linuxdebug/drivers/gpu/drm/i915/gt/selftest_lrc.c

1978 lines
40 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2018 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include "gem/i915_gem_internal.h"
#include "i915_selftest.h"
#include "intel_engine_heartbeat.h"
#include "intel_engine_pm.h"
#include "intel_reset.h"
#include "intel_ring.h"
#include "selftest_engine_heartbeat.h"
#include "selftests/i915_random.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_live_test.h"
#include "selftests/igt_spinner.h"
#include "selftests/lib_sw_fence.h"
#include "shmem_utils.h"
#include "gem/selftests/igt_gem_utils.h"
#include "gem/selftests/mock_context.h"
#define CS_GPR(engine, n) ((engine)->mmio_base + 0x600 + (n) * 4)
#define NUM_GPR 16
#define NUM_GPR_DW (NUM_GPR * 2) /* each GPR is 2 dwords */
#define LRI_HEADER MI_INSTR(0x22, 0)
#define LRI_LENGTH_MASK GENMASK(7, 0)
static struct i915_vma *create_scratch(struct intel_gt *gt)
{
return __vm_create_scratch_for_read_pinned(&gt->ggtt->vm, PAGE_SIZE);
}
static bool is_active(struct i915_request *rq)
{
if (i915_request_is_active(rq))
return true;
if (i915_request_on_hold(rq))
return true;
if (i915_request_has_initial_breadcrumb(rq) && i915_request_started(rq))
return true;
return false;
}
static int wait_for_submit(struct intel_engine_cs *engine,
struct i915_request *rq,
unsigned long timeout)
{
/* Ignore our own attempts to suppress excess tasklets */
tasklet_hi_schedule(&engine->sched_engine->tasklet);
timeout += jiffies;
do {
bool done = time_after(jiffies, timeout);
if (i915_request_completed(rq)) /* that was quick! */
return 0;
/* Wait until the HW has acknowleged the submission (or err) */
intel_engine_flush_submission(engine);
if (!READ_ONCE(engine->execlists.pending[0]) && is_active(rq))
return 0;
if (done)
return -ETIME;
cond_resched();
} while (1);
}
static int emit_semaphore_signal(struct intel_context *ce, void *slot)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
i915_request_add(rq);
return 0;
}
static int context_flush(struct intel_context *ce, long timeout)
{
struct i915_request *rq;
struct dma_fence *fence;
int err = 0;
rq = intel_engine_create_kernel_request(ce->engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
fence = i915_active_fence_get(&ce->timeline->last_request);
if (fence) {
i915_request_await_dma_fence(rq, fence);
dma_fence_put(fence);
}
rq = i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, timeout) < 0)
err = -ETIME;
i915_request_put(rq);
rmb(); /* We know the request is written, make sure all state is too! */
return err;
}
static int get_lri_mask(struct intel_engine_cs *engine, u32 lri)
{
if ((lri & MI_LRI_LRM_CS_MMIO) == 0)
return ~0u;
if (GRAPHICS_VER(engine->i915) < 12)
return 0xfff;
switch (engine->class) {
default:
case RENDER_CLASS:
case COMPUTE_CLASS:
return 0x07ff;
case COPY_ENGINE_CLASS:
return 0x0fff;
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
return 0x3fff;
}
}
static int live_lrc_layout(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 *lrc;
int err;
/*
* Check the registers offsets we use to create the initial reg state
* match the layout saved by HW.
*/
lrc = (u32 *)__get_free_page(GFP_KERNEL); /* requires page alignment */
if (!lrc)
return -ENOMEM;
GEM_BUG_ON(offset_in_page(lrc));
err = 0;
for_each_engine(engine, gt, id) {
u32 *hw;
int dw;
if (!engine->default_state)
continue;
hw = shmem_pin_map(engine->default_state);
if (!hw) {
err = -ENOMEM;
break;
}
hw += LRC_STATE_OFFSET / sizeof(*hw);
__lrc_init_regs(memset(lrc, POISON_INUSE, PAGE_SIZE),
engine->kernel_context, engine, true);
dw = 0;
do {
u32 lri = READ_ONCE(hw[dw]);
u32 lri_mask;
if (lri == 0) {
dw++;
continue;
}
if (lrc[dw] == 0) {
pr_debug("%s: skipped instruction %x at dword %d\n",
engine->name, lri, dw);
dw++;
continue;
}
if ((lri & GENMASK(31, 23)) != LRI_HEADER) {
pr_err("%s: Expected LRI command at dword %d, found %08x\n",
engine->name, dw, lri);
err = -EINVAL;
break;
}
if (lrc[dw] != lri) {
pr_err("%s: LRI command mismatch at dword %d, expected %08x found %08x\n",
engine->name, dw, lri, lrc[dw]);
err = -EINVAL;
break;
}
/*
* When bit 19 of MI_LOAD_REGISTER_IMM instruction
* opcode is set on Gen12+ devices, HW does not
* care about certain register address offsets, and
* instead check the following for valid address
* ranges on specific engines:
* RCS && CCS: BITS(0 - 10)
* BCS: BITS(0 - 11)
* VECS && VCS: BITS(0 - 13)
*/
lri_mask = get_lri_mask(engine, lri);
lri &= 0x7f;
lri++;
dw++;
while (lri) {
u32 offset = READ_ONCE(hw[dw]);
if ((offset ^ lrc[dw]) & lri_mask) {
pr_err("%s: Different registers found at dword %d, expected %x, found %x\n",
engine->name, dw, offset, lrc[dw]);
err = -EINVAL;
break;
}
/*
* Skip over the actual register value as we
* expect that to differ.
*/
dw += 2;
lri -= 2;
}
} while (!err && (lrc[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
if (err) {
pr_info("%s: HW register image:\n", engine->name);
igt_hexdump(hw, PAGE_SIZE);
pr_info("%s: SW register image:\n", engine->name);
igt_hexdump(lrc, PAGE_SIZE);
}
shmem_unpin_map(engine->default_state, hw);
if (err)
break;
}
free_page((unsigned long)lrc);
return err;
}
static int find_offset(const u32 *lri, u32 offset)
{
int i;
for (i = 0; i < PAGE_SIZE / sizeof(u32); i++)
if (lri[i] == offset)
return i;
return -1;
}
static int live_lrc_fixed(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check the assumed register offsets match the actual locations in
* the context image.
*/
for_each_engine(engine, gt, id) {
const struct {
u32 reg;
u32 offset;
const char *name;
} tbl[] = {
{
i915_mmio_reg_offset(RING_START(engine->mmio_base)),
CTX_RING_START - 1,
"RING_START"
},
{
i915_mmio_reg_offset(RING_CTL(engine->mmio_base)),
CTX_RING_CTL - 1,
"RING_CTL"
},
{
i915_mmio_reg_offset(RING_HEAD(engine->mmio_base)),
CTX_RING_HEAD - 1,
"RING_HEAD"
},
{
i915_mmio_reg_offset(RING_TAIL(engine->mmio_base)),
CTX_RING_TAIL - 1,
"RING_TAIL"
},
{
i915_mmio_reg_offset(RING_MI_MODE(engine->mmio_base)),
lrc_ring_mi_mode(engine),
"RING_MI_MODE"
},
{
i915_mmio_reg_offset(RING_BBSTATE(engine->mmio_base)),
CTX_BB_STATE - 1,
"BB_STATE"
},
{
i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(engine->mmio_base)),
lrc_ring_wa_bb_per_ctx(engine),
"RING_BB_PER_CTX_PTR"
},
{
i915_mmio_reg_offset(RING_INDIRECT_CTX(engine->mmio_base)),
lrc_ring_indirect_ptr(engine),
"RING_INDIRECT_CTX_PTR"
},
{
i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(engine->mmio_base)),
lrc_ring_indirect_offset(engine),
"RING_INDIRECT_CTX_OFFSET"
},
{
i915_mmio_reg_offset(RING_CTX_TIMESTAMP(engine->mmio_base)),
CTX_TIMESTAMP - 1,
"RING_CTX_TIMESTAMP"
},
{
i915_mmio_reg_offset(GEN8_RING_CS_GPR(engine->mmio_base, 0)),
lrc_ring_gpr0(engine),
"RING_CS_GPR0"
},
{
i915_mmio_reg_offset(RING_CMD_BUF_CCTL(engine->mmio_base)),
lrc_ring_cmd_buf_cctl(engine),
"RING_CMD_BUF_CCTL"
},
{
i915_mmio_reg_offset(RING_BB_OFFSET(engine->mmio_base)),
lrc_ring_bb_offset(engine),
"RING_BB_OFFSET"
},
{ },
}, *t;
u32 *hw;
if (!engine->default_state)
continue;
hw = shmem_pin_map(engine->default_state);
if (!hw) {
err = -ENOMEM;
break;
}
hw += LRC_STATE_OFFSET / sizeof(*hw);
for (t = tbl; t->name; t++) {
int dw = find_offset(hw, t->reg);
if (dw != t->offset) {
pr_err("%s: Offset for %s [0x%x] mismatch, found %x, expected %x\n",
engine->name,
t->name,
t->reg,
dw,
t->offset);
err = -EINVAL;
}
}
shmem_unpin_map(engine->default_state, hw);
}
return err;
}
static int __live_lrc_state(struct intel_engine_cs *engine,
struct i915_vma *scratch)
{
struct intel_context *ce;
struct i915_request *rq;
struct i915_gem_ww_ctx ww;
enum {
RING_START_IDX = 0,
RING_TAIL_IDX,
MAX_IDX
};
u32 expected[MAX_IDX];
u32 *cs;
int err;
int n;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
i915_gem_ww_ctx_init(&ww, false);
retry:
err = i915_gem_object_lock(scratch->obj, &ww);
if (!err)
err = intel_context_pin_ww(ce, &ww);
if (err)
goto err_put;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
cs = intel_ring_begin(rq, 4 * MAX_IDX);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(rq);
goto err_unpin;
}
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_START(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_START_IDX * sizeof(u32);
*cs++ = 0;
expected[RING_START_IDX] = i915_ggtt_offset(ce->ring->vma);
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TAIL(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_TAIL_IDX * sizeof(u32);
*cs++ = 0;
err = i915_request_await_object(rq, scratch->obj, true);
if (!err)
err = i915_vma_move_to_active(scratch, rq, EXEC_OBJECT_WRITE);
i915_request_get(rq);
i915_request_add(rq);
if (err)
goto err_rq;
intel_engine_flush_submission(engine);
expected[RING_TAIL_IDX] = ce->ring->tail;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < MAX_IDX; n++) {
if (cs[n] != expected[n]) {
pr_err("%s: Stored register[%d] value[0x%x] did not match expected[0x%x]\n",
engine->name, n, cs[n], expected[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
i915_request_put(rq);
err_unpin:
intel_context_unpin(ce);
err_put:
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
intel_context_put(ce);
return err;
}
static int live_lrc_state(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check the live register state matches what we expect for this
* intel_context.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
err = __live_lrc_state(engine, scratch);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static int gpr_make_dirty(struct intel_context *ce)
{
struct i915_request *rq;
u32 *cs;
int n;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 2 * NUM_GPR_DW + 2);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_LOAD_REGISTER_IMM(NUM_GPR_DW);
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = CS_GPR(ce->engine, n);
*cs++ = STACK_MAGIC;
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
i915_request_add(rq);
return 0;
}
static struct i915_request *
__gpr_read(struct intel_context *ce, struct i915_vma *scratch, u32 *slot)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
int err;
int n;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return rq;
cs = intel_ring_begin(rq, 6 + 4 * NUM_GPR_DW);
if (IS_ERR(cs)) {
i915_request_add(rq);
return ERR_CAST(cs);
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_NOOP;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = offset;
*cs++ = 0;
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = CS_GPR(ce->engine, n);
*cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32);
*cs++ = 0;
}
i915_vma_lock(scratch);
err = i915_request_await_object(rq, scratch->obj, true);
if (!err)
err = i915_vma_move_to_active(scratch, rq, EXEC_OBJECT_WRITE);
i915_vma_unlock(scratch);
i915_request_get(rq);
i915_request_add(rq);
if (err) {
i915_request_put(rq);
rq = ERR_PTR(err);
}
return rq;
}
static int __live_lrc_gpr(struct intel_engine_cs *engine,
struct i915_vma *scratch,
bool preempt)
{
u32 *slot = memset32(engine->status_page.addr + 1000, 0, 4);
struct intel_context *ce;
struct i915_request *rq;
u32 *cs;
int err;
int n;
if (GRAPHICS_VER(engine->i915) < 9 && engine->class != RENDER_CLASS)
return 0; /* GPR only on rcs0 for gen8 */
err = gpr_make_dirty(engine->kernel_context);
if (err)
return err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
rq = __gpr_read(ce, scratch, slot);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_put;
}
err = wait_for_submit(engine, rq, HZ / 2);
if (err)
goto err_rq;
if (preempt) {
err = gpr_make_dirty(engine->kernel_context);
if (err)
goto err_rq;
err = emit_semaphore_signal(engine->kernel_context, slot);
if (err)
goto err_rq;
err = wait_for_submit(engine, rq, HZ / 2);
if (err)
goto err_rq;
} else {
slot[0] = 1;
wmb();
}
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < NUM_GPR_DW; n++) {
if (cs[n]) {
pr_err("%s: GPR[%d].%s was not zero, found 0x%08x!\n",
engine->name,
n / 2, n & 1 ? "udw" : "ldw",
cs[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
memset32(&slot[0], -1, 4);
wmb();
i915_request_put(rq);
err_put:
intel_context_put(ce);
return err;
}
static int live_lrc_gpr(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check that GPR registers are cleared in new contexts as we need
* to avoid leaking any information from previous contexts.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
st_engine_heartbeat_disable(engine);
err = __live_lrc_gpr(engine, scratch, false);
if (err)
goto err;
err = __live_lrc_gpr(engine, scratch, true);
if (err)
goto err;
err:
st_engine_heartbeat_enable(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static struct i915_request *
create_timestamp(struct intel_context *ce, void *slot, int idx)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
int err;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return rq;
cs = intel_ring_begin(rq, 10);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_NOOP;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = offset;
*cs++ = 0;
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(rq->engine->mmio_base));
*cs++ = offset + idx * sizeof(u32);
*cs++ = 0;
intel_ring_advance(rq, cs);
err = 0;
err:
i915_request_get(rq);
i915_request_add(rq);
if (err) {
i915_request_put(rq);
return ERR_PTR(err);
}
return rq;
}
struct lrc_timestamp {
struct intel_engine_cs *engine;
struct intel_context *ce[2];
u32 poison;
};
static bool timestamp_advanced(u32 start, u32 end)
{
return (s32)(end - start) > 0;
}
static int __lrc_timestamp(const struct lrc_timestamp *arg, bool preempt)
{
u32 *slot = memset32(arg->engine->status_page.addr + 1000, 0, 4);
struct i915_request *rq;
u32 timestamp;
int err = 0;
arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP] = arg->poison;
rq = create_timestamp(arg->ce[0], slot, 1);
if (IS_ERR(rq))
return PTR_ERR(rq);
err = wait_for_submit(rq->engine, rq, HZ / 2);
if (err)
goto err;
if (preempt) {
arg->ce[1]->lrc_reg_state[CTX_TIMESTAMP] = 0xdeadbeef;
err = emit_semaphore_signal(arg->ce[1], slot);
if (err)
goto err;
} else {
slot[0] = 1;
wmb();
}
/* And wait for switch to kernel (to save our context to memory) */
err = context_flush(arg->ce[0], HZ / 2);
if (err)
goto err;
if (!timestamp_advanced(arg->poison, slot[1])) {
pr_err("%s(%s): invalid timestamp on restore, context:%x, request:%x\n",
arg->engine->name, preempt ? "preempt" : "simple",
arg->poison, slot[1]);
err = -EINVAL;
}
timestamp = READ_ONCE(arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP]);
if (!timestamp_advanced(slot[1], timestamp)) {
pr_err("%s(%s): invalid timestamp on save, request:%x, context:%x\n",
arg->engine->name, preempt ? "preempt" : "simple",
slot[1], timestamp);
err = -EINVAL;
}
err:
memset32(slot, -1, 4);
i915_request_put(rq);
return err;
}
static int live_lrc_timestamp(void *arg)
{
struct lrc_timestamp data = {};
struct intel_gt *gt = arg;
enum intel_engine_id id;
const u32 poison[] = {
0,
S32_MAX,
(u32)S32_MAX + 1,
U32_MAX,
};
/*
* We want to verify that the timestamp is saved and restore across
* context switches and is monotonic.
*
* So we do this with a little bit of LRC poisoning to check various
* boundary conditions, and see what happens if we preempt the context
* with a second request (carrying more poison into the timestamp).
*/
for_each_engine(data.engine, gt, id) {
int i, err = 0;
st_engine_heartbeat_disable(data.engine);
for (i = 0; i < ARRAY_SIZE(data.ce); i++) {
struct intel_context *tmp;
tmp = intel_context_create(data.engine);
if (IS_ERR(tmp)) {
err = PTR_ERR(tmp);
goto err;
}
err = intel_context_pin(tmp);
if (err) {
intel_context_put(tmp);
goto err;
}
data.ce[i] = tmp;
}
for (i = 0; i < ARRAY_SIZE(poison); i++) {
data.poison = poison[i];
err = __lrc_timestamp(&data, false);
if (err)
break;
err = __lrc_timestamp(&data, true);
if (err)
break;
}
err:
st_engine_heartbeat_enable(data.engine);
for (i = 0; i < ARRAY_SIZE(data.ce); i++) {
if (!data.ce[i])
break;
intel_context_unpin(data.ce[i]);
intel_context_put(data.ce[i]);
}
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
return err;
}
return 0;
}
static struct i915_vma *
create_user_vma(struct i915_address_space *vm, unsigned long size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_internal(vm->i915, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err) {
i915_gem_object_put(obj);
return ERR_PTR(err);
}
return vma;
}
static u32 safe_poison(u32 offset, u32 poison)
{
/*
* Do not enable predication as it will nop all subsequent commands,
* not only disabling the tests (by preventing all the other SRM) but
* also preventing the arbitration events at the end of the request.
*/
if (offset == i915_mmio_reg_offset(RING_PREDICATE_RESULT(0)))
poison &= ~REG_BIT(0);
return poison;
}
static struct i915_vma *
store_context(struct intel_context *ce, struct i915_vma *scratch)
{
struct i915_vma *batch;
u32 dw, x, *cs, *hw;
u32 *defaults;
batch = create_user_vma(ce->vm, SZ_64K);
if (IS_ERR(batch))
return batch;
cs = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
if (IS_ERR(cs)) {
i915_vma_put(batch);
return ERR_CAST(cs);
}
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
i915_gem_object_unpin_map(batch->obj);
i915_vma_put(batch);
return ERR_PTR(-ENOMEM);
}
x = 0;
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & LRI_LENGTH_MASK;
/*
* Keep it simple, skip parsing complex commands
*
* At present, there are no more MI_LOAD_REGISTER_IMM
* commands after the first 3D state command. Rather
* than include a table (see i915_cmd_parser.c) of all
* the possible commands and their instruction lengths
* (or mask for variable length instructions), assume
* we have gathered the complete list of registers and
* bail out.
*/
if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT)
break;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) {
/* Assume all other MI commands match LRI length mask */
dw += len + 2;
continue;
}
if (!len) {
pr_err("%s: invalid LRI found in context image\n",
ce->engine->name);
igt_hexdump(defaults, PAGE_SIZE);
break;
}
dw++;
len = (len + 1) / 2;
while (len--) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8;
*cs++ = hw[dw];
*cs++ = lower_32_bits(scratch->node.start + x);
*cs++ = upper_32_bits(scratch->node.start + x);
dw += 2;
x += 4;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
*cs++ = MI_BATCH_BUFFER_END;
shmem_unpin_map(ce->engine->default_state, defaults);
i915_gem_object_flush_map(batch->obj);
i915_gem_object_unpin_map(batch->obj);
return batch;
}
static int move_to_active(struct i915_request *rq,
struct i915_vma *vma,
unsigned int flags)
{
int err;
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, flags);
if (!err)
err = i915_vma_move_to_active(vma, rq, flags);
i915_vma_unlock(vma);
return err;
}
static struct i915_request *
record_registers(struct intel_context *ce,
struct i915_vma *before,
struct i915_vma *after,
u32 *sema)
{
struct i915_vma *b_before, *b_after;
struct i915_request *rq;
u32 *cs;
int err;
b_before = store_context(ce, before);
if (IS_ERR(b_before))
return ERR_CAST(b_before);
b_after = store_context(ce, after);
if (IS_ERR(b_after)) {
rq = ERR_CAST(b_after);
goto err_before;
}
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto err_after;
err = move_to_active(rq, before, EXEC_OBJECT_WRITE);
if (err)
goto err_rq;
err = move_to_active(rq, b_before, 0);
if (err)
goto err_rq;
err = move_to_active(rq, after, EXEC_OBJECT_WRITE);
if (err)
goto err_rq;
err = move_to_active(rq, b_after, 0);
if (err)
goto err_rq;
cs = intel_ring_begin(rq, 14);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(b_before->node.start);
*cs++ = upper_32_bits(b_before->node.start);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(sema);
*cs++ = 0;
*cs++ = MI_NOOP;
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(b_after->node.start);
*cs++ = upper_32_bits(b_after->node.start);
intel_ring_advance(rq, cs);
WRITE_ONCE(*sema, 0);
i915_request_get(rq);
i915_request_add(rq);
err_after:
i915_vma_put(b_after);
err_before:
i915_vma_put(b_before);
return rq;
err_rq:
i915_request_add(rq);
rq = ERR_PTR(err);
goto err_after;
}
static struct i915_vma *load_context(struct intel_context *ce, u32 poison)
{
struct i915_vma *batch;
u32 dw, *cs, *hw;
u32 *defaults;
batch = create_user_vma(ce->vm, SZ_64K);
if (IS_ERR(batch))
return batch;
cs = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
if (IS_ERR(cs)) {
i915_vma_put(batch);
return ERR_CAST(cs);
}
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
i915_gem_object_unpin_map(batch->obj);
i915_vma_put(batch);
return ERR_PTR(-ENOMEM);
}
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & LRI_LENGTH_MASK;
/* For simplicity, break parsing at the first complex command */
if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT)
break;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) {
dw += len + 2;
continue;
}
if (!len) {
pr_err("%s: invalid LRI found in context image\n",
ce->engine->name);
igt_hexdump(defaults, PAGE_SIZE);
break;
}
dw++;
len = (len + 1) / 2;
*cs++ = MI_LOAD_REGISTER_IMM(len);
while (len--) {
*cs++ = hw[dw];
*cs++ = safe_poison(hw[dw] & get_lri_mask(ce->engine,
MI_LRI_LRM_CS_MMIO),
poison);
dw += 2;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
*cs++ = MI_BATCH_BUFFER_END;
shmem_unpin_map(ce->engine->default_state, defaults);
i915_gem_object_flush_map(batch->obj);
i915_gem_object_unpin_map(batch->obj);
return batch;
}
static int poison_registers(struct intel_context *ce, u32 poison, u32 *sema)
{
struct i915_request *rq;
struct i915_vma *batch;
u32 *cs;
int err;
batch = load_context(ce, poison);
if (IS_ERR(batch))
return PTR_ERR(batch);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_batch;
}
err = move_to_active(rq, batch, 0);
if (err)
goto err_rq;
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(batch->node.start);
*cs++ = upper_32_bits(batch->node.start);
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(sema);
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
err_rq:
i915_request_add(rq);
err_batch:
i915_vma_put(batch);
return err;
}
static bool is_moving(u32 a, u32 b)
{
return a != b;
}
static int compare_isolation(struct intel_engine_cs *engine,
struct i915_vma *ref[2],
struct i915_vma *result[2],
struct intel_context *ce,
u32 poison)
{
u32 x, dw, *hw, *lrc;
u32 *A[2], *B[2];
u32 *defaults;
int err = 0;
A[0] = i915_gem_object_pin_map_unlocked(ref[0]->obj, I915_MAP_WC);
if (IS_ERR(A[0]))
return PTR_ERR(A[0]);
A[1] = i915_gem_object_pin_map_unlocked(ref[1]->obj, I915_MAP_WC);
if (IS_ERR(A[1])) {
err = PTR_ERR(A[1]);
goto err_A0;
}
B[0] = i915_gem_object_pin_map_unlocked(result[0]->obj, I915_MAP_WC);
if (IS_ERR(B[0])) {
err = PTR_ERR(B[0]);
goto err_A1;
}
B[1] = i915_gem_object_pin_map_unlocked(result[1]->obj, I915_MAP_WC);
if (IS_ERR(B[1])) {
err = PTR_ERR(B[1]);
goto err_B0;
}
lrc = i915_gem_object_pin_map_unlocked(ce->state->obj,
i915_coherent_map_type(engine->i915,
ce->state->obj,
false));
if (IS_ERR(lrc)) {
err = PTR_ERR(lrc);
goto err_B1;
}
lrc += LRC_STATE_OFFSET / sizeof(*hw);
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
err = -ENOMEM;
goto err_lrc;
}
x = 0;
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & LRI_LENGTH_MASK;
/* For simplicity, break parsing at the first complex command */
if ((hw[dw] >> INSTR_CLIENT_SHIFT) != INSTR_MI_CLIENT)
break;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != LRI_HEADER) {
dw += len + 2;
continue;
}
if (!len) {
pr_err("%s: invalid LRI found in context image\n",
engine->name);
igt_hexdump(defaults, PAGE_SIZE);
break;
}
dw++;
len = (len + 1) / 2;
while (len--) {
if (!is_moving(A[0][x], A[1][x]) &&
(A[0][x] != B[0][x] || A[1][x] != B[1][x])) {
switch (hw[dw] & 4095) {
case 0x30: /* RING_HEAD */
case 0x34: /* RING_TAIL */
break;
default:
pr_err("%s[%d]: Mismatch for register %4x, default %08x, reference %08x, result (%08x, %08x), poison %08x, context %08x\n",
engine->name, dw,
hw[dw], hw[dw + 1],
A[0][x], B[0][x], B[1][x],
poison, lrc[dw + 1]);
err = -EINVAL;
}
}
dw += 2;
x++;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
shmem_unpin_map(ce->engine->default_state, defaults);
err_lrc:
i915_gem_object_unpin_map(ce->state->obj);
err_B1:
i915_gem_object_unpin_map(result[1]->obj);
err_B0:
i915_gem_object_unpin_map(result[0]->obj);
err_A1:
i915_gem_object_unpin_map(ref[1]->obj);
err_A0:
i915_gem_object_unpin_map(ref[0]->obj);
return err;
}
static struct i915_vma *
create_result_vma(struct i915_address_space *vm, unsigned long sz)
{
struct i915_vma *vma;
void *ptr;
vma = create_user_vma(vm, sz);
if (IS_ERR(vma))
return vma;
/* Set the results to a known value distinct from the poison */
ptr = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
if (IS_ERR(ptr)) {
i915_vma_put(vma);
return ERR_CAST(ptr);
}
memset(ptr, POISON_INUSE, vma->size);
i915_gem_object_flush_map(vma->obj);
i915_gem_object_unpin_map(vma->obj);
return vma;
}
static int __lrc_isolation(struct intel_engine_cs *engine, u32 poison)
{
u32 *sema = memset32(engine->status_page.addr + 1000, 0, 1);
struct i915_vma *ref[2], *result[2];
struct intel_context *A, *B;
struct i915_request *rq;
int err;
A = intel_context_create(engine);
if (IS_ERR(A))
return PTR_ERR(A);
B = intel_context_create(engine);
if (IS_ERR(B)) {
err = PTR_ERR(B);
goto err_A;
}
ref[0] = create_result_vma(A->vm, SZ_64K);
if (IS_ERR(ref[0])) {
err = PTR_ERR(ref[0]);
goto err_B;
}
ref[1] = create_result_vma(A->vm, SZ_64K);
if (IS_ERR(ref[1])) {
err = PTR_ERR(ref[1]);
goto err_ref0;
}
rq = record_registers(A, ref[0], ref[1], sema);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ref1;
}
WRITE_ONCE(*sema, 1);
wmb();
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
i915_request_put(rq);
err = -ETIME;
goto err_ref1;
}
i915_request_put(rq);
result[0] = create_result_vma(A->vm, SZ_64K);
if (IS_ERR(result[0])) {
err = PTR_ERR(result[0]);
goto err_ref1;
}
result[1] = create_result_vma(A->vm, SZ_64K);
if (IS_ERR(result[1])) {
err = PTR_ERR(result[1]);
goto err_result0;
}
rq = record_registers(A, result[0], result[1], sema);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_result1;
}
err = poison_registers(B, poison, sema);
if (err == 0 && i915_request_wait(rq, 0, HZ / 2) < 0) {
pr_err("%s(%s): wait for results timed out\n",
__func__, engine->name);
err = -ETIME;
}
/* Always cancel the semaphore wait, just in case the GPU gets stuck */
WRITE_ONCE(*sema, -1);
i915_request_put(rq);
if (err)
goto err_result1;
err = compare_isolation(engine, ref, result, A, poison);
err_result1:
i915_vma_put(result[1]);
err_result0:
i915_vma_put(result[0]);
err_ref1:
i915_vma_put(ref[1]);
err_ref0:
i915_vma_put(ref[0]);
err_B:
intel_context_put(B);
err_A:
intel_context_put(A);
return err;
}
static bool skip_isolation(const struct intel_engine_cs *engine)
{
if (engine->class == COPY_ENGINE_CLASS && GRAPHICS_VER(engine->i915) == 9)
return true;
if (engine->class == RENDER_CLASS && GRAPHICS_VER(engine->i915) == 11)
return true;
return false;
}
static int live_lrc_isolation(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
const u32 poison[] = {
STACK_MAGIC,
0x3a3a3a3a,
0x5c5c5c5c,
0xffffffff,
0xffff0000,
};
int err = 0;
/*
* Our goal is try and verify that per-context state cannot be
* tampered with by another non-privileged client.
*
* We take the list of context registers from the LRI in the default
* context image and attempt to modify that list from a remote context.
*/
for_each_engine(engine, gt, id) {
int i;
/* Just don't even ask */
if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN) &&
skip_isolation(engine))
continue;
intel_engine_pm_get(engine);
for (i = 0; i < ARRAY_SIZE(poison); i++) {
int result;
result = __lrc_isolation(engine, poison[i]);
if (result && !err)
err = result;
result = __lrc_isolation(engine, ~poison[i]);
if (result && !err)
err = result;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915)) {
err = -EIO;
break;
}
}
return err;
}
static int indirect_ctx_submit_req(struct intel_context *ce)
{
struct i915_request *rq;
int err = 0;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0)
err = -ETIME;
i915_request_put(rq);
return err;
}
#define CTX_BB_CANARY_OFFSET (3 * 1024)
#define CTX_BB_CANARY_INDEX (CTX_BB_CANARY_OFFSET / sizeof(u32))
static u32 *
emit_indirect_ctx_bb_canary(const struct intel_context *ce, u32 *cs)
{
*cs++ = MI_STORE_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT |
MI_LRI_LRM_CS_MMIO;
*cs++ = i915_mmio_reg_offset(RING_START(0));
*cs++ = i915_ggtt_offset(ce->state) +
context_wa_bb_offset(ce) +
CTX_BB_CANARY_OFFSET;
*cs++ = 0;
return cs;
}
static void
indirect_ctx_bb_setup(struct intel_context *ce)
{
u32 *cs = context_indirect_bb(ce);
cs[CTX_BB_CANARY_INDEX] = 0xdeadf00d;
setup_indirect_ctx_bb(ce, ce->engine, emit_indirect_ctx_bb_canary);
}
static bool check_ring_start(struct intel_context *ce)
{
const u32 * const ctx_bb = (void *)(ce->lrc_reg_state) -
LRC_STATE_OFFSET + context_wa_bb_offset(ce);
if (ctx_bb[CTX_BB_CANARY_INDEX] == ce->lrc_reg_state[CTX_RING_START])
return true;
pr_err("ring start mismatch: canary 0x%08x vs state 0x%08x\n",
ctx_bb[CTX_BB_CANARY_INDEX],
ce->lrc_reg_state[CTX_RING_START]);
return false;
}
static int indirect_ctx_bb_check(struct intel_context *ce)
{
int err;
err = indirect_ctx_submit_req(ce);
if (err)
return err;
if (!check_ring_start(ce))
return -EINVAL;
return 0;
}
static int __live_lrc_indirect_ctx_bb(struct intel_engine_cs *engine)
{
struct intel_context *a, *b;
int err;
a = intel_context_create(engine);
if (IS_ERR(a))
return PTR_ERR(a);
err = intel_context_pin(a);
if (err)
goto put_a;
b = intel_context_create(engine);
if (IS_ERR(b)) {
err = PTR_ERR(b);
goto unpin_a;
}
err = intel_context_pin(b);
if (err)
goto put_b;
/* We use the already reserved extra page in context state */
if (!a->wa_bb_page) {
GEM_BUG_ON(b->wa_bb_page);
GEM_BUG_ON(GRAPHICS_VER(engine->i915) == 12);
goto unpin_b;
}
/*
* In order to test that our per context bb is truly per context,
* and executes at the intended spot on context restoring process,
* make the batch store the ring start value to memory.
* As ring start is restored apriori of starting the indirect ctx bb and
* as it will be different for each context, it fits to this purpose.
*/
indirect_ctx_bb_setup(a);
indirect_ctx_bb_setup(b);
err = indirect_ctx_bb_check(a);
if (err)
goto unpin_b;
err = indirect_ctx_bb_check(b);
unpin_b:
intel_context_unpin(b);
put_b:
intel_context_put(b);
unpin_a:
intel_context_unpin(a);
put_a:
intel_context_put(a);
return err;
}
static int live_lrc_indirect_ctx_bb(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
for_each_engine(engine, gt, id) {
intel_engine_pm_get(engine);
err = __live_lrc_indirect_ctx_bb(engine);
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
return err;
}
static void garbage_reset(struct intel_engine_cs *engine,
struct i915_request *rq)
{
const unsigned int bit = I915_RESET_ENGINE + engine->id;
unsigned long *lock = &engine->gt->reset.flags;
local_bh_disable();
if (!test_and_set_bit(bit, lock)) {
tasklet_disable(&engine->sched_engine->tasklet);
if (!rq->fence.error)
__intel_engine_reset_bh(engine, NULL);
tasklet_enable(&engine->sched_engine->tasklet);
clear_and_wake_up_bit(bit, lock);
}
local_bh_enable();
}
static struct i915_request *garbage(struct intel_context *ce,
struct rnd_state *prng)
{
struct i915_request *rq;
int err;
err = intel_context_pin(ce);
if (err)
return ERR_PTR(err);
prandom_bytes_state(prng,
ce->lrc_reg_state,
ce->engine->context_size -
LRC_STATE_OFFSET);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
i915_request_get(rq);
i915_request_add(rq);
return rq;
err_unpin:
intel_context_unpin(ce);
return ERR_PTR(err);
}
static int __lrc_garbage(struct intel_engine_cs *engine, struct rnd_state *prng)
{
struct intel_context *ce;
struct i915_request *hang;
int err = 0;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
hang = garbage(ce, prng);
if (IS_ERR(hang)) {
err = PTR_ERR(hang);
goto err_ce;
}
if (wait_for_submit(engine, hang, HZ / 2)) {
i915_request_put(hang);
err = -ETIME;
goto err_ce;
}
intel_context_set_banned(ce);
garbage_reset(engine, hang);
intel_engine_flush_submission(engine);
if (!hang->fence.error) {
i915_request_put(hang);
pr_err("%s: corrupted context was not reset\n",
engine->name);
err = -EINVAL;
goto err_ce;
}
if (i915_request_wait(hang, 0, HZ / 2) < 0) {
pr_err("%s: corrupted context did not recover\n",
engine->name);
i915_request_put(hang);
err = -EIO;
goto err_ce;
}
i915_request_put(hang);
err_ce:
intel_context_put(ce);
return err;
}
static int live_lrc_garbage(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Verify that we can recover if one context state is completely
* corrupted.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN))
return 0;
for_each_engine(engine, gt, id) {
I915_RND_STATE(prng);
int err = 0, i;
if (!intel_has_reset_engine(engine->gt))
continue;
intel_engine_pm_get(engine);
for (i = 0; i < 3; i++) {
err = __lrc_garbage(engine, &prng);
if (err)
break;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
return err;
}
return 0;
}
static int __live_pphwsp_runtime(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct i915_request *rq;
IGT_TIMEOUT(end_time);
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
ce->stats.runtime.num_underflow = 0;
ce->stats.runtime.max_underflow = 0;
do {
unsigned int loop = 1024;
while (loop) {
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_rq;
}
if (--loop == 0)
i915_request_get(rq);
i915_request_add(rq);
}
if (__igt_timeout(end_time, NULL))
break;
i915_request_put(rq);
} while (1);
err = i915_request_wait(rq, 0, HZ / 5);
if (err < 0) {
pr_err("%s: request not completed!\n", engine->name);
goto err_wait;
}
igt_flush_test(engine->i915);
pr_info("%s: pphwsp runtime %lluns, average %lluns\n",
engine->name,
intel_context_get_total_runtime_ns(ce),
intel_context_get_avg_runtime_ns(ce));
err = 0;
if (ce->stats.runtime.num_underflow) {
pr_err("%s: pphwsp underflow %u time(s), max %u cycles!\n",
engine->name,
ce->stats.runtime.num_underflow,
ce->stats.runtime.max_underflow);
GEM_TRACE_DUMP();
err = -EOVERFLOW;
}
err_wait:
i915_request_put(rq);
err_rq:
intel_context_put(ce);
return err;
}
static int live_pphwsp_runtime(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check that cumulative context runtime as stored in the pphwsp[16]
* is monotonic.
*/
for_each_engine(engine, gt, id) {
err = __live_pphwsp_runtime(engine);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
return err;
}
int intel_lrc_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_lrc_layout),
SUBTEST(live_lrc_fixed),
SUBTEST(live_lrc_state),
SUBTEST(live_lrc_gpr),
SUBTEST(live_lrc_isolation),
SUBTEST(live_lrc_timestamp),
SUBTEST(live_lrc_garbage),
SUBTEST(live_pphwsp_runtime),
SUBTEST(live_lrc_indirect_ctx_bb),
};
if (!HAS_LOGICAL_RING_CONTEXTS(i915))
return 0;
return intel_gt_live_subtests(tests, to_gt(i915));
}