linuxdebug/drivers/gpu/drm/i915/gt/intel_rc6.c

822 lines
23 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/pm_runtime.h>
#include <linux/string_helpers.h>
#include "gem/i915_gem_region.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_vgpu.h"
#include "intel_engine_regs.h"
#include "intel_gt.h"
#include "intel_gt_pm.h"
#include "intel_gt_regs.h"
#include "intel_pcode.h"
#include "intel_rc6.h"
/**
* DOC: RC6
*
* RC6 is a special power stage which allows the GPU to enter an very
* low-voltage mode when idle, using down to 0V while at this stage. This
* stage is entered automatically when the GPU is idle when RC6 support is
* enabled, and as soon as new workload arises GPU wakes up automatically as
* well.
*
* There are different RC6 modes available in Intel GPU, which differentiate
* among each other with the latency required to enter and leave RC6 and
* voltage consumed by the GPU in different states.
*
* The combination of the following flags define which states GPU is allowed
* to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
* RC6pp is deepest RC6. Their support by hardware varies according to the
* GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
* which brings the most power savings; deeper states save more power, but
* require higher latency to switch to and wake up.
*/
static struct intel_gt *rc6_to_gt(struct intel_rc6 *rc6)
{
return container_of(rc6, struct intel_gt, rc6);
}
static struct intel_uncore *rc6_to_uncore(struct intel_rc6 *rc)
{
return rc6_to_gt(rc)->uncore;
}
static struct drm_i915_private *rc6_to_i915(struct intel_rc6 *rc)
{
return rc6_to_gt(rc)->i915;
}
static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
{
intel_uncore_write_fw(uncore, reg, val);
}
static void gen11_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_gt *gt = rc6_to_gt(rc6);
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 pg_enable;
int i;
/*
* With GuCRC, these parameters are set by GuC
*/
if (!intel_uc_uses_guc_rc(&gt->uc)) {
/* 2b: Program RC6 thresholds.*/
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GUC_MAX_IDLE_COUNT, 0xA);
set(uncore, GEN6_RC_SLEEP, 0);
set(uncore, GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
}
/*
* 2c: Program Coarse Power Gating Policies.
*
* Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
* use instead is a more conservative estimate for the maximum time
* it takes us to service a CS interrupt and submit a new ELSP - that
* is the time which the GPU is idle waiting for the CPU to select the
* next request to execute. If the idle hysteresis is less than that
* interrupt service latency, the hardware will automatically gate
* the power well and we will then incur the wake up cost on top of
* the service latency. A similar guide from plane_state is that we
* do not want the enable hysteresis to less than the wakeup latency.
*
* igt/gem_exec_nop/sequential provides a rough estimate for the
* service latency, and puts it under 10us for Icelake, similar to
* Broadwell+, To be conservative, we want to factor in a context
* switch on top (due to ksoftirqd).
*/
set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 60);
set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 60);
/* 3a: Enable RC6
*
* With GuCRC, we do not enable bit 31 of RC_CTL,
* thus allowing GuC to control RC6 entry/exit fully instead.
* We will not set the HW ENABLE and EI bits
*/
if (!intel_guc_rc_enable(&gt->uc.guc))
rc6->ctl_enable = GEN6_RC_CTL_RC6_ENABLE;
else
rc6->ctl_enable =
GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_RC6_ENABLE |
GEN6_RC_CTL_EI_MODE(1);
/* Wa_16011777198 - Render powergating must remain disabled */
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
pg_enable =
GEN9_MEDIA_PG_ENABLE |
GEN11_MEDIA_SAMPLER_PG_ENABLE;
else
pg_enable =
GEN9_RENDER_PG_ENABLE |
GEN9_MEDIA_PG_ENABLE |
GEN11_MEDIA_SAMPLER_PG_ENABLE;
if (GRAPHICS_VER(gt->i915) >= 12) {
for (i = 0; i < I915_MAX_VCS; i++)
if (HAS_ENGINE(gt, _VCS(i)))
pg_enable |= (VDN_HCP_POWERGATE_ENABLE(i) |
VDN_MFX_POWERGATE_ENABLE(i));
}
set(uncore, GEN9_PG_ENABLE, pg_enable);
}
static void gen9_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* 2b: Program RC6 thresholds.*/
if (GRAPHICS_VER(rc6_to_i915(rc6)) >= 11) {
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
} else if (IS_SKYLAKE(rc6_to_i915(rc6))) {
/*
* WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
* when CPG is enabled
*/
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
} else {
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
}
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GUC_MAX_IDLE_COUNT, 0xA);
set(uncore, GEN6_RC_SLEEP, 0);
/*
* 2c: Program Coarse Power Gating Policies.
*
* Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
* use instead is a more conservative estimate for the maximum time
* it takes us to service a CS interrupt and submit a new ELSP - that
* is the time which the GPU is idle waiting for the CPU to select the
* next request to execute. If the idle hysteresis is less than that
* interrupt service latency, the hardware will automatically gate
* the power well and we will then incur the wake up cost on top of
* the service latency. A similar guide from plane_state is that we
* do not want the enable hysteresis to less than the wakeup latency.
*
* igt/gem_exec_nop/sequential provides a rough estimate for the
* service latency, and puts it around 10us for Broadwell (and other
* big core) and around 40us for Broxton (and other low power cores).
* [Note that for legacy ringbuffer submission, this is less than 1us!]
* However, the wakeup latency on Broxton is closer to 100us. To be
* conservative, we have to factor in a context switch on top (due
* to ksoftirqd).
*/
set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
/* 3a: Enable RC6 */
set(uncore, GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
rc6->ctl_enable =
GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_RC6_ENABLE |
GEN6_RC_CTL_EI_MODE(1);
/*
* WaRsDisableCoarsePowerGating:skl,cnl
* - Render/Media PG need to be disabled with RC6.
*/
if (!NEEDS_WaRsDisableCoarsePowerGating(rc6_to_i915(rc6)))
set(uncore, GEN9_PG_ENABLE,
GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
}
static void gen8_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* 2b: Program RC6 thresholds.*/
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GEN6_RC_SLEEP, 0);
set(uncore, GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
/* 3: Enable RC6 */
rc6->ctl_enable =
GEN6_RC_CTL_HW_ENABLE |
GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_RC6_ENABLE;
}
static void gen6_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct drm_i915_private *i915 = rc6_to_i915(rc6);
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 rc6vids, rc6_mask;
int ret;
set(uncore, GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
set(uncore, GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000);
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GEN6_RC_SLEEP, 0);
set(uncore, GEN6_RC1e_THRESHOLD, 1000);
set(uncore, GEN6_RC6_THRESHOLD, 50000);
set(uncore, GEN6_RC6p_THRESHOLD, 150000);
set(uncore, GEN6_RC6pp_THRESHOLD, 64000); /* unused */
/* We don't use those on Haswell */
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
if (HAS_RC6p(i915))
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
if (HAS_RC6pp(i915))
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
rc6->ctl_enable =
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE;
rc6vids = 0;
ret = snb_pcode_read(rc6_to_gt(rc6)->uncore, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL);
if (GRAPHICS_VER(i915) == 6 && ret) {
drm_dbg(&i915->drm, "Couldn't check for BIOS workaround\n");
} else if (GRAPHICS_VER(i915) == 6 &&
(GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
drm_dbg(&i915->drm,
"You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
rc6vids &= 0xffff00;
rc6vids |= GEN6_ENCODE_RC6_VID(450);
ret = snb_pcode_write(rc6_to_gt(rc6)->uncore, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
if (ret)
drm_err(&i915->drm,
"Couldn't fix incorrect rc6 voltage\n");
}
}
/* Check that the pcbr address is not empty. */
static int chv_rc6_init(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct drm_i915_private *i915 = rc6_to_i915(rc6);
resource_size_t pctx_paddr, paddr;
resource_size_t pctx_size = 32 * SZ_1K;
u32 pcbr;
pcbr = intel_uncore_read(uncore, VLV_PCBR);
if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n");
paddr = i915->dsm.end + 1 - pctx_size;
GEM_BUG_ON(paddr > U32_MAX);
pctx_paddr = (paddr & ~4095);
intel_uncore_write(uncore, VLV_PCBR, pctx_paddr);
}
return 0;
}
static int vlv_rc6_init(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct drm_i915_gem_object *pctx;
resource_size_t pctx_paddr;
resource_size_t pctx_size = 24 * SZ_1K;
u32 pcbr;
pcbr = intel_uncore_read(uncore, VLV_PCBR);
if (pcbr) {
/* BIOS set it up already, grab the pre-alloc'd space */
resource_size_t pcbr_offset;
pcbr_offset = (pcbr & ~4095) - i915->dsm.start;
pctx = i915_gem_object_create_region_at(i915->mm.stolen_region,
pcbr_offset,
pctx_size,
0);
if (IS_ERR(pctx))
return PTR_ERR(pctx);
goto out;
}
drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n");
/*
* From the Gunit register HAS:
* The Gfx driver is expected to program this register and ensure
* proper allocation within Gfx stolen memory. For example, this
* register should be programmed such than the PCBR range does not
* overlap with other ranges, such as the frame buffer, protected
* memory, or any other relevant ranges.
*/
pctx = i915_gem_object_create_stolen(i915, pctx_size);
if (IS_ERR(pctx)) {
drm_dbg(&i915->drm,
"not enough stolen space for PCTX, disabling\n");
return PTR_ERR(pctx);
}
GEM_BUG_ON(range_overflows_end_t(u64,
i915->dsm.start,
pctx->stolen->start,
U32_MAX));
pctx_paddr = i915->dsm.start + pctx->stolen->start;
intel_uncore_write(uncore, VLV_PCBR, pctx_paddr);
out:
rc6->pctx = pctx;
return 0;
}
static void chv_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* 2a: Program RC6 thresholds.*/
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GEN6_RC_SLEEP, 0);
/* TO threshold set to 500 us (0x186 * 1.28 us) */
set(uncore, GEN6_RC6_THRESHOLD, 0x186);
/* Allows RC6 residency counter to work */
set(uncore, VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
/* 3: Enable RC6 */
rc6->ctl_enable = GEN7_RC_CTL_TO_MODE;
}
static void vlv_rc6_enable(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct intel_engine_cs *engine;
enum intel_engine_id id;
set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000);
set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_engine(engine, rc6_to_gt(rc6), id)
set(uncore, RING_MAX_IDLE(engine->mmio_base), 10);
set(uncore, GEN6_RC6_THRESHOLD, 0x557);
/* Allows RC6 residency counter to work */
set(uncore, VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
VLV_MEDIA_RC0_COUNT_EN |
VLV_RENDER_RC0_COUNT_EN |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
rc6->ctl_enable =
GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
}
static bool bxt_check_bios_rc6_setup(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct drm_i915_private *i915 = rc6_to_i915(rc6);
u32 rc6_ctx_base, rc_ctl, rc_sw_target;
bool enable_rc6 = true;
rc_ctl = intel_uncore_read(uncore, GEN6_RC_CONTROL);
rc_sw_target = intel_uncore_read(uncore, GEN6_RC_STATE);
rc_sw_target &= RC_SW_TARGET_STATE_MASK;
rc_sw_target >>= RC_SW_TARGET_STATE_SHIFT;
drm_dbg(&i915->drm, "BIOS enabled RC states: "
"HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
str_on_off(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
str_on_off(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
rc_sw_target);
if (!(intel_uncore_read(uncore, RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
drm_dbg(&i915->drm, "RC6 Base location not set properly.\n");
enable_rc6 = false;
}
/*
* The exact context size is not known for BXT, so assume a page size
* for this check.
*/
rc6_ctx_base =
intel_uncore_read(uncore, RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
if (!(rc6_ctx_base >= i915->dsm_reserved.start &&
rc6_ctx_base + PAGE_SIZE < i915->dsm_reserved.end)) {
drm_dbg(&i915->drm, "RC6 Base address not as expected.\n");
enable_rc6 = false;
}
if (!((intel_uncore_read(uncore, PWRCTX_MAXCNT(RENDER_RING_BASE)) & IDLE_TIME_MASK) > 1 &&
(intel_uncore_read(uncore, PWRCTX_MAXCNT(GEN6_BSD_RING_BASE)) & IDLE_TIME_MASK) > 1 &&
(intel_uncore_read(uncore, PWRCTX_MAXCNT(BLT_RING_BASE)) & IDLE_TIME_MASK) > 1 &&
(intel_uncore_read(uncore, PWRCTX_MAXCNT(VEBOX_RING_BASE)) & IDLE_TIME_MASK) > 1)) {
drm_dbg(&i915->drm,
"Engine Idle wait time not set properly.\n");
enable_rc6 = false;
}
if (!intel_uncore_read(uncore, GEN8_PUSHBUS_CONTROL) ||
!intel_uncore_read(uncore, GEN8_PUSHBUS_ENABLE) ||
!intel_uncore_read(uncore, GEN8_PUSHBUS_SHIFT)) {
drm_dbg(&i915->drm, "Pushbus not setup properly.\n");
enable_rc6 = false;
}
if (!intel_uncore_read(uncore, GEN6_GFXPAUSE)) {
drm_dbg(&i915->drm, "GFX pause not setup properly.\n");
enable_rc6 = false;
}
if (!intel_uncore_read(uncore, GEN8_MISC_CTRL0)) {
drm_dbg(&i915->drm, "GPM control not setup properly.\n");
enable_rc6 = false;
}
return enable_rc6;
}
static bool rc6_supported(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
if (!HAS_RC6(i915))
return false;
if (intel_vgpu_active(i915))
return false;
if (is_mock_gt(rc6_to_gt(rc6)))
return false;
if (IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(rc6)) {
drm_notice(&i915->drm,
"RC6 and powersaving disabled by BIOS\n");
return false;
}
return true;
}
static void rpm_get(struct intel_rc6 *rc6)
{
GEM_BUG_ON(rc6->wakeref);
pm_runtime_get_sync(rc6_to_i915(rc6)->drm.dev);
rc6->wakeref = true;
}
static void rpm_put(struct intel_rc6 *rc6)
{
GEM_BUG_ON(!rc6->wakeref);
pm_runtime_put(rc6_to_i915(rc6)->drm.dev);
rc6->wakeref = false;
}
static bool pctx_corrupted(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
return false;
if (intel_uncore_read(rc6_to_uncore(rc6), GEN8_RC6_CTX_INFO))
return false;
drm_notice(&i915->drm,
"RC6 context corruption, disabling runtime power management\n");
return true;
}
static void __intel_rc6_disable(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
struct intel_uncore *uncore = rc6_to_uncore(rc6);
struct intel_gt *gt = rc6_to_gt(rc6);
/* Take control of RC6 back from GuC */
intel_guc_rc_disable(&gt->uc.guc);
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
if (GRAPHICS_VER(i915) >= 9)
set(uncore, GEN9_PG_ENABLE, 0);
set(uncore, GEN6_RC_CONTROL, 0);
set(uncore, GEN6_RC_STATE, 0);
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
}
void intel_rc6_init(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
int err;
/* Disable runtime-pm until we can save the GPU state with rc6 pctx */
rpm_get(rc6);
if (!rc6_supported(rc6))
return;
if (IS_CHERRYVIEW(i915))
err = chv_rc6_init(rc6);
else if (IS_VALLEYVIEW(i915))
err = vlv_rc6_init(rc6);
else
err = 0;
/* Sanitize rc6, ensure it is disabled before we are ready. */
__intel_rc6_disable(rc6);
rc6->supported = err == 0;
}
void intel_rc6_sanitize(struct intel_rc6 *rc6)
{
memset(rc6->prev_hw_residency, 0, sizeof(rc6->prev_hw_residency));
if (rc6->enabled) { /* unbalanced suspend/resume */
rpm_get(rc6);
rc6->enabled = false;
}
if (rc6->supported)
__intel_rc6_disable(rc6);
}
void intel_rc6_enable(struct intel_rc6 *rc6)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
struct intel_uncore *uncore = rc6_to_uncore(rc6);
if (!rc6->supported)
return;
GEM_BUG_ON(rc6->enabled);
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
if (IS_CHERRYVIEW(i915))
chv_rc6_enable(rc6);
else if (IS_VALLEYVIEW(i915))
vlv_rc6_enable(rc6);
else if (GRAPHICS_VER(i915) >= 11)
gen11_rc6_enable(rc6);
else if (GRAPHICS_VER(i915) >= 9)
gen9_rc6_enable(rc6);
else if (IS_BROADWELL(i915))
gen8_rc6_enable(rc6);
else if (GRAPHICS_VER(i915) >= 6)
gen6_rc6_enable(rc6);
rc6->manual = rc6->ctl_enable & GEN6_RC_CTL_RC6_ENABLE;
if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
rc6->ctl_enable = 0;
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
if (unlikely(pctx_corrupted(rc6)))
return;
/* rc6 is ready, runtime-pm is go! */
rpm_put(rc6);
rc6->enabled = true;
}
void intel_rc6_unpark(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
if (!rc6->enabled)
return;
/* Restore HW timers for automatic RC6 entry while busy */
set(uncore, GEN6_RC_CONTROL, rc6->ctl_enable);
}
void intel_rc6_park(struct intel_rc6 *rc6)
{
struct intel_uncore *uncore = rc6_to_uncore(rc6);
unsigned int target;
if (!rc6->enabled)
return;
if (unlikely(pctx_corrupted(rc6))) {
intel_rc6_disable(rc6);
return;
}
if (!rc6->manual)
return;
/* Turn off the HW timers and go directly to rc6 */
set(uncore, GEN6_RC_CONTROL, GEN6_RC_CTL_RC6_ENABLE);
if (HAS_RC6pp(rc6_to_i915(rc6)))
target = 0x6; /* deepest rc6 */
else if (HAS_RC6p(rc6_to_i915(rc6)))
target = 0x5; /* deep rc6 */
else
target = 0x4; /* normal rc6 */
set(uncore, GEN6_RC_STATE, target << RC_SW_TARGET_STATE_SHIFT);
}
void intel_rc6_disable(struct intel_rc6 *rc6)
{
if (!rc6->enabled)
return;
rpm_get(rc6);
rc6->enabled = false;
__intel_rc6_disable(rc6);
}
void intel_rc6_fini(struct intel_rc6 *rc6)
{
struct drm_i915_gem_object *pctx;
intel_rc6_disable(rc6);
pctx = fetch_and_zero(&rc6->pctx);
if (pctx)
i915_gem_object_put(pctx);
if (rc6->wakeref)
rpm_put(rc6);
}
static u64 vlv_residency_raw(struct intel_uncore *uncore, const i915_reg_t reg)
{
u32 lower, upper, tmp;
int loop = 2;
/*
* The register accessed do not need forcewake. We borrow
* uncore lock to prevent concurrent access to range reg.
*/
lockdep_assert_held(&uncore->lock);
/*
* vlv and chv residency counters are 40 bits in width.
* With a control bit, we can choose between upper or lower
* 32bit window into this counter.
*
* Although we always use the counter in high-range mode elsewhere,
* userspace may attempt to read the value before rc6 is initialised,
* before we have set the default VLV_COUNTER_CONTROL value. So always
* set the high bit to be safe.
*/
set(uncore, VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
upper = intel_uncore_read_fw(uncore, reg);
do {
tmp = upper;
set(uncore, VLV_COUNTER_CONTROL,
_MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
lower = intel_uncore_read_fw(uncore, reg);
set(uncore, VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
upper = intel_uncore_read_fw(uncore, reg);
} while (upper != tmp && --loop);
/*
* Everywhere else we always use VLV_COUNTER_CONTROL with the
* VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
* now.
*/
return lower | (u64)upper << 8;
}
u64 intel_rc6_residency_ns(struct intel_rc6 *rc6, const i915_reg_t reg)
{
struct drm_i915_private *i915 = rc6_to_i915(rc6);
struct intel_uncore *uncore = rc6_to_uncore(rc6);
u64 time_hw, prev_hw, overflow_hw;
unsigned int fw_domains;
unsigned long flags;
unsigned int i;
u32 mul, div;
if (!rc6->supported)
return 0;
/*
* Store previous hw counter values for counter wrap-around handling.
*
* There are only four interesting registers and they live next to each
* other so we can use the relative address, compared to the smallest
* one as the index into driver storage.
*/
i = (i915_mmio_reg_offset(reg) -
i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
if (drm_WARN_ON_ONCE(&i915->drm, i >= ARRAY_SIZE(rc6->cur_residency)))
return 0;
fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
spin_lock_irqsave(&uncore->lock, flags);
intel_uncore_forcewake_get__locked(uncore, fw_domains);
/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
mul = 1000000;
div = i915->czclk_freq;
overflow_hw = BIT_ULL(40);
time_hw = vlv_residency_raw(uncore, reg);
} else {
/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
if (IS_GEN9_LP(i915)) {
mul = 10000;
div = 12;
} else {
mul = 1280;
div = 1;
}
overflow_hw = BIT_ULL(32);
time_hw = intel_uncore_read_fw(uncore, reg);
}
/*
* Counter wrap handling.
*
* But relying on a sufficient frequency of queries otherwise counters
* can still wrap.
*/
prev_hw = rc6->prev_hw_residency[i];
rc6->prev_hw_residency[i] = time_hw;
/* RC6 delta from last sample. */
if (time_hw >= prev_hw)
time_hw -= prev_hw;
else
time_hw += overflow_hw - prev_hw;
/* Add delta to RC6 extended raw driver copy. */
time_hw += rc6->cur_residency[i];
rc6->cur_residency[i] = time_hw;
intel_uncore_forcewake_put__locked(uncore, fw_domains);
spin_unlock_irqrestore(&uncore->lock, flags);
return mul_u64_u32_div(time_hw, mul, div);
}
u64 intel_rc6_residency_us(struct intel_rc6 *rc6, i915_reg_t reg)
{
return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(rc6, reg), 1000);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_rc6.c"
#endif