu_device_delay_enable_gfx_off(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device, gfx.gfx_off_delay_work.work);
WARN_ON_ONCE(adev->gfx.gfx_off_state);
WARN_ON_ONCE(adev->gfx.gfx_off_req_count);
if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, true))
adev->gfx.gfx_off_state = true;
}
/**
* amdgpu_device_ip_suspend_phase1 - run suspend for hardware IPs (phase 1)
*
* @adev: amdgpu_device pointer
*
* Main suspend function for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked, clockgating is disabled and the
* suspend callbacks are run. suspend puts the hardware and software state
* in each IP into a state suitable for suspend.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_suspend_phase1(struct amdgpu_device *adev)
{
int i, r;
amdgpu_device_set_pg_state(adev, AMD_PG_STATE_UNGATE);
amdgpu_device_set_cg_state(adev, AMD_CG_STATE_UNGATE);
/*
* Per PMFW team's suggestion, driver needs to handle gfxoff
* and df cstate features disablement for gpu reset(e.g. Mode1Reset)
* scenario. Add the missing df cstate disablement here.
*/
if (amdgpu_dpm_set_df_cstate(adev, DF_CSTATE_DISALLOW))
dev_warn(adev->dev, "Failed to disallow df cstate");
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.valid)
continue;
/* displays are handled separately */
if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_DCE)
continue;
/* XXX handle errors */
r = adev->ip_blocks[i].version->funcs->suspend(adev);
/* XXX handle errors */
if (r) {
DRM_ERROR("suspend of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = false;
}
return 0;
}
/**
* amdgpu_device_ip_suspend_phase2 - run suspend for hardware IPs (phase 2)
*
* @adev: amdgpu_device pointer
*
* Main suspend function for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked, clockgating is disabled and the
* suspend callbacks are run. suspend puts the hardware and software state
* in each IP into a state suitable for suspend.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_suspend_phase2(struct amdgpu_device *adev)
{
int i, r;
if (adev->in_s0ix)
amdgpu_dpm_gfx_state_change(adev, sGpuChangeState_D3Entry);
for (i = adev->num_ip_blocks - 1; i >= 0; i--) {
if (!adev->ip_blocks[i].status.valid)
continue;
/* displays are handled in phase1 */
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_DCE)
continue;
/* PSP lost connection when err_event_athub occurs */
if (amdgpu_ras_intr_triggered() &&
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP) {
adev->ip_blocks[i].status.hw = false;
continue;
}
/* skip unnecessary suspend if we do not initialize them yet */
if (adev->gmc.xgmi.pending_reset &&
!(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH)) {
adev->ip_blocks[i].status.hw = false;
continue;
}
/* skip suspend of gfx/mes and psp for S0ix
* gfx is in gfxoff state, so on resume it will exit gfxoff just
* like at runtime. PSP is also part of the always on hardware
* so no need to suspend it.
*/
if (adev->in_s0ix &&
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_MES))
continue;
/* SDMA 5.x+ is part of GFX power domain so it's covered by GFXOFF */
if (adev->in_s0ix &&
(adev->ip_versions[SDMA0_HWIP][0] >= IP_VERSION(5, 0, 0)) &&
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SDMA))
continue;
/* Once swPSP provides the IMU, RLC FW binaries to TOS during cold-boot.
* These are in TMR, hence are expected to be reused by PSP-TOS to reload
* from this location and RLC Autoload automatically also gets loaded
* from here based on PMFW -> PSP message during re-init sequence.
* Therefore, the psp suspend & resume should be skipped to avoid destroy
* the TMR and reload FWs again for IMU enabled APU ASICs.
*/
if (amdgpu_in_reset(adev) &&
(adev->flags & AMD_IS_APU) && adev->gfx.imu.funcs &&
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP)
continue;
/* XXX handle errors */
r = adev->ip_blocks[i].version->funcs->suspend(adev);
/* XXX handle errors */
if (r) {
DRM_ERROR("suspend of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
}
adev->ip_blocks[i].status.hw = false;
/* handle putting the SMC in the appropriate state */
if(!amdgpu_sriov_vf(adev)){
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) {
r = amdgpu_dpm_set_mp1_state(adev, adev->mp1_state);
if (r) {
DRM_ERROR("SMC failed to set mp1 state %d, %d\n",
adev->mp1_state, r);
return r;
}
}
}
}
return 0;
}
/**
* amdgpu_device_ip_suspend - run suspend for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Main suspend function for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked, clockgating is disabled and the
* suspend callbacks are run. suspend puts the hardware and software state
* in each IP into a state suitable for suspend.
* Returns 0 on success, negative error code on failure.
*/
int amdgpu_device_ip_suspend(struct amdgpu_device *adev)
{
int r;
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_fini_data_exchange(adev);
amdgpu_virt_request_full_gpu(adev, false);
}
r = amdgpu_device_ip_suspend_phase1(adev);
if (r)
return r;
r = amdgpu_device_ip_suspend_phase2(adev);
if (amdgpu_sriov_vf(adev))
amdgpu_virt_release_full_gpu(adev, false);
return r;
}
static int amdgpu_device_ip_reinit_early_sriov(struct amdgpu_device *adev)
{
int i, r;
static enum amd_ip_block_type ip_order[] = {
AMD_IP_BLOCK_TYPE_COMMON,
AMD_IP_BLOCK_TYPE_GMC,
AMD_IP_BLOCK_TYPE_PSP,
AMD_IP_BLOCK_TYPE_IH,
};
for (i = 0; i < adev->num_ip_blocks; i++) {
int j;
struct amdgpu_ip_block *block;
block = &adev->ip_blocks[i];
block->status.hw = false;
for (j = 0; j < ARRAY_SIZE(ip_order); j++) {
if (block->version->type != ip_order[j] ||
!block->status.valid)
continue;
r = block->version->funcs->hw_init(adev);
DRM_INFO("RE-INIT-early: %s %s\n", block->version->funcs->name, r?"failed":"succeeded");
if (r)
return r;
block->status.hw = true;
}
}
return 0;
}
static int amdgpu_device_ip_reinit_late_sriov(struct amdgpu_device *adev)
{
int i, r;
static enum amd_ip_block_type ip_order[] = {
AMD_IP_BLOCK_TYPE_SMC,
AMD_IP_BLOCK_TYPE_DCE,
AMD_IP_BLOCK_TYPE_GFX,
AMD_IP_BLOCK_TYPE_SDMA,
AMD_IP_BLOCK_TYPE_UVD,
AMD_IP_BLOCK_TYPE_VCE,
AMD_IP_BLOCK_TYPE_VCN
};
for (i = 0; i < ARRAY_SIZE(ip_order); i++) {
int j;
struct amdgpu_ip_block *block;
for (j = 0; j < adev->num_ip_blocks; j++) {
block = &adev->ip_blocks[j];
if (block->version->type != ip_order[i] ||
!block->status.valid ||
block->status.hw)
continue;
if (block->version->type == AMD_IP_BLOCK_TYPE_SMC)
r = block->version->funcs->resume(adev);
else
r = block->version->funcs->hw_init(adev);
DRM_INFO("RE-INIT-late: %s %s\n", block->version->funcs->name, r?"failed":"succeeded");
if (r)
return r;
block->status.hw = true;
}
}
return 0;
}
/**
* amdgpu_device_ip_resume_phase1 - run resume for hardware IPs
*
* @adev: amdgpu_device pointer
*
* First resume function for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked and the resume callbacks are run for
* COMMON, GMC, and IH. resume puts the hardware into a functional state
* after a suspend and updates the software state as necessary. This
* function is also used for restoring the GPU after a GPU reset.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_resume_phase1(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid || adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP && amdgpu_sriov_vf(adev))) {
r = adev->ip_blocks[i].version->funcs->resume(adev);
if (r) {
DRM_ERROR("resume of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = true;
}
}
return 0;
}
/**
* amdgpu_device_ip_resume_phase2 - run resume for hardware IPs
*
* @adev: amdgpu_device pointer
*
* First resume function for hardware IPs. The list of all the hardware
* IPs that make up the asic is walked and the resume callbacks are run for
* all blocks except COMMON, GMC, and IH. resume puts the hardware into a
* functional state after a suspend and updates the software state as
* necessary. This function is also used for restoring the GPU after a GPU
* reset.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_resume_phase2(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid || adev->ip_blocks[i].status.hw)
continue;
if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP)
continue;
r = adev->ip_blocks[i].version->funcs->resume(adev);
if (r) {
DRM_ERROR("resume of IP block <%s> failed %d\n",
adev->ip_blocks[i].version->funcs->name, r);
return r;
}
adev->ip_blocks[i].status.hw = true;
if (adev->in_s0ix && adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) {
/* disable gfxoff for IP resume. The gfxoff will be re-enabled in
* amdgpu_device_resume() after IP resume.
*/
amdgpu_gfx_off_ctrl(adev, false);
DRM_DEBUG("will disable gfxoff for re-initializing other blocks\n");
}
}
return 0;
}
/**
* amdgpu_device_ip_resume - run resume for hardware IPs
*
* @adev: amdgpu_device pointer
*
* Main resume function for hardware IPs. The hardware IPs
* are split into two resume functions because they are
* are also used in in recovering from a GPU reset and some additional
* steps need to be take between them. In this case (S3/S4) they are
* run sequentially.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_resume(struct amdgpu_device *adev)
{
int r;
r = amdgpu_amdkfd_resume_iommu(adev);
if (r)
return r;
r = amdgpu_device_ip_resume_phase1(adev);
if (r)
return r;
r = amdgpu_device_fw_loading(adev);
if (r)
return r;
r = amdgpu_device_ip_resume_phase2(adev);
return r;
}
/**
* amdgpu_device_detect_sriov_bios - determine if the board supports SR-IOV
*
* @adev: amdgpu_device pointer
*
* Query the VBIOS data tables to determine if the board supports SR-IOV.
*/
static void amdgpu_device_detect_sriov_bios(struct amdgpu_device *adev)
{
if (amdgpu_sriov_vf(adev)) {
if (adev->is_atom_fw) {
if (amdgpu_atomfirmware_gpu_virtualization_supported(adev))
adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS;
} else {
if (amdgpu_atombios_has_gpu_virtualization_table(adev))
adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS;
}
if (!(adev->virt.caps & AMDGPU_SRIOV_CAPS_SRIOV_VBIOS))
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_NO_VBIOS, 0, 0);
}
}
/**
* amdgpu_device_asic_has_dc_support - determine if DC supports the asic
*
* @asic_type: AMD asic type
*
* Check if there is DC (new modesetting infrastructre) support for an asic.
* returns true if DC has support, false if not.
*/
bool amdgpu_device_asic_has_dc_support(enum amd_asic_type asic_type)
{
switch (asic_type) {
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_HAINAN:
#endif
case CHIP_TOPAZ:
/* chips with no display hardware */
return false;
#if defined(CONFIG_DRM_AMD_DC)
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_OLAND:
/*
* We have systems in the wild with these ASICs that require
* LVDS and VGA support which is not supported with DC.
*
* Fallback to the non-DC driver here by default so as not to
* cause regressions.
*/
#if defined(CONFIG_DRM_AMD_DC_SI)
return amdgpu_dc > 0;
#else
return false;
#endif
case CHIP_BONAIRE:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
/*
* We have systems in the wild with these ASICs that require
* VGA support which is not supported with DC.
*
* Fallback to the non-DC driver here by default so as not to
* cause regressions.
*/
return amdgpu_dc > 0;
default:
return amdgpu_dc != 0;
#else
default:
if (amdgpu_dc > 0)
DRM_INFO_ONCE("Display Core has been requested via kernel parameter "
"but isn't supported by ASIC, ignoring\n");
return false;
#endif
}
}
/**
* amdgpu_device_has_dc_support - check if dc is supported
*
* @adev: amdgpu_device pointer
*
* Returns true for supported, false for not supported
*/
bool amdgpu_device_has_dc_support(struct amdgpu_device *adev)
{
if (amdgpu_sriov_vf(adev) ||
adev->enable_virtual_display ||
(adev->harvest_ip_mask & AMD_HARVEST_IP_DMU_MASK))
return false;
return amdgpu_device_asic_has_dc_support(adev->asic_type);
}
static void amdgpu_device_xgmi_reset_func(struct work_struct *__work)
{
struct amdgpu_device *adev =
container_of(__work, struct amdgpu_device, xgmi_reset_work);
struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(adev);
/* It's a bug to not have a hive within this function */
if (WARN_ON(!hive))
return;
/*
* Use task barrier to synchronize all xgmi reset works across the
* hive. task_barrier_enter and task_barrier_exit will block
* until all the threads running the xgmi reset works reach
* those points. task_barrier_full will do both blocks.
*/
if (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO) {
task_barrier_enter(&hive->tb);
adev->asic_reset_res = amdgpu_device_baco_enter(adev_to_drm(adev));
if (adev->asic_reset_res)
goto fail;
task_barrier_exit(&hive->tb);
adev->asic_reset_res = amdgpu_device_baco_exit(adev_to_drm(adev));
if (adev->asic_reset_res)
goto fail;
if (adev->mmhub.ras && adev->mmhub.ras->ras_block.hw_ops &&
adev->mmhub.ras->ras_block.hw_ops->reset_ras_error_count)
adev->mmhub.ras->ras_block.hw_ops->reset_ras_error_count(adev);
} else {
task_barrier_full(&hive->tb);
adev->asic_reset_res = amdgpu_asic_reset(adev);
}
fail:
if (adev->asic_reset_res)
DRM_WARN("ASIC reset failed with error, %d for drm dev, %s",
adev->asic_reset_res, adev_to_drm(adev)->unique);
amdgpu_put_xgmi_hive(hive);
}
static int amdgpu_device_get_job_timeout_settings(struct amdgpu_device *adev)
{
char *input = amdgpu_lockup_timeout;
char *timeout_setting = NULL;
int index = 0;
long timeout;
int ret = 0;
/*
* By default timeout for non compute jobs is 10000
* and 60000 for compute jobs.
* In SR-IOV or passthrough mode, timeout for compute
* jobs are 60000 by default.
*/
adev->gfx_timeout = msecs_to_jiffies(10000);
adev->sdma_timeout = adev->video_timeout = adev->gfx_timeout;
if (amdgpu_sriov_vf(adev))
adev->compute_timeout = amdgpu_sriov_is_pp_one_vf(adev) ?
msecs_to_jiffies(60000) : msecs_to_jiffies(10000);
else
adev->compute_timeout = msecs_to_jiffies(60000);
if (strnlen(input, AMDGPU_MAX_TIMEOUT_PARAM_LENGTH)) {
while ((timeout_setting = strsep(&input, ",")) &&
strnlen(timeout_setting, AMDGPU_MAX_TIMEOUT_PARAM_LENGTH)) {
ret = kstrtol(timeout_setting, 0, &timeout);
if (ret)
return ret;
if (timeout == 0) {
index++;
continue;
} else if (timeout < 0) {
timeout = MAX_SCHEDULE_TIMEOUT;
dev_warn(adev->dev, "lockup timeout disabled");
add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
} else {
timeout = msecs_to_jiffies(timeout);
}
switch (index++) {
case 0:
adev->gfx_timeout = timeout;
break;
case 1:
adev->compute_timeout = timeout;
break;
case 2:
adev->sdma_timeout = timeout;
break;
case 3:
adev->video_timeout = timeout;
break;
default:
break;
}
}
/*
* There is only one value specified and
* it should apply to all non-compute jobs.
*/
if (index == 1) {
adev->sdma_timeout = adev->video_timeout = adev->gfx_timeout;
if (amdgpu_sriov_vf(adev) || amdgpu_passthrough(adev))
adev->compute_timeout = adev->gfx_timeout;
}
}
return ret;
}
/**
* amdgpu_device_check_iommu_direct_map - check if RAM direct mapped to GPU
*
* @adev: amdgpu_device pointer
*
* RAM direct mapped to GPU if IOMMU is not enabled or is pass through mode
*/
static void amdgpu_device_check_iommu_direct_map(struct amdgpu_device *adev)
{
struct iommu_domain *domain;
domain = iommu_get_domain_for_dev(adev->dev);
if (!domain || domain->type == IOMMU_DOMAIN_IDENTITY)
adev->ram_is_direct_mapped = true;
}
static const struct attribute *amdgpu_dev_attributes[] = {
&dev_attr_product_name.attr,
&dev_attr_product_number.attr,
&dev_attr_serial_number.attr,
&dev_attr_pcie_replay_count.attr,
NULL
};
/**
* amdgpu_device_init - initialize the driver
*
* @adev: amdgpu_device pointer
* @flags: driver flags
*
* Initializes the driver info and hw (all asics).
* Returns 0 for success or an error on failure.
* Called at driver startup.
*/
int amdgpu_device_init(struct amdgpu_device *adev,
uint32_t flags)
{
struct drm_device *ddev = adev_to_drm(adev);
struct pci_dev *pdev = adev->pdev;
int r, i;
bool px = false;
u32 max_MBps;
int tmp;
adev->shutdown = false;
adev->flags = flags;
if (amdgpu_force_asic_type >= 0 && amdgpu_force_asic_type < CHIP_LAST)
adev->asic_type = amdgpu_force_asic_type;
else
adev->asic_type = flags & AMD_ASIC_MASK;
adev->usec_timeout = AMDGPU_MAX_USEC_TIMEOUT;
if (amdgpu_emu_mode == 1)
adev->usec_timeout *= 10;
adev->gmc.gart_size = 512 * 1024 * 1024;
adev->accel_working = false;
adev->num_rings = 0;
RCU_INIT_POINTER(adev->gang_submit, dma_fence_get_stub());
adev->mman.buffer_funcs = NULL;
adev->mman.buffer_funcs_ring = NULL;
adev->vm_manager.vm_pte_funcs = NULL;
adev->vm_manager.vm_pte_num_scheds = 0;
adev->gmc.gmc_funcs = NULL;
adev->harvest_ip_mask = 0x0;
adev->fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS);
bitmap_zero(adev->gfx.pipe_reserve_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);
adev->smc_rreg = &amdgpu_invalid_rreg;
adev->smc_wreg = &amdgpu_invalid_wreg;
adev->pcie_rreg = &amdgpu_invalid_rreg;
adev->pcie_wreg = &amdgpu_invalid_wreg;
adev->pciep_rreg = &amdgpu_invalid_rreg;
adev->pciep_wreg = &amdgpu_invalid_wreg;
adev->pcie_rreg64 = &amdgpu_invalid_rreg64;
adev->pcie_wreg64 = &amdgpu_invalid_wreg64;
adev->uvd_ctx_rreg = &amdgpu_invalid_rreg;
adev->uvd_ctx_wreg = &amdgpu_invalid_wreg;
adev->didt_rreg = &amdgpu_invalid_rreg;
adev->didt_wreg = &amdgpu_invalid_wreg;
adev->gc_cac_rreg = &amdgpu_invalid_rreg;
adev->gc_cac_wreg = &amdgpu_invalid_wreg;
adev->audio_endpt_rreg = &amdgpu_block_invalid_rreg;
adev->audio_endpt_wreg = &amdgpu_block_invalid_wreg;
DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X 0x%02X).\n",
amdgpu_asic_name[adev->asic_type], pdev->vendor, pdev->device,
pdev->subsystem_vendor, pdev->subsystem_device, pdev->revision);
/* mutex initialization are all done here so we
* can recall function without having locking issues */
mutex_init(&adev->firmware.mutex);
mutex_init(&adev->pm.mutex);
mutex_init(&adev->gfx.gpu_clock_mutex);
mutex_init(&adev->srbm_mutex);
mutex_init(&adev->gfx.pipe_reserve_mutex);
mutex_init(&adev->gfx.gfx_off_mutex);
mutex_init(&adev->grbm_idx_mutex);
mutex_init(&adev->mn_lock);
mutex_init(&adev->virt.vf_errors.lock);
hash_init(adev->mn_hash);
mutex_init(&adev->psp.mutex);
mutex_init(&adev->notifier_lock);
mutex_init(&adev->pm.stable_pstate_ctx_lock);
mutex_init(&adev->benchmark_mutex);
amdgpu_device_init_apu_flags(adev);
r = amdgpu_device_check_arguments(adev);
if (r)
return r;
spin_lock_init(&adev->mmio_idx_lock);
spin_lock_init(&adev->smc_idx_lock);
spin_lock_init(&adev->pcie_idx_lock);
spin_lock_init(&adev->uvd_ctx_idx_lock);
spin_lock_init(&adev->didt_idx_lock);
spin_lock_init(&adev->gc_cac_idx_lock);
spin_lock_init(&adev->se_cac_idx_lock);
spin_lock_init(&adev->audio_endpt_idx_lock);
spin_lock_init(&adev->mm_stats.lock);
INIT_LIST_HEAD(&adev->shadow_list);
mutex_init(&adev->shadow_list_lock);
INIT_LIST_HEAD(&adev->reset_list);
INIT_LIST_HEAD(&adev->ras_list);
INIT_DELAYED_WORK(&adev->delayed_init_work,
amdgpu_device_delayed_init_work_handler);
INIT_DELAYED_WORK(&adev->gfx.gfx_off_delay_work,
amdgpu_device_delay_enable_gfx_off);
INIT_WORK(&adev->xgmi_reset_work, amdgpu_device_xgmi_reset_func);
adev->gfx.gfx_off_req_count = 1;
adev->gfx.gfx_off_residency = 0;
adev->gfx.gfx_off_entrycount = 0;
adev->pm.ac_power = power_supply_is_system_supplied() > 0;
atomic_set(&adev->throttling_logging_enabled, 1);
/*
* If throttling continues, logging will be performed every minute
* to avoid log flooding. "-1" is subtracted since the thermal
* throttling interrupt comes every second. Thus, the total logging
* interval is 59 seconds(retelimited printk interval) + 1(waiting
* for throttling interrupt) = 60 seconds.
*/
ratelimit_state_init(&adev->throttling_logging_rs, (60 - 1) * HZ, 1);
ratelimit_set_flags(&adev->throttling_logging_rs, RATELIMIT_MSG_ON_RELEASE);
/* Registers mapping */
/* TODO: block userspace mapping of io register */
if (adev->asic_type >= CHIP_BONAIRE) {
adev->rmmio_base = pci_resource_start(adev->pdev, 5);
adev->rmmio_size = pci_resource_len(adev->pdev, 5);
} else {
adev->rmmio_base = pci_resource_start(adev->pdev, 2);
adev->rmmio_size = pci_resource_len(adev->pdev, 2);
}
for (i = 0; i < AMD_IP_BLOCK_TYPE_NUM; i++)
atomic_set(&adev->pm.pwr_state[i], POWER_STATE_UNKNOWN);
adev->rmmio = ioremap(adev->rmmio_base, adev->rmmio_size);
if (adev->rmmio == NULL) {
return -ENOMEM;
}
DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)adev->rmmio_base);
DRM_INFO("register mmio size: %u\n", (unsigned)adev->rmmio_size);
amdgpu_device_get_pcie_info(adev);
if (amdgpu_mcbp)
DRM_INFO("MCBP is enabled\n");
/*
* Reset domain needs to be present early, before XGMI hive discovered
* (if any) and intitialized to use reset sem and in_gpu reset flag
* early on during init and before calling to RREG32.
*/
adev->reset_domain = amdgpu_reset_create_reset_domain(SINGLE_DEVICE, "amdgpu-reset-dev");
if (!adev->reset_domain)
return -ENOMEM;
/* detect hw virtualization here */
amdgpu_detect_virtualization(adev);
r = amdgpu_device_get_job_timeout_settings(adev);
if (r) {
dev_err(adev->dev, "invalid lockup_timeout parameter syntax\n");
return r;
}
/* early init functions */
r = amdgpu_device_ip_early_init(adev);
if (r)
return r;
/* Get rid of things like offb */
r = drm_aperture_remove_conflicting_pci_framebuffers(adev->pdev, &amdgpu_kms_driver);
if (r)
return r;
/* Enable TMZ based on IP_VERSION */
amdgpu_gmc_tmz_set(adev);
amdgpu_gmc_noretry_set(adev);
/* Need to get xgmi info early to decide the reset behavior*/
if (adev->gmc.xgmi.supported) {
r = adev->gfxhub.funcs->get_xgmi_info(adev);
if (r)
return r;
}
/* enable PCIE atomic ops */
if (amdgpu_sriov_vf(adev))
adev->have_atomics_support = ((struct amd_sriov_msg_pf2vf_info *)
adev->virt.fw_reserve.p_pf2vf)->pcie_atomic_ops_support_flags ==
(PCI_EXP_DEVCAP2_ATOMIC_COMP32 | PCI_EXP_DEVCAP2_ATOMIC_COMP64);
/* APUs w/ gfx9 onwards doesn't reply on PCIe atomics, rather it is a
* internal path natively support atomics, set have_atomics_support to true.
*/
else if ((adev->flags & AMD_IS_APU) &&
(adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)))
adev->have_atomics_support = true;
else
adev->have_atomics_support =
!pci_enable_atomic_ops_to_root(adev->pdev,
PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
PCI_EXP_DEVCAP2_ATOMIC_COMP64);
if (!adev->have_atomics_support)
dev_info(adev->dev, "PCIE atomic ops is not supported\n");
/* doorbell bar mapping and doorbell index init*/
amdgpu_device_doorbell_init(adev);
if (amdgpu_emu_mode == 1) {
/* post the asic on emulation mode */
emu_soc_asic_init(adev);
goto fence_driver_init;
}
amdgpu_reset_init(adev);
/* detect if we are with an SRIOV vbios */
amdgpu_device_detect_sriov_bios(adev);
/* check if we need to reset the asic
* E.g., driver was not cleanly unloaded previously, etc.
*/
if (!amdgpu_sriov_vf(adev) && amdgpu_asic_need_reset_on_init(adev)) {
if (adev->gmc.xgmi.num_physical_nodes) {
dev_info(adev->dev, "Pending hive reset.\n");
adev->gmc.xgmi.pending_reset = true;
/* Only need to init necessary block for SMU to handle the reset */
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (!(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC)) {
DRM_DEBUG("IP %s disabled for hw_init.\n",
adev->ip_blocks[i].version->funcs->name);
adev->ip_blocks[i].status.hw = true;
}
}
} else {
tmp = amdgpu_reset_method;
/* It should do a default reset when loading or reloading the driver,
* regardless of the module parameter reset_method.
*/
amdgpu_reset_method = AMD_RESET_METHOD_NONE;
r = amdgpu_asic_reset(adev);
amdgpu_reset_method = tmp;
if (r) {
dev_err(adev->dev, "asic reset on init failed\n");
goto failed;
}
}
}
pci_enable_pcie_error_reporting(adev->pdev);
/* Post card if necessary */
if (amdgpu_device_need_post(adev)) {
if (!adev->bios) {
dev_err(adev->dev, "no vBIOS found\n");
r = -EINVAL;
goto failed;
}
DRM_INFO("GPU posting now...\n");
r = amdgpu_device_asic_init(adev);
if (r) {
dev_err(adev->dev, "gpu post error!\n");
goto failed;
}
}
if (adev->is_atom_fw) {
/* Initialize clocks */
r = amdgpu_atomfirmware_get_clock_info(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atomfirmware_get_clock_info failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0);
goto failed;
}
} else {
/* Initialize clocks */
r = amdgpu_atombios_get_clock_info(adev);
if (r) {
dev_err(adev->dev, "amdgpu_atombios_get_clock_info failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0);
goto failed;
}
/* init i2c buses */
if (!amdgpu_device_has_dc_support(adev))
amdgpu_atombios_i2c_init(adev);
}
fence_driver_init:
/* Fence driver */
r = amdgpu_fence_driver_sw_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_fence_driver_sw_init failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_FENCE_INIT_FAIL, 0, 0);
goto failed;
}
/* init the mode config */
drm_mode_config_init(adev_to_drm(adev));
r = amdgpu_device_ip_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_device_ip_init failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_AMDGPU_INIT_FAIL, 0, 0);
goto release_ras_con;
}
amdgpu_fence_driver_hw_init(adev);
dev_info(adev->dev,
"SE %d, SH per SE %d, CU per SH %d, active_cu_number %d\n",
adev->gfx.config.max_shader_engines,
adev->gfx.config.max_sh_per_se,
adev->gfx.config.max_cu_per_sh,
adev->gfx.cu_info.number);
adev->accel_working = true;
amdgpu_vm_check_compute_bug(adev);
/* Initialize the buffer migration limit. */
if (amdgpu_moverate >= 0)
max_MBps = amdgpu_moverate;
else
max_MBps = 8; /* Allow 8 MB/s. */
/* Get a log2 for easy divisions. */
adev->mm_stats.log2_max_MBps = ilog2(max(1u, max_MBps));
r = amdgpu_pm_sysfs_init(adev);
if (r) {
adev->pm_sysfs_en = false;
DRM_ERROR("registering pm debugfs failed (%d).\n", r);
} else
adev->pm_sysfs_en = true;
r = amdgpu_ucode_sysfs_init(adev);
if (r) {
adev->ucode_sysfs_en = false;
DRM_ERROR("Creating firmware sysfs failed (%d).\n", r);
} else
adev->ucode_sysfs_en = true;
r = amdgpu_psp_sysfs_init(adev);
if (r) {
adev->psp_sysfs_en = false;
if (!amdgpu_sriov_vf(adev))
DRM_ERROR("Creating psp sysfs failed\n");
} else
adev->psp_sysfs_en = true;
/*
* Register gpu instance before amdgpu_device_enable_mgpu_fan_boost.
* Otherwise the mgpu fan boost feature will be skipped due to the
* gpu instance is counted less.
*/
amdgpu_register_gpu_instance(adev);
/* enable clockgating, etc. after ib tests, etc. since some blocks require
* explicit gating rather than handling it automatically.
*/
if (!adev->gmc.xgmi.pending_reset) {
r = amdgpu_device_ip_late_init(adev);
if (r) {
dev_err(adev->dev, "amdgpu_device_ip_late_init failed\n");
amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_AMDGPU_LATE_INIT_FAIL, 0, r);
goto release_ras_con;
}
/* must succeed. */
amdgpu_ras_resume(adev);
queue_delayed_work(system_wq, &adev->delayed_init_work,
msecs_to_jiffies(AMDGPU_RESUME_MS));
}
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_release_full_gpu(adev, true);
flush_delayed_work(&adev->delayed_init_work);
}
r = sysfs_create_files(&adev->dev->kobj, amdgpu_dev_attributes);
if (r)
dev_err(adev->dev, "Could not create amdgpu device attr\n");
if (IS_ENABLED(CONFIG_PERF_EVENTS))
r = amdgpu_pmu_init(adev);
if (r)
dev_err(adev->dev, "amdgpu_pmu_init failed\n");
/* Have stored pci confspace at hand for restore in sudden PCI error */
if (amdgpu_device_cache_pci_state(adev->pdev))
pci_restore_state(pdev);
/* if we have > 1 VGA cards, then disable the amdgpu VGA resources */
/* this will fail for cards that aren't VGA class devices, just
* ignore it */
if ((adev->pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA)
vga_client_register(adev->pdev, amdgpu_device_vga_set_decode);
px = amdgpu_device_supports_px(ddev);
if (px || (!pci_is_thunderbolt_attached(adev->pdev) &&
apple_gmux_detect(NULL, NULL)))
vga_switcheroo_register_client(adev->pdev,
&amdgpu_switcheroo_ops, px);
if (px)
vga_switcheroo_init_domain_pm_ops(adev->dev, &adev->vga_pm_domain);
if (adev->gmc.xgmi.pending_reset)
queue_delayed_work(system_wq, &mgpu_info.delayed_reset_work,
msecs_to_jiffies(AMDGPU_RESUME_MS));
amdgpu_device_check_iommu_direct_map(adev);
return 0;
release_ras_con:
if (amdgpu_sriov_vf(adev))
amdgpu_virt_release_full_gpu(adev, true);
/* failed in exclusive mode due to timeout */
if (amdgpu_sriov_vf(adev) &&
!amdgpu_sriov_runtime(adev) &&
amdgpu_virt_mmio_blocked(adev) &&
!amdgpu_virt_wait_reset(adev)) {
dev_err(adev->dev, "VF exclusive mode timeout\n");
/* Don't send request since VF is inactive. */
adev->virt.caps &= ~AMDGPU_SRIOV_CAPS_RUNTIME;
adev->virt.ops = NULL;
r = -EAGAIN;
}
amdgpu_release_ras_context(adev);
failed:
amdgpu_vf_error_trans_all(adev);
return r;
}
static void amdgpu_device_unmap_mmio(struct amdgpu_device *adev)
{
/* Clear all CPU mappings pointing to this device */
unmap_mapping_range(adev->ddev.anon_inode->i_mapping, 0, 0, 1);
/* Unmap all mapped bars - Doorbell, registers and VRAM */
amdgpu_device_doorbell_fini(adev);
iounmap(adev->rmmio);
adev->rmmio = NULL;
if (adev->mman.aper_base_kaddr)
iounmap(adev->mman.aper_base_kaddr);
adev->mman.aper_base_kaddr = NULL;
/* Memory manager related */
if (!adev->gmc.xgmi.connected_to_cpu) {
arch_phys_wc_del(adev->gmc.vram_mtrr);
arch_io_free_memtype_wc(adev->gmc.aper_base, adev->gmc.aper_size);
}
}
/**
* amdgpu_device_fini_hw - tear down the driver
*
* @adev: amdgpu_device pointer
*
* Tear down the driver info (all asics).
* Called at driver shutdown.
*/
void amdgpu_device_fini_hw(struct amdgpu_device *adev)
{
dev_info(adev->dev, "amdgpu: finishing device.\n");
flush_delayed_work(&adev->delayed_init_work);
adev->shutdown = true;
/* make sure IB test finished before entering exclusive mode
* to avoid preemption on IB test
* */
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_request_full_gpu(adev, false);
amdgpu_virt_fini_data_exchange(adev);
}
/* disable all interrupts */
amdgpu_irq_disable_all(adev);
if (adev->mode_info.mode_config_initialized){
if (!drm_drv_uses_atomic_modeset(adev_to_drm(adev)))
drm_helper_force_disable_all(adev_to_drm(adev));
else
drm_atomic_helper_shutdown(adev_to_drm(adev));
}
amdgpu_fence_driver_hw_fini(adev);
if (adev->mman.initialized) {
flush_delayed_work(&adev->mman.bdev.wq);
ttm_bo_lock_delayed_workqueue(&adev->mman.bdev);
}
if (adev->pm_sysfs_en)
amdgpu_pm_sysfs_fini(adev);
if (adev->ucode_sysfs_en)
amdgpu_ucode_sysfs_fini(adev);
if (adev->psp_sysfs_en)
amdgpu_psp_sysfs_fini(adev);
sysfs_remove_files(&adev->dev->kobj, amdgpu_dev_attributes);
/* disable ras feature must before hw fini */
amdgpu_ras_pre_fini(adev);
amdgpu_device_ip_fini_early(adev);
amdgpu_irq_fini_hw(adev);
if (adev->mman.initialized)
ttm_device_clear_dma_mappings(&adev->mman.bdev);
amdgpu_gart_dummy_page_fini(adev);
if (drm_dev_is_unplugged(adev_to_drm(adev)))
amdgpu_device_unmap_mmio(adev);
}
void amdgpu_device_fini_sw(struct amdgpu_device *adev)
{
int idx;
bool px;
amdgpu_fence_driver_sw_fini(adev);
amdgpu_device_ip_fini(adev);
release_firmware(adev->firmware.gpu_info_fw);
adev->firmware.gpu_info_fw = NULL;
adev->accel_working = false;
dma_fence_put(rcu_dereference_protected(adev->gang_submit, true));
amdgpu_reset_fini(adev);
/* free i2c buses */
if (!amdgpu_device_has_dc_support(adev))
amdgpu_i2c_fini(adev);
if (amdgpu_emu_mode != 1)
amdgpu_atombios_fini(adev);
kfree(adev->bios);
adev->bios = NULL;
px = amdgpu_device_supports_px(adev_to_drm(adev));
if (px || (!pci_is_thunderbolt_attached(adev->pdev) &&
apple_gmux_detect(NULL, NULL)))
vga_switcheroo_unregister_client(adev->pdev);
if (px)
vga_switcheroo_fini_domain_pm_ops(adev->dev);
if ((adev->pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA)
vga_client_unregister(adev->pdev);
if (drm_dev_enter(adev_to_drm(adev), &idx)) {
iounmap(adev->rmmio);
adev->rmmio = NULL;
amdgpu_device_doorbell_fini(adev);
drm_dev_exit(idx);
}
if (IS_ENABLED(CONFIG_PERF_EVENTS))
amdgpu_pmu_fini(adev);
if (adev->mman.discovery_bin)
amdgpu_discovery_fini(adev);
amdgpu_reset_put_reset_domain(adev->reset_domain);
adev->reset_domain = NULL;
kfree(adev->pci_state);
}
/**
* amdgpu_device_evict_resources - evict device resources
* @adev: amdgpu device object
*
* Evicts all ttm device resources(vram BOs, gart table) from the lru list
* of the vram memory type. Mainly used for evicting device resources
* at suspend time.
*
*/
static int amdgpu_device_evict_resources(struct amdgpu_device *adev)
{
int ret;
/* No need to evict vram on APUs for suspend to ram or s2idle */
if ((adev->in_s3 || adev->in_s0ix) && (adev->flags & AMD_IS_APU))
return 0;
ret = amdgpu_ttm_evict_resources(adev, TTM_PL_VRAM);
if (ret)
DRM_WARN("evicting device resources failed\n");
return ret;
}
/*
* Suspend & resume.
*/
/**
* amdgpu_device_suspend - initiate device suspend
*
* @dev: drm dev pointer
* @fbcon : notify the fbdev of suspend
*
* Puts the hw in the suspend state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver suspend.
*/
int amdgpu_device_suspend(struct drm_device *dev, bool fbcon)
{
struct amdgpu_device *adev = drm_to_adev(dev);
int r = 0;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
adev->in_suspend = true;
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_fini_data_exchange(adev);
r = amdgpu_virt_request_full_gpu(adev, false);
if (r)
return r;
}
if (amdgpu_acpi_smart_shift_update(dev, AMDGPU_SS_DEV_D3))
DRM_WARN("smart shift update failed\n");
drm_kms_helper_poll_disable(dev);
if (fbcon)
drm_fb_helper_set_suspend_unlocked(adev_to_drm(adev)->fb_helper, true);
cancel_delayed_work_sync(&adev->delayed_init_work);
flush_delayed_work(&adev->gfx.gfx_off_delay_work);
amdgpu_ras_suspend(adev);
amdgpu_device_ip_suspend_phase1(adev);
if (!adev->in_s0ix)
amdgpu_amdkfd_suspend(adev, adev->in_runpm);
r = amdgpu_device_evict_resources(adev);
if (r)
return r;
amdgpu_fence_driver_hw_fini(adev);
amdgpu_device_ip_suspend_phase2(adev);
if (amdgpu_sriov_vf(adev))
amdgpu_virt_release_full_gpu(adev, false);
return 0;
}
/**
* amdgpu_device_resume - initiate device resume
*
* @dev: drm dev pointer
* @fbcon : notify the fbdev of resume
*
* Bring the hw back to operating state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver resume.
*/
int amdgpu_device_resume(struct drm_device *dev, bool fbcon)
{
struct amdgpu_device *adev = drm_to_adev(dev);
int r = 0;
if (amdgpu_sriov_vf(adev)) {
r = amdgpu_virt_request_full_gpu(adev, true);
if (r)
return r;
}
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
if (adev->in_s0ix)
amdgpu_dpm_gfx_state_change(adev, sGpuChangeState_D0Entry);
/* post card */
if (amdgpu_device_need_post(adev)) {
r = amdgpu_device_asic_init(adev);
if (r)
dev_err(adev->dev, "amdgpu asic init failed\n");
}
r = amdgpu_device_ip_resume(adev);
/* no matter what r is, always need to properly release full GPU */
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_init_data_exchange(adev);
amdgpu_virt_release_full_gpu(adev, true);
}
if (r) {
dev_err(adev->dev, "amdgpu_device_ip_resume failed (%d).\n", r);
return r;
}
amdgpu_fence_driver_hw_init(adev);
r = amdgpu_device_ip_late_init(adev);
if (r)
return r;
queue_delayed_work(system_wq, &adev->delayed_init_work,
msecs_to_jiffies(AMDGPU_RESUME_MS));
if (!adev->in_s0ix) {
r = amdgpu_amdkfd_resume(adev, adev->in_runpm);
if (r)
return r;
}
/* Make sure IB tests flushed */
flush_delayed_work(&adev->delayed_init_work);
if (adev->in_s0ix) {
/* re-enable gfxoff after IP resume. This re-enables gfxoff after
* it was disabled for IP resume in amdgpu_device_ip_resume_phase2().
*/
amdgpu_gfx_off_ctrl(adev, true);
DRM_DEBUG("will enable gfxoff for the mission mode\n");
}
if (fbcon)
drm_fb_helper_set_suspend_unlocked(adev_to_drm(adev)->fb_helper, false);
drm_kms_helper_poll_enable(dev);
amdgpu_ras_resume(adev);
/*
* Most of the connector probing functions try to acquire runtime pm
* refs to ensure that the GPU is powered on when connector polling is
* performed. Since we're calling this from a runtime PM callback,
* trying to acquire rpm refs will cause us to deadlock.
*
* Since we're guaranteed to be holding the rpm lock, it's safe to
* temporarily disable the rpm helpers so this doesn't deadlock us.
*/
#ifdef CONFIG_PM
dev->dev->power.disable_depth++;
#endif
if (!amdgpu_device_has_dc_support(adev))
drm_helper_hpd_irq_event(dev);
else
drm_kms_helper_hotplug_event(dev);
#ifdef CONFIG_PM
dev->dev->power.disable_depth--;
#endif
adev->in_suspend = false;
if (adev->enable_mes)
amdgpu_mes_self_test(adev);
if (amdgpu_acpi_smart_shift_update(dev, AMDGPU_SS_DEV_D0))
DRM_WARN("smart shift update failed\n");
return 0;
}
/**
* amdgpu_device_ip_check_soft_reset - did soft reset succeed
*
* @adev: amdgpu_device pointer
*
* The list of all the hardware IPs that make up the asic is walked and
* the check_soft_reset callbacks are run. check_soft_reset determines
* if the asic is still hung or not.
* Returns true if any of the IPs are still in a hung state, false if not.
*/
static bool amdgpu_device_ip_check_soft_reset(struct amdgpu_device *adev)
{
int i;
bool asic_hang = false;
if (amdgpu_sriov_vf(adev))
return true;
if (amdgpu_asic_need_full_reset(adev))
return true;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].version->funcs->check_soft_reset)
adev->ip_blocks[i].status.hang =
adev->ip_blocks[i].version->funcs->check_soft_reset(adev);
if (adev->ip_blocks[i].status.hang) {
dev_info(adev->dev, "IP block:%s is hung!\n", adev->ip_blocks[i].version->funcs->name);
asic_hang = true;
}
}
return asic_hang;
}
/**
* amdgpu_device_ip_pre_soft_reset - prepare for soft reset
*
* @adev: amdgpu_device pointer
*
* The list of all the hardware IPs that make up the asic is walked and the
* pre_soft_reset callbacks are run if the block is hung. pre_soft_reset
* handles any IP specific hardware or software state changes that are
* necessary for a soft reset to succeed.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_pre_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->pre_soft_reset) {
r = adev->ip_blocks[i].version->funcs->pre_soft_reset(adev);
if (r)
return r;
}
}
return 0;
}
/**
* amdgpu_device_ip_need_full_reset - check if a full asic reset is needed
*
* @adev: amdgpu_device pointer
*
* Some hardware IPs cannot be soft reset. If they are hung, a full gpu
* reset is necessary to recover.
* Returns true if a full asic reset is required, false if not.
*/
static bool amdgpu_device_ip_need_full_reset(struct amdgpu_device *adev)
{
int i;
if (amdgpu_asic_need_full_reset(adev))
return true;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_ACP) ||
(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_DCE) ||
adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP) {
if (adev->ip_blocks[i].status.hang) {
dev_info(adev->dev, "Some block need full reset!\n");
return true;
}
}
}
return false;
}
/**
* amdgpu_device_ip_soft_reset - do a soft reset
*
* @adev: amdgpu_device pointer
*
* The list of all the hardware IPs that make up the asic is walked and the
* soft_reset callbacks are run if the block is hung. soft_reset handles any
* IP specific hardware or software state changes that are necessary to soft
* reset the IP.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->soft_reset) {
r = adev->ip_blocks[i].version->funcs->soft_reset(adev);
if (r)
return r;
}
}
return 0;
}
/**
* amdgpu_device_ip_post_soft_reset - clean up from soft reset
*
* @adev: amdgpu_device pointer
*
* The list of all the hardware IPs that make up the asic is walked and the
* post_soft_reset callbacks are run if the asic was hung. post_soft_reset
* handles any IP specific hardware or software state changes that are
* necessary after the IP has been soft reset.
* Returns 0 on success, negative error code on failure.
*/
static int amdgpu_device_ip_post_soft_reset(struct amdgpu_device *adev)
{
int i, r = 0;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_blocks[i].status.valid)
continue;
if (adev->ip_blocks[i].status.hang &&
adev->ip_blocks[i].version->funcs->post_soft_reset)
r = adev->ip_blocks[i].version->funcs->post_soft_reset(adev);
if (r)
return r;
}
return 0;
}
/**
* amdgpu_device_recover_vram - Recover some VRAM contents
*
* @adev: amdgpu_device pointer
*
* Restores the contents of VRAM buffers from the shadows in GTT. Used to
* restore things like GPUVM page tables after a GPU reset where
* the contents of VRAM might be lost.
*
* Returns:
* 0 on success, negative error code on failure.
*/
static int amdgpu_device_recover_vram(struct amdgpu_device *adev)
{
struct dma_fence *fence = NULL, *next = NULL;
struct amdgpu_bo *shadow;
struct amdgpu_bo_vm *vmbo;
long r = 1, tmo;
if (amdgpu_sriov_runtime(adev))
tmo = msecs_to_jiffies(8000);
else
tmo = msecs_to_jiffies(100);
dev_info(adev->dev, "recover vram bo from shadow start\n");
mutex_lock(&adev->shadow_list_lock);
list_for_each_entry(vmbo, &adev->shadow_list, shadow_list) {
/* If vm is compute context or adev is APU, shadow will be NULL */
if (!vmbo->shadow)
continue;
shadow = vmbo->shadow;
/* No need to recover an evicted BO */
if (shadow->tbo.resource->mem_type != TTM_PL_TT ||
shadow->tbo.resource->start == AMDGPU_BO_INVALID_OFFSET ||
shadow->parent->tbo.resource->mem_type != TTM_PL_VRAM)
continue;
r = amdgpu_bo_restore_shadow(shadow, &next);
if (r)
break;
if (fence) {
tmo = dma_fence_wait_timeout(fence, false, tmo);
dma_fence_put(fence);
fence = next;
if (tmo == 0) {
r = -ETIMEDOUT;
break;
} else if (tmo < 0) {
r = tmo;
break;
}
} else {
fence = next;
}
}
mutex_unlock(&adev->shadow_list_lock);
if (fence)
tmo = dma_fence_wait_timeout(fence, false, tmo);
dma_fence_put(fence);
if (r < 0 || tmo <= 0) {
dev_err(adev->dev, "recover vram bo from shadow failed, r is %ld, tmo is %ld\n", r, tmo);
return -EIO;
}
dev_info(adev->dev, "recover vram bo from shadow done\n");
return 0;
}
/**
* amdgpu_device_reset_sriov - reset ASIC for SR-IOV vf
*
* @adev: amdgpu_device pointer
* @from_hypervisor: request from hypervisor
*
* do VF FLR and reinitialize Asic
* return 0 means succeeded otherwise failed
*/
static int amdgpu_device_reset_sriov(struct amdgpu_device *adev,
bool from_hypervisor)
{
int r;
struct amdgpu_hive_info *hive = NULL;
int retry_limit = 0;
retry:
amdgpu_amdkfd_pre_reset(adev);
if (from_hypervisor)
r = amdgpu_virt_request_full_gpu(adev, true);
else
r = amdgpu_virt_reset_gpu(adev);
if (r)
return r;
/* Resume IP prior to SMC */
r = amdgpu_device_ip_reinit_early_sriov(adev);
if (r)
goto error;
amdgpu_virt_init_data_exchange(adev);
r = amdgpu_device_fw_loading(adev);
if (r)
return r;
/* now we are okay to resume SMC/CP/SDMA */
r = amdgpu_device_ip_reinit_late_sriov(adev);
if (r)
goto error;
hive = amdgpu_get_xgmi_hive(adev);
/* Update PSP FW topology after reset */
if (hive && adev->gmc.xgmi.num_physical_nodes > 1)
r = amdgpu_xgmi_update_topology(hive, adev);
if (hive)
amdgpu_put_xgmi_hive(hive);
if (!r) {
amdgpu_irq_gpu_reset_resume_helper(adev);
r = amdgpu_ib_ring_tests(adev);
amdgpu_amdkfd_post_reset(adev);
}
error:
if (!r && adev->virt.gim_feature & AMDGIM_FEATURE_GIM_FLR_VRAMLOST) {
amdgpu_inc_vram_lost(adev);
r = amdgpu_device_recover_vram(adev);
}
amdgpu_virt_release_full_gpu(adev, true);
if (AMDGPU_RETRY_SRIOV_RESET(r)) {
if (retry_limit < AMDGPU_MAX_RETRY_LIMIT) {
retry_limit++;
goto retry;
} else
DRM_ERROR("GPU reset retry is beyond the retry limit\n");
}
return r;
}
/**
* amdgpu_device_has_job_running - check if there is any job in mirror list
*
* @adev: amdgpu_device pointer
*
* check if there is any job in mirror list
*/
bool amdgpu_device_has_job_running(struct amdgpu_device *adev)
{
int i;
struct drm_sched_job *job;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
spin_lock(&ring->sched.job_list_lock);
job = list_first_entry_or_null(&ring->sched.pending_list,
struct drm_sched_job, list);
spin_unlock(&ring->sched.job_list_lock);
if (job)
return true;
}
return false;
}
/**
* amdgpu_device_should_recover_gpu - check if we should try GPU recovery
*
* @adev: amdgpu_device pointer
*
* Check amdgpu_gpu_recovery and SRIOV status to see if we should try to recover
* a hung GPU.
*/
bool amdgpu_device_should_recover_gpu(struct amdgpu_device *adev)
{
if (amdgpu_gpu_recovery == 0)
goto disabled;
if (!amdgpu_device_ip_check_soft_reset(adev)) {
dev_info(adev->dev,"Timeout, but no hardware hang detected.\n");
return false;
}
if (amdgpu_sriov_vf(adev))
return true;
if (amdgpu_gpu_recovery == -1) {
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_VERDE:
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_OLAND:
case CHIP_HAINAN:
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
#endif
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_CYAN_SKILLFISH:
goto disabled;
default:
break;
}
}
return true;
disabled:
dev_info(adev->dev, "GPU recovery disabled.\n");
return false;
}
int amdgpu_device_mode1_reset(struct amdgpu_device *adev)
{
u32 i;
int ret = 0;
amdgpu_atombios_scratch_regs_engine_hung(adev, true);
dev_info(adev->dev, "GPU mode1 reset\n");
/* disable BM */
pci_clear_master(adev->pdev);
amdgpu_device_cache_pci_state(adev->pdev);
if (amdgpu_dpm_is_mode1_reset_supported(adev)) {
dev_info(adev->dev, "GPU smu mode1 reset\n");
ret = amdgpu_dpm_mode1_reset(adev);
} else {
dev_info(adev->dev, "GPU psp mode1 reset\n");
ret = psp_gpu_reset(adev);
}
if (ret)
dev_err(adev->dev, "GPU mode1 reset failed\n");
amdgpu_device_load_pci_state(adev->pdev);
/* wait for asic to come out of reset */
for (i = 0; i < adev->usec_timeout; i++) {
u32 memsize = adev->nbio.funcs->get_memsize(adev);
if (memsize != 0xffffffff)
break;
udelay(1);
}
amdgpu_atombios_scratch_regs_engine_hung(adev, false);
return ret;
}
int amdgpu_device_pre_asic_reset(struct amdgpu_device *adev,
struct amdgpu_reset_context *reset_context)
{
int i, r = 0;
struct amdgpu_job *job = NULL;
bool need_full_reset =
test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
if (reset_context->reset_req_dev == adev)
job = reset_context->job;
if (amdgpu_sriov_vf(adev)) {
/* stop the data exchange thread */
amdgpu_virt_fini_data_exchange(adev);
}
amdgpu_fence_driver_isr_toggle(adev, true);
/* block all schedulers and reset given job's ring */
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
/*clear job fence from fence drv to avoid force_completion
*leave NULL and vm flush fence in fence drv */
amdgpu_fence_driver_clear_job_fences(ring);
/* after all hw jobs are reset, hw fence is meaningless, so force_completion */
amdgpu_fence_driver_force_completion(ring);
}
amdgpu_fence_driver_isr_toggle(adev, false);
if (job && job->vm)
drm_sched_increase_karma(&job->base);
r = amdgpu_reset_prepare_hwcontext(adev, reset_context);
/* If reset handler not implemented, continue; otherwise return */
if (r == -ENOSYS)
r = 0;
else
return r;
/* Don't suspend on bare metal if we are not going to HW reset the ASIC */
if (!amdgpu_sriov_vf(adev)) {
if (!need_full_reset)
need_full_reset = amdgpu_device_ip_need_full_reset(adev);
if (!need_full_reset && amdgpu_gpu_recovery) {
amdgpu_device_ip_pre_soft_reset(adev);
r = amdgpu_device_ip_soft_reset(adev);
amdgpu_device_ip_post_soft_reset(adev);
if (r || amdgpu_device_ip_check_soft_reset(adev)) {
dev_info(adev->dev, "soft reset failed, will fallback to full reset!\n");
need_full_reset = true;
}
}
if (need_full_reset)
r = amdgpu_device_ip_suspend(adev);
if (need_full_reset)
set_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
else
clear_bit(AMDGPU_NEED_FULL_RESET,
&reset_context->flags);
}
return r;
}
static int amdgpu_reset_reg_dumps(struct amdgpu_device *adev)
{
int i;
lockdep_assert_held(&adev->reset_domain->sem);
for (i = 0; i < adev->num_regs; i++) {
adev->reset_dump_reg_value[i] = RREG32(adev->reset_dump_reg_list[i]);
trace_amdgpu_reset_reg_dumps(adev->reset_dump_reg_list[i],
adev->reset_dump_reg_value[i]);
}
return 0;
}
#ifdef CONFIG_DEV_COREDUMP
static ssize_t amdgpu_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct drm_printer p;
struct amdgpu_device *adev = data;
struct drm_print_iterator iter;
int i;
iter.data = buffer;
iter.offset = 0;
iter.start = offset;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_printf(&p, "**** AMDGPU Device Coredump ****\n");
drm_printf(&p, "kernel: " UTS_RELEASE "\n");
drm_printf(&p, "module: " KBUILD_MODNAME "\n");
drm_printf(&p, "time: %lld.%09ld\n", adev->reset_time.tv_sec, adev->reset_time.tv_nsec);
if (adev->reset_task_info.pid)
drm_printf(&p, "process_name: %s PID: %d\n",
adev->reset_task_info.process_name,
adev->reset_task_info.pid);
if (adev->reset_vram_lost)
drm_printf(&p, "VRAM is lost due to GPU reset!\n");
if (adev->num_regs) {
drm_printf(&p, "AMDGPU register dumps:\nOffset: Value:\n");
for (i = 0; i < adev->num_regs; i++)
drm_printf(&p, "0x%08x: 0x%08x\n",
adev->reset_dump_reg_list[i],
adev->reset_dump_reg_value[i]);
}
return count - iter.remain;
}
static void amdgpu_devcoredump_free(void *data)
{
}
static void amdgpu_reset_capture_coredumpm(struct amdgpu_device *adev)
{
struct drm_device *dev = adev_to_drm(adev);
ktime_get_ts64(&adev->reset_time);
dev_coredumpm(dev->dev, THIS_MODULE, adev, 0, GFP_KERNEL,
amdgpu_devcoredump_read, amdgpu_devcoredump_free);
}
#endif
int amdgpu_do_asic_reset(struct list_head *device_list_handle,
struct amdgpu_reset_context *reset_context)
{
struct amdgpu_device *tmp_adev = NULL;
bool need_full_reset, skip_hw_reset, vram_lost = false;
int r = 0;
bool gpu_reset_for_dev_remove = 0;
/* Try reset handler method first */
tmp_adev = list_first_entry(device_list_handle, struct amdgpu_device,
reset_list);
amdgpu_reset_reg_dumps(tmp_adev);
reset_context->reset_device_list = device_list_handle;
r = amdgpu_reset_perform_reset(tmp_adev, reset_context);
/* If reset handler not implemented, continue; otherwise return */
if (r == -ENOSYS)
r = 0;
else
return r;
/* Reset handler not implemented, use the default method */
need_full_reset =
test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
skip_hw_reset = test_bit(AMDGPU_SKIP_HW_RESET, &reset_context->flags);
gpu_reset_for_dev_remove =
test_bit(AMDGPU_RESET_FOR_DEVICE_REMOVE, &reset_context->flags) &&
test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
/*
* ASIC reset has to be done on all XGMI hive nodes ASAP
* to allow proper links negotiation in FW (within 1 sec)
*/
if (!skip_hw_reset && need_full_reset) {
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
/* For XGMI run all resets in parallel to speed up the process */
if (tmp_adev->gmc.xgmi.num_physical_nodes > 1) {
tmp_adev->gmc.xgmi.pending_reset = false;
if (!queue_work(system_unbound_wq, &tmp_adev->xgmi_reset_work))
r = -EALREADY;
} else
r = amdgpu_asic_reset(tmp_adev);
if (r) {
dev_err(tmp_adev->dev, "ASIC reset failed with error, %d for drm dev, %s",
r, adev_to_drm(tmp_adev)->unique);
break;
}
}
/* For XGMI wait for all resets to complete before proceed */
if (!r) {
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
if (tmp_adev->gmc.xgmi.num_physical_nodes > 1) {
flush_work(&tmp_adev->xgmi_reset_work);
r = tmp_adev->asic_reset_res;
if (r)
break;
}
}
}
}
if (!r && amdgpu_ras_intr_triggered()) {
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
if (tmp_adev->mmhub.ras && tmp_adev->mmhub.ras->ras_block.hw_ops &&
tmp_adev->mmhub.ras->ras_block.hw_ops->reset_ras_error_count)
tmp_adev->mmhub.ras->ras_block.hw_ops->reset_ras_error_count(tmp_adev);
}
amdgpu_ras_intr_cleared();
}
/* Since the mode1 reset affects base ip blocks, the
* phase1 ip blocks need to be resumed. Otherwise there
* will be a BIOS signature error and the psp bootloader
* can't load kdb on the next amdgpu install.
*/
if (gpu_reset_for_dev_remove) {
list_for_each_entry(tmp_adev, device_list_handle, reset_list)
amdgpu_device_ip_resume_phase1(tmp_adev);
goto end;
}
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
if (need_full_reset) {
/* post card */
r = amdgpu_device_asic_init(tmp_adev);
if (r) {
dev_warn(tmp_adev->dev, "asic atom init failed!");
} else {
dev_info(tmp_adev->dev, "GPU reset succeeded, trying to resume\n");
r = amdgpu_amdkfd_resume_iommu(tmp_adev);
if (r)
goto out;
r = amdgpu_device_ip_resume_phase1(tmp_adev);
if (r)
goto out;
vram_lost = amdgpu_device_check_vram_lost(tmp_adev);
#ifdef CONFIG_DEV_COREDUMP
tmp_adev->reset_vram_lost = vram_lost;
memset(&tmp_adev->reset_task_info, 0,
sizeof(tmp_adev->reset_task_info));
if (reset_context->job && reset_context->job->vm)
tmp_adev->reset_task_info =
reset_context->job->vm->task_info;
amdgpu_reset_capture_coredumpm(tmp_adev);
#endif
if (vram_lost) {
DRM_INFO("VRAM is lost due to GPU reset!\n");
amdgpu_inc_vram_lost(tmp_adev);
}
r = amdgpu_device_fw_loading(tmp_adev);
if (r)
return r;
r = amdgpu_device_ip_resume_phase2(tmp_adev);
if (r)
goto out;
if (vram_lost)
amdgpu_device_fill_reset_magic(tmp_adev);
/*
* Add this ASIC as tracked as reset was already
* complete successfully.
*/
amdgpu_register_gpu_instance(tmp_adev);
if (!reset_context->hive &&
tmp_adev->gmc.xgmi.num_physical_nodes > 1)
amdgpu_xgmi_add_device(tmp_adev);
r = amdgpu_device_ip_late_init(tmp_adev);
if (r)
goto out;
drm_fb_helper_set_suspend_unlocked(adev_to_drm(tmp_adev)->fb_helper, false);
/*
* The GPU enters bad state once faulty pages
* by ECC has reached the threshold, and ras
* recovery is scheduled next. So add one check
* here to break recovery if it indeed exceeds
* bad page threshold, and remind user to
* retire this GPU or setting one bigger
* bad_page_threshold value to fix this once
* probing driver again.
*/
if (!amdgpu_ras_eeprom_check_err_threshold(tmp_adev)) {
/* must succeed. */
amdgpu_ras_resume(tmp_adev);
} else {
r = -EINVAL;
goto out;
}
/* Update PSP FW topology after reset */
if (reset_context->hive &&
tmp_adev->gmc.xgmi.num_physical_nodes > 1)
r = amdgpu_xgmi_update_topology(
reset_context->hive, tmp_adev);
}
}
out:
if (!r) {
amdgpu_irq_gpu_reset_resume_helper(tmp_adev);
r = amdgpu_ib_ring_tests(tmp_adev);
if (r) {
dev_err(tmp_adev->dev, "ib ring test failed (%d).\n", r);
need_full_reset = true;
r = -EAGAIN;
goto end;
}
}
if (!r)
r = amdgpu_device_recover_vram(tmp_adev);
else
tmp_adev->asic_reset_res = r;
}
end:
if (need_full_reset)
set_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
else
clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
return r;
}
static void amdgpu_device_set_mp1_state(struct amdgpu_device *adev)
{
switch (amdgpu_asic_reset_method(adev)) {
case AMD_RESET_METHOD_MODE1:
adev->mp1_state = PP_MP1_STATE_SHUTDOWN;
break;
case AMD_RESET_METHOD_MODE2:
adev->mp1_state = PP_MP1_STATE_RESET;
break;
default:
adev->mp1_state = PP_MP1_STATE_NONE;
break;
}
}
static void amdgpu_device_unset_mp1_state(struct amdgpu_device *adev)
{
amdgpu_vf_error_trans_all(adev);
adev->mp1_state = PP_MP1_STATE_NONE;
}
static void amdgpu_device_resume_display_audio(struct amdgpu_device *adev)
{
struct pci_dev *p = NULL;
p = pci_get_domain_bus_and_slot(pci_domain_nr(adev->pdev->bus),
adev->pdev->bus->number, 1);
if (p) {
pm_runtime_enable(&(p->dev));
pm_runtime_resume(&(p->dev));
}
pci_dev_put(p);
}
static int amdgpu_device_suspend_display_audio(struct amdgpu_device *adev)
{
enum amd_reset_method reset_method;
struct pci_dev *p = NULL;
u64 expires;
/*
* For now, only BACO and mode1 reset are confirmed
* to suffer the audio issue without proper suspended.
*/
reset_method = amdgpu_asic_reset_method(adev);
if ((reset_method != AMD_RESET_METHOD_BACO) &&
(reset_method != AMD_RESET_METHOD_MODE1))
return -EINVAL;
p = pci_get_domain_bus_and_slot(pci_domain_nr(adev->pdev->bus),
adev->pdev->bus->number, 1);
if (!p)
return -ENODEV;
expires = pm_runtime_autosuspend_expiration(&(p->dev));
if (!expires)
/*
* If we cannot get the audio device autosuspend delay,
* a fixed 4S interval will be used. Considering 3S is
* the audio controller default autosuspend delay setting.
* 4S used here is guaranteed to cover that.
*/
expires = ktime_get_mono_fast_ns() + NSEC_PER_SEC * 4ULL;
while (!pm_runtime_status_suspended(&(p->dev))) {
if (!pm_runtime_suspend(&(p->dev)))
break;
if (expires < ktime_get_mono_fast_ns()) {
dev_warn(adev->dev, "failed to suspend display audio\n");
pci_dev_put(p);
/* TODO: abort the succeeding gpu reset? */
return -ETIMEDOUT;
}
}
pm_runtime_disable(&(p->dev));
pci_dev_put(p);
return 0;
}
static void amdgpu_device_recheck_guilty_jobs(
struct amdgpu_device *adev, struct list_head *device_list_handle,
struct amdgpu_reset_context *reset_context)
{
int i, r = 0;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
int ret = 0;
struct drm_sched_job *s_job;
if (!ring || !ring->sched.thread)
continue;
s_job = list_first_entry_or_null(&ring->sched.pending_list,
struct drm_sched_job, list);
if (s_job == NULL)
continue;
/* clear job's guilty and depend the folowing step to decide the real one */
drm_sched_reset_karma(s_job);
drm_sched_resubmit_jobs_ext(&ring->sched, 1);
if (!s_job->s_fence->parent) {
DRM_WARN("Failed to get a HW fence for job!");
continue;
}
ret = dma_fence_wait_timeout(s_job->s_fence->parent, false, ring->sched.timeout);
if (ret == 0) { /* timeout */
DRM_ERROR("Found the real bad job! ring:%s, job_id:%llx\n",
ring->sched.name, s_job->id);
amdgpu_fence_driver_isr_toggle(adev, true);
/* Clear this failed job from fence array */
amdgpu_fence_driver_clear_job_fences(ring);
amdgpu_fence_driver_isr_toggle(adev, false);
/* Since the job won't signal and we go for
* another resubmit drop this parent pointer
*/
dma_fence_put(s_job->s_fence->parent);
s_job->s_fence->parent = NULL;
/* set guilty */
drm_sched_increase_karma(s_job);
amdgpu_reset_prepare_hwcontext(adev, reset_context);
retry:
/* do hw reset */
if (amdgpu_sriov_vf(adev)) {
amdgpu_virt_fini_data_exchange(adev);
r = amdgpu_device_reset_sriov(adev, false);
if (r)
adev->asic_reset_res = r;
} else {
clear_bit(AMDGPU_SKIP_HW_RESET,
&reset_context->flags);
r = amdgpu_do_asic_reset(device_list_handle,
reset_context);
if (r && r == -EAGAIN)
goto retry;
}
/*
* add reset counter so that the following
* resubmitted job could flush vmid
*/
atomic_inc(&adev->gpu_reset_counter);
continue;
}
/* got the hw fence, signal finished fence */
atomic_dec(ring->sched.score);
dma_fence_get(&s_job->s_fence->finished);
dma_fence_signal(&s_job->s_fence->finished);
dma_fence_put(&s_job->s_fence->finished);
/* remove node from list and free the job */
spin_lock(&ring->sched.job_list_lock);
list_del_init(&s_job->list);
spin_unlock(&ring->sched.job_list_lock);
ring->sched.ops->free_job(s_job);
}
}
static inline void amdgpu_device_stop_pending_resets(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
#if defined(CONFIG_DEBUG_FS)
if (!amdgpu_sriov_vf(adev))
cancel_work(&adev->reset_work);
#endif
if (adev->kfd.dev)
cancel_work(&adev->kfd.reset_work);
if (amdgpu_sriov_vf(adev))
cancel_work(&adev->virt.flr_work);
if (con && adev->ras_enabled)
cancel_work(&con->recovery_work);
}
/**
* amdgpu_device_gpu_recover - reset the asic and recover scheduler
*
* @adev: amdgpu_device pointer
* @job: which job trigger hang
*
* Attempt to reset the GPU if it has hung (all asics).
* Attempt to do soft-reset or full-reset and reinitialize Asic
* Returns 0 for success or an error on failure.
*/
int amdgpu_device_gpu_recover(struct amdgpu_device *adev,
struct amdgpu_job *job,
struct amdgpu_reset_context *reset_context)
{
struct list_head device_list, *device_list_handle = NULL;
bool job_signaled = false;
struct amdgpu_hive_info *hive = NULL;
struct amdgpu_device *tmp_adev = NULL;
int i, r = 0;
bool need_emergency_restart = false;
bool audio_suspended = false;
int tmp_vram_lost_counter;
bool gpu_reset_for_dev_remove = false;
gpu_reset_for_dev_remove =
test_bit(AMDGPU_RESET_FOR_DEVICE_REMOVE, &reset_context->flags) &&
test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags);
/*
* Special case: RAS triggered and full reset isn't supported
*/
need_emergency_restart = amdgpu_ras_need_emergency_restart(adev);
/*
* Flush RAM to disk so that after reboot
* the user can read log and see why the system rebooted.
*/
if (need_emergency_restart && amdgpu_ras_get_context(adev)->reboot) {
DRM_WARN("Emergency reboot.");
ksys_sync_helper();
emergency_restart();
}
dev_info(adev->dev, "GPU %s begin!\n",
need_emergency_restart ? "jobs stop":"reset");
if (!amdgpu_sriov_vf(adev))
hive = amdgpu_get_xgmi_hive(adev);
if (hive)
mutex_lock(&hive->hive_lock);
reset_context->job = job;
reset_context->hive = hive;
/*
* Build list of devices to reset.
* In case we are in XGMI hive mode, resort the device list
* to put adev in the 1st position.
*/
INIT_LIST_HEAD(&device_list);
if (!amdgpu_sriov_vf(adev) && (adev->gmc.xgmi.num_physical_nodes > 1)) {
list_for_each_entry(tmp_adev, &hive->device_list, gmc.xgmi.head) {
list_add_tail(&tmp_adev->reset_list, &device_list);
if (gpu_reset_for_dev_remove && adev->shutdown)
tmp_adev->shutdown = true;
}
if (!list_is_first(&adev->reset_list, &device_list))
list_rotate_to_front(&adev->reset_list, &device_list);
device_list_handle = &device_list;
} else {
list_add_tail(&adev->reset_list, &device_list);
device_list_handle = &device_list;
}
/* We need to lock reset domain only once both for XGMI and single device */
tmp_adev = list_first_entry(device_list_handle, struct amdgpu_device,
reset_list);
amdgpu_device_lock_reset_domain(tmp_adev->reset_domain);
/* block all schedulers and reset given job's ring */
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
amdgpu_device_set_mp1_state(tmp_adev);
/*
* Try to put the audio codec into suspend state
* before gpu reset started.
*
* Due to the power domain of the graphics device
* is shared with AZ power domain. Without this,
* we may change the audio hardware from behind
* the audio driver's back. That will trigger
* some audio codec errors.
*/
if (!amdgpu_device_suspend_display_audio(tmp_adev))
audio_suspended = true;
amdgpu_ras_set_error_query_ready(tmp_adev, false);
cancel_delayed_work_sync(&tmp_adev->delayed_init_work);
if (!amdgpu_sriov_vf(tmp_adev))
amdgpu_amdkfd_pre_reset(tmp_adev);
/*
* Mark these ASICs to be reseted as untracked first
* And add them back after reset completed
*/
amdgpu_unregister_gpu_instance(tmp_adev);
drm_fb_helper_set_suspend_unlocked(adev_to_drm(tmp_adev)->fb_helper, true);
/* disable ras on ALL IPs */
if (!need_emergency_restart &&
amdgpu_device_ip_need_full_reset(tmp_adev))
amdgpu_ras_suspend(tmp_adev);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = tmp_adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
drm_sched_stop(&ring->sched, job ? &job->base : NULL);
if (need_emergency_restart)
amdgpu_job_stop_all_jobs_on_sched(&ring->sched);
}
atomic_inc(&tmp_adev->gpu_reset_counter);
}
if (need_emergency_restart)
goto skip_sched_resume;
/*
* Must check guilty signal here since after this point all old
* HW fences are force signaled.
*
* job->base holds a reference to parent fence
*/
if (job && dma_fence_is_signaled(&job->hw_fence)) {
job_signaled = true;
dev_info(adev->dev, "Guilty job already signaled, skipping HW reset");
goto skip_hw_reset;
}
retry: /* Rest of adevs pre asic reset from XGMI hive. */
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
if (gpu_reset_for_dev_remove) {
/* Workaroud for ASICs need to disable SMC first */
amdgpu_device_smu_fini_early(tmp_adev);
}
r = amdgpu_device_pre_asic_reset(tmp_adev, reset_context);
/*TODO Should we stop ?*/
if (r) {
dev_err(tmp_adev->dev, "GPU pre asic reset failed with err, %d for drm dev, %s ",
r, adev_to_drm(tmp_adev)->unique);
tmp_adev->asic_reset_res = r;
}
/*
* Drop all pending non scheduler resets. Scheduler resets
* were already dropped during drm_sched_stop
*/
amdgpu_device_stop_pending_resets(tmp_adev);
}
tmp_vram_lost_counter = atomic_read(&((adev)->vram_lost_counter));
/* Actual ASIC resets if needed.*/
/* Host driver will handle XGMI hive reset for SRIOV */
if (amdgpu_sriov_vf(adev)) {
r = amdgpu_device_reset_sriov(adev, job ? false : true);
if (r)
adev->asic_reset_res = r;
/* Aldebaran supports ras in SRIOV, so need resume ras during reset */
if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 2))
amdgpu_ras_resume(adev);
} else {
r = amdgpu_do_asic_reset(device_list_handle, reset_context);
if (r && r == -EAGAIN)
goto retry;
if (!r && gpu_reset_for_dev_remove)
goto recover_end;
}
skip_hw_reset:
/* Post ASIC reset for all devs .*/
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
/*
* Sometimes a later bad compute job can block a good gfx job as gfx
* and compute ring share internal GC HW mutually. We add an additional
* guilty jobs recheck step to find the real guilty job, it synchronously
* submits and pends for the first job being signaled. If it gets timeout,
* we identify it as a real guilty job.
*/
if (amdgpu_gpu_recovery == 2 &&
!(tmp_vram_lost_counter < atomic_read(&adev->vram_lost_counter)))
amdgpu_device_recheck_guilty_jobs(
tmp_adev, device_list_handle, reset_context);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = tmp_adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
/* No point to resubmit jobs if we didn't HW reset*/
if (!tmp_adev->asic_reset_res && !job_signaled)
drm_sched_resubmit_jobs(&ring->sched);
drm_sched_start(&ring->sched, !tmp_adev->asic_reset_res);
}
if (adev->enable_mes && adev->ip_versions[GC_HWIP][0] != IP_VERSION(11, 0, 3))
amdgpu_mes_self_test(tmp_adev);
if (!drm_drv_uses_atomic_modeset(adev_to_drm(tmp_adev)) && !job_signaled) {
drm_helper_resume_force_mode(adev_to_drm(tmp_adev));
}
if (tmp_adev->asic_reset_res)
r = tmp_adev->asic_reset_res;
tmp_adev->asic_reset_res = 0;
if (r) {
/* bad news, how to tell it to userspace ? */
dev_info(tmp_adev->dev, "GPU reset(%d) failed\n", atomic_read(&tmp_adev->gpu_reset_counter));
amdgpu_vf_error_put(tmp_adev, AMDGIM_ERROR_VF_GPU_RESET_FAIL, 0, r);
} else {
dev_info(tmp_adev->dev, "GPU reset(%d) succeeded!\n", atomic_read(&tmp_adev->gpu_reset_counter));
if (amdgpu_acpi_smart_shift_update(adev_to_drm(tmp_adev), AMDGPU_SS_DEV_D0))
DRM_WARN("smart shift update failed\n");
}
}
skip_sched_resume:
list_for_each_entry(tmp_adev, device_list_handle, reset_list) {
/* unlock kfd: SRIOV would do it separately */
if (!need_emergency_restart && !amdgpu_sriov_vf(tmp_adev))
amdgpu_amdkfd_post_reset(tmp_adev);
/* kfd_post_reset will do nothing if kfd device is not initialized,
* need to bring up kfd here if it's not be initialized before
*/
if (!adev->kfd.init_complete)
amdgpu_amdkfd_device_init(adev);
if (audio_suspended)
amdgpu_device_resume_display_audio(tmp_adev);
amdgpu_device_unset_mp1_state(tmp_adev);
}
recover_end:
tmp_adev = list_first_entry(device_list_handle, struct amdgpu_device,
reset_list);
amdgpu_device_unlock_reset_domain(tmp_adev->reset_domain);
if (hive) {
mutex_unlock(&hive->hive_lock);
amdgpu_put_xgmi_hive(hive);
}
if (r)
dev_info(adev->dev, "GPU reset end with ret = %d\n", r);
atomic_set(&adev->reset_domain->reset_res, r);
return r;
}
/**
* amdgpu_device_get_pcie_info - fence pcie info about the PCIE slot
*
* @adev: amdgpu_device pointer
*
* Fetchs and stores in the driver the PCIE capabilities (gen speed
* and lanes) of the slot the device is in. Handles APUs and
* virtualized environments where PCIE config space may not be available.
*/
static void amdgpu_device_get_pcie_info(struct amdgpu_device *adev)
{
struct pci_dev *pdev;
enum pci_bus_speed speed_cap, platform_speed_cap;
enum pcie_link_width platform_link_width;
if (amdgpu_pcie_gen_cap)
adev->pm.pcie_gen_mask = amdgpu_pcie_gen_cap;
if (amdgpu_pcie_lane_cap)
adev->pm.pcie_mlw_mask = amdgpu_pcie_lane_cap;
/* covers APUs as well */
if (pci_is_root_bus(adev->pdev->bus)) {
if (adev->pm.pcie_gen_mask == 0)
adev->pm.pcie_gen_mask = AMDGPU_DEFAULT_PCIE_GEN_MASK;
if (adev->pm.pcie_mlw_mask == 0)
adev->pm.pcie_mlw_mask = AMDGPU_DEFAULT_PCIE_MLW_MASK;
return;
}
if (adev->pm.pcie_gen_mask && adev->pm.pcie_mlw_mask)
return;
pcie_bandwidth_available(adev->pdev, NULL,
&platform_speed_cap, &platform_link_width);
if (adev->pm.pcie_gen_mask == 0) {
/* asic caps */
pdev = adev->pdev;
speed_cap = pcie_get_speed_cap(pdev);
if (speed_cap == PCI_SPEED_UNKNOWN) {
adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3);
} else {
if (speed_cap == PCIE_SPEED_32_0GT)
adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN5);
else if (speed_cap == PCIE_SPEED_16_0GT)
adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4);
else if (speed_cap == PCIE_SPEED_8_0GT)
adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3);
else if (speed_cap == PCIE_SPEED_5_0GT)
adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2);
else
adev->pm.pcie_gen_mask |= CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1;
}
/* platform caps */
if (platform_speed_cap == PCI_SPEED_UNKNOWN) {
adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2);
} else {
if (platform_speed_cap == PCIE_SPEED_32_0GT)
adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN5);
else if (platform_speed_cap == PCIE_SPEED_16_0GT)
adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4);
else if (platform_speed_cap == PCIE_SPEED_8_0GT)
adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3);
else if (platform_speed_cap == PCIE_SPEED_5_0GT)
adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 |
CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2);
else
adev->pm.pcie_gen_mask |= CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1;
}
}
if (adev->pm.pcie_mlw_mask == 0) {
if (platform_link_width == PCIE_LNK_WIDTH_UNKNOWN) {
adev->pm.pcie_mlw_mask |= AMDGPU_DEFAULT_PCIE_MLW_MASK;
} else {
switch (platform_link_width) {
case PCIE_LNK_X32:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X32 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X16:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X12:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X8:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X4:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X2:
adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 |
CAIL_PCIE_LINK_WIDTH_SUPPORT_X1);
break;
case PCIE_LNK_X1:
adev->pm.pcie_mlw_mask = CAIL_PCIE_LINK_WIDTH_SUPPORT_X1;
break;
default:
break;
}
}
}
}
/**
* amdgpu_device_is_peer_accessible - Check peer access through PCIe BAR
*
* @adev: amdgpu_device pointer
* @peer_adev: amdgpu_device pointer for peer device trying to access @adev
*
* Return true if @peer_adev can access (DMA) @adev through the PCIe
* BAR, i.e. @adev is "large BAR" and the BAR matches the DMA mask of
* @peer_adev.
*/
bool amdgpu_device_is_peer_accessible(struct amdgpu_device *adev,
struct amdgpu_device *peer_adev)
{
#ifdef CONFIG_HSA_AMD_P2P
uint64_t address_mask = peer_adev->dev->dma_mask ?
~*peer_adev->dev->dma_mask : ~((1ULL << 32) - 1);
resource_size_t aper_limit =
adev->gmc.aper_base + adev->gmc.aper_size - 1;
bool p2p_access =
!adev->gmc.xgmi.connected_to_cpu &&
!(pci_p2pdma_distance(adev->pdev, peer_adev->dev, false) < 0);
return pcie_p2p && p2p_access && (adev->gmc.visible_vram_size &&
adev->gmc.real_vram_size == adev->gmc.visible_vram_size &&
!(adev->gmc.aper_base & address_mask ||
aper_limit & address_mask));
#else
return false;
#endif
}
int amdgpu_device_baco_enter(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
if (!amdgpu_device_supports_baco(adev_to_drm(adev)))
return -ENOTSUPP;
if (ras && adev->ras_enabled &&
adev->nbio.funcs->enable_doorbell_interrupt)
adev->nbio.funcs->enable_doorbell_interrupt(adev, false);
return amdgpu_dpm_baco_enter(adev);
}
int amdgpu_device_baco_exit(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
int ret = 0;
if (!amdgpu_device_supports_baco(adev_to_drm(adev)))
return -ENOTSUPP;
ret = amdgpu_dpm_baco_exit(adev);
if (ret)
return ret;
if (ras && adev->ras_enabled &&
adev->nbio.funcs->enable_doorbell_interrupt)
adev->nbio.funcs->enable_doorbell_interrupt(adev, true);
if (amdgpu_passthrough(adev) &&
adev->nbio.funcs->clear_doorbell_interrupt)
adev->nbio.funcs->clear_doorbell_interrupt(adev);
return 0;
}
/**
* amdgpu_pci_error_detected - Called when a PCI error is detected.
* @pdev: PCI device struct
* @state: PCI channel state
*
* Description: Called when a PCI error is detected.
*
* Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT.
*/
pci_ers_result_t amdgpu_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_to_adev(dev);
int i;
DRM_INFO("PCI error: detected callback, state(%d)!!\n", state);
if (adev->gmc.xgmi.num_physical_nodes > 1) {
DRM_WARN("No support for XGMI hive yet...");
return PCI_ERS_RESULT_DISCONNECT;
}
adev->pci_channel_state = state;
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
/* Fatal error, prepare for slot reset */
case pci_channel_io_frozen:
/*
* Locking adev->reset_domain->sem will prevent any external access
* to GPU during PCI error recovery
*/
amdgpu_device_lock_reset_domain(adev->reset_domain);
amdgpu_device_set_mp1_state(adev);
/*
* Block any work scheduling as we do for regular GPU reset
* for the duration of the recovery
*/
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
drm_sched_stop(&ring->sched, NULL);
}
atomic_inc(&adev->gpu_reset_counter);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
/* Permanent error, prepare for device removal */
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* amdgpu_pci_mmio_enabled - Enable MMIO and dump debug registers
* @pdev: pointer to PCI device
*/
pci_ers_result_t amdgpu_pci_mmio_enabled(struct pci_dev *pdev)
{
DRM_INFO("PCI error: mmio enabled callback!!\n");
/* TODO - dump whatever for debugging purposes */
/* This called only if amdgpu_pci_error_detected returns
* PCI_ERS_RESULT_CAN_RECOVER. Read/write to the device still
* works, no need to reset slot.
*/
return PCI_ERS_RESULT_RECOVERED;
}
/**
* amdgpu_pci_slot_reset - Called when PCI slot has been reset.
* @pdev: PCI device struct
*
* Description: This routine is called by the pci error recovery
* code after the PCI slot has been reset, just before we
* should resume normal operations.
*/
pci_ers_result_t amdgpu_pci_slot_reset(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_to_adev(dev);
int r, i;
struct amdgpu_reset_context reset_context;
u32 memsize;
struct list_head device_list;
DRM_INFO("PCI error: slot reset callback!!\n");
memset(&reset_context, 0, sizeof(reset_context));
INIT_LIST_HEAD(&device_list);
list_add_tail(&adev->reset_list, &device_list);
/* wait for asic to come out of reset */
msleep(500);
/* Restore PCI confspace */
amdgpu_device_load_pci_state(pdev);
/* confirm ASIC came out of reset */
for (i = 0; i < adev->usec_timeout; i++) {
memsize = amdgpu_asic_get_config_memsize(adev);
if (memsize != 0xffffffff)
break;
udelay(1);
}
if (memsize == 0xffffffff) {
r = -ETIME;
goto out;
}
reset_context.method = AMD_RESET_METHOD_NONE;
reset_context.reset_req_dev = adev;
set_bit(AMDGPU_NEED_FULL_RESET, &reset_context.flags);
set_bit(AMDGPU_SKIP_HW_RESET, &reset_context.flags);
adev->no_hw_access = true;
r = amdgpu_device_pre_asic_reset(adev, &reset_context);
adev->no_hw_access = false;
if (r)
goto out;
r = amdgpu_do_asic_reset(&device_list, &reset_context);
out:
if (!r) {
if (amdgpu_device_cache_pci_state(adev->pdev))
pci_restore_state(adev->pdev);
DRM_INFO("PCIe error recovery succeeded\n");
} else {
DRM_ERROR("PCIe error recovery failed, err:%d", r);
amdgpu_device_unset_mp1_state(adev);
amdgpu_device_unlock_reset_domain(adev->reset_domain);
}
return r ? PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_RECOVERED;
}
/**
* amdgpu_pci_resume() - resume normal ops after PCI reset
* @pdev: pointer to PCI device
*
* Called when the error recovery driver tells us that its
* OK to resume normal operation.
*/
void amdgpu_pci_resume(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_to_adev(dev);
int i;
DRM_INFO("PCI error: resume callback!!\n");
/* Only continue execution for the case of pci_channel_io_frozen */
if (adev->pci_channel_state != pci_channel_io_frozen)
return;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring || !ring->sched.thread)
continue;
drm_sched_resubmit_jobs(&ring->sched);
drm_sched_start(&ring->sched, true);
}
amdgpu_device_unset_mp1_state(adev);
amdgpu_device_unlock_reset_domain(adev->reset_domain);
}
bool amdgpu_device_cache_pci_state(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_to_adev(dev);
int r;
r = pci_save_state(pdev);
if (!r) {
kfree(adev->pci_state);
adev->pci_state = pci_store_saved_state(pdev);
if (!adev->pci_state) {
DRM_ERROR("Failed to store PCI saved state");
return false;
}
} else {
DRM_WARN("Failed to save PCI state, err:%d\n", r);
return false;
}
return true;
}
bool amdgpu_device_load_pci_state(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct amdgpu_device *adev = drm_to_adev(dev);
int r;
if (!adev->pci_state)
return false;
r = pci_load_saved_state(pdev, adev->pci_state);
if (!r) {
pci_restore_state(pdev);
} else {
DRM_WARN("Failed to load PCI state, err:%d\n", r);
return false;
}
return true;
}
void amdgpu_device_flush_hdp(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
#ifdef CONFIG_X86_64
if ((adev->flags & AMD_IS_APU) && !amdgpu_passthrough(adev))
return;
#endif
if (adev->gmc.xgmi.connected_to_cpu)
return;
if (ring && ring->funcs->emit_hdp_flush)
amdgpu_ring_emit_hdp_flush(ring);
else
amdgpu_asic_flush_hdp(adev, ring);
}
void amdgpu_device_invalidate_hdp(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
#ifdef CONFIG_X86_64
if ((adev->flags & AMD_IS_APU) && !amdgpu_passthrough(adev))
return;
#endif
if (adev->gmc.xgmi.connected_to_cpu)
return;
amdgpu_asic_invalidate_hdp(adev, ring);
}
int amdgpu_in_reset(struct amdgpu_device *adev)
{
return atomic_read(&adev->reset_domain->in_gpu_reset);
}
/**
* amdgpu_device_halt() - bring hardware to some kind of halt state
*
* @adev: amdgpu_device pointer
*
* Bring hardware to some kind of halt state so that no one can touch it
* any more. It will help to maintain error context when error occurred.
* Compare to a simple hang, the system will keep stable at least for SSH
* access. Then it should be trivial to inspect the hardware state and
* see what's going on. Implemented as following:
*
* 1. drm_dev_unplug() makes device inaccessible to user space(IOCTLs, etc),
* clears all CPU mappings to device, disallows remappings through page faults
* 2. amdgpu_irq_disable_all() disables all interrupts
* 3. amdgpu_fence_driver_hw_fini() signals all HW fences
* 4. set adev->no_hw_access to avoid potential crashes after setp 5
* 5. amdgpu_device_unmap_mmio() clears all MMIO mappings
* 6. pci_disable_device() and pci_wait_for_pending_transaction()
* flush any in flight DMA operations
*/
void amdgpu_device_halt(struct amdgpu_device *adev)
{
struct pci_dev *pdev = adev->pdev;
struct drm_device *ddev = adev_to_drm(adev);
drm_dev_unplug(ddev);
amdgpu_irq_disable_all(adev);
amdgpu_fence_driver_hw_fini(adev);
adev->no_hw_access = true;
amdgpu_device_unmap_mmio(adev);
pci_disable_device(pdev);
pci_wait_for_pending_transaction(pdev);
}
u32 amdgpu_device_pcie_port_rreg(struct amdgpu_device *adev,
u32 reg)
{
unsigned long flags, address, data;
u32 r;
address = adev->nbio.funcs->get_pcie_port_index_offset(adev);
data = adev->nbio.funcs->get_pcie_port_data_offset(adev);
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
WREG32(address, reg * 4);
(void)RREG32(address);
r = RREG32(data);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
return r;
}
void amdgpu_device_pcie_port_wreg(struct amdgpu_device *adev,
u32 reg, u32 v)
{
unsigned long flags, address, data;
address = adev->nbio.funcs->get_pcie_port_index_offset(adev);
data = adev->nbio.funcs->get_pcie_port_data_offset(adev);
spin_lock_irqsave(&adev->pcie_idx_lock, flags);
WREG32(address, reg * 4);
(void)RREG32(address);
WREG32(data, v);
(void)RREG32(data);
spin_unlock_irqrestore(&adev->pcie_idx_lock, flags);
}
/**
* amdgpu_device_switch_gang - switch to a new gang
* @adev: amdgpu_device pointer
* @gang: the gang to switch to
*
* Try to switch to a new gang.
* Returns: NULL if we switched to the new gang or a reference to the current
* gang leader.
*/
struct dma_fence *amdgpu_device_switch_gang(struct amdgpu_device *adev,
struct dma_fence *gang)
{
struct dma_fence *old = NULL;
do {
dma_fence_put(old);
rcu_read_lock();
old = dma_fence_get_rcu_safe(&adev->gang_submit);
rcu_read_unlock();
if (old == gang)
break;
if (!dma_fence_is_signaled(old))
return old;
} while (cmpxchg((struct dma_fence __force **)&adev->gang_submit,
old, gang) != old);
dma_fence_put(old);
return NULL;
}
bool amdgpu_device_has_display_hardware(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_HAINAN:
#endif
case CHIP_TOPAZ:
/* chips with no display hardware */
return false;
#ifdef CONFIG_DRM_AMDGPU_SI
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_OLAND:
#endif
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
#endif
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_CARRIZO:
case CHIP_STONEY:
/* chips with display hardware */
return true;
default:
/* IP discovery */
if (!adev->ip_versions[DCE_HWIP][0] ||
(adev->harvest_ip_mask & AMD_HARVEST_IP_DMU_MASK))
return false;
return true;
}
}