linuxdebug/drivers/gpu/drm/sprd/sprd_dpu.c

887 lines
22 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Unisoc Inc.
*/
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/dma-buf.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/of_irq.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include "sprd_drm.h"
#include "sprd_dpu.h"
#include "sprd_dsi.h"
/* Global control registers */
#define REG_DPU_CTRL 0x04
#define REG_DPU_CFG0 0x08
#define REG_PANEL_SIZE 0x20
#define REG_BLEND_SIZE 0x24
#define REG_BG_COLOR 0x2C
/* Layer0 control registers */
#define REG_LAY_BASE_ADDR0 0x30
#define REG_LAY_BASE_ADDR1 0x34
#define REG_LAY_BASE_ADDR2 0x38
#define REG_LAY_CTRL 0x40
#define REG_LAY_SIZE 0x44
#define REG_LAY_PITCH 0x48
#define REG_LAY_POS 0x4C
#define REG_LAY_ALPHA 0x50
#define REG_LAY_CROP_START 0x5C
/* Interrupt control registers */
#define REG_DPU_INT_EN 0x1E0
#define REG_DPU_INT_CLR 0x1E4
#define REG_DPU_INT_STS 0x1E8
/* DPI control registers */
#define REG_DPI_CTRL 0x1F0
#define REG_DPI_H_TIMING 0x1F4
#define REG_DPI_V_TIMING 0x1F8
/* MMU control registers */
#define REG_MMU_EN 0x800
#define REG_MMU_VPN_RANGE 0x80C
#define REG_MMU_PPN1 0x83C
#define REG_MMU_RANGE1 0x840
#define REG_MMU_PPN2 0x844
#define REG_MMU_RANGE2 0x848
/* Global control bits */
#define BIT_DPU_RUN BIT(0)
#define BIT_DPU_STOP BIT(1)
#define BIT_DPU_REG_UPDATE BIT(2)
#define BIT_DPU_IF_EDPI BIT(0)
/* Layer control bits */
#define BIT_DPU_LAY_EN BIT(0)
#define BIT_DPU_LAY_LAYER_ALPHA (0x01 << 2)
#define BIT_DPU_LAY_COMBO_ALPHA (0x02 << 2)
#define BIT_DPU_LAY_FORMAT_YUV422_2PLANE (0x00 << 4)
#define BIT_DPU_LAY_FORMAT_YUV420_2PLANE (0x01 << 4)
#define BIT_DPU_LAY_FORMAT_YUV420_3PLANE (0x02 << 4)
#define BIT_DPU_LAY_FORMAT_ARGB8888 (0x03 << 4)
#define BIT_DPU_LAY_FORMAT_RGB565 (0x04 << 4)
#define BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3 (0x00 << 8)
#define BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0 (0x01 << 8)
#define BIT_DPU_LAY_NO_SWITCH (0x00 << 10)
#define BIT_DPU_LAY_RB_OR_UV_SWITCH (0x01 << 10)
#define BIT_DPU_LAY_MODE_BLEND_NORMAL (0x00 << 16)
#define BIT_DPU_LAY_MODE_BLEND_PREMULT (0x01 << 16)
#define BIT_DPU_LAY_ROTATION_0 (0x00 << 20)
#define BIT_DPU_LAY_ROTATION_90 (0x01 << 20)
#define BIT_DPU_LAY_ROTATION_180 (0x02 << 20)
#define BIT_DPU_LAY_ROTATION_270 (0x03 << 20)
#define BIT_DPU_LAY_ROTATION_0_M (0x04 << 20)
#define BIT_DPU_LAY_ROTATION_90_M (0x05 << 20)
#define BIT_DPU_LAY_ROTATION_180_M (0x06 << 20)
#define BIT_DPU_LAY_ROTATION_270_M (0x07 << 20)
/* Interrupt control & status bits */
#define BIT_DPU_INT_DONE BIT(0)
#define BIT_DPU_INT_TE BIT(1)
#define BIT_DPU_INT_ERR BIT(2)
#define BIT_DPU_INT_UPDATE_DONE BIT(4)
#define BIT_DPU_INT_VSYNC BIT(5)
/* DPI control bits */
#define BIT_DPU_EDPI_TE_EN BIT(8)
#define BIT_DPU_EDPI_FROM_EXTERNAL_PAD BIT(10)
#define BIT_DPU_DPI_HALT_EN BIT(16)
static const u32 layer_fmts[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_RGBX8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_BGR565,
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
DRM_FORMAT_NV16,
DRM_FORMAT_NV61,
DRM_FORMAT_YUV420,
DRM_FORMAT_YVU420,
};
struct sprd_plane {
struct drm_plane base;
};
static int dpu_wait_stop_done(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
int rc;
if (ctx->stopped)
return 0;
rc = wait_event_interruptible_timeout(ctx->wait_queue, ctx->evt_stop,
msecs_to_jiffies(500));
ctx->evt_stop = false;
ctx->stopped = true;
if (!rc) {
drm_err(dpu->drm, "dpu wait for stop done time out!\n");
return -ETIMEDOUT;
}
return 0;
}
static int dpu_wait_update_done(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
int rc;
ctx->evt_update = false;
rc = wait_event_interruptible_timeout(ctx->wait_queue, ctx->evt_update,
msecs_to_jiffies(500));
if (!rc) {
drm_err(dpu->drm, "dpu wait for reg update done time out!\n");
return -ETIMEDOUT;
}
return 0;
}
static u32 drm_format_to_dpu(struct drm_framebuffer *fb)
{
u32 format = 0;
switch (fb->format->format) {
case DRM_FORMAT_BGRA8888:
/* BGRA8888 -> ARGB8888 */
format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
format |= BIT_DPU_LAY_FORMAT_ARGB8888;
break;
case DRM_FORMAT_RGBX8888:
case DRM_FORMAT_RGBA8888:
/* RGBA8888 -> ABGR8888 */
format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
fallthrough;
case DRM_FORMAT_ABGR8888:
/* RB switch */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
fallthrough;
case DRM_FORMAT_ARGB8888:
format |= BIT_DPU_LAY_FORMAT_ARGB8888;
break;
case DRM_FORMAT_XBGR8888:
/* RB switch */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
fallthrough;
case DRM_FORMAT_XRGB8888:
format |= BIT_DPU_LAY_FORMAT_ARGB8888;
break;
case DRM_FORMAT_BGR565:
/* RB switch */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
fallthrough;
case DRM_FORMAT_RGB565:
format |= BIT_DPU_LAY_FORMAT_RGB565;
break;
case DRM_FORMAT_NV12:
/* 2-Lane: Yuv420 */
format |= BIT_DPU_LAY_FORMAT_YUV420_2PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
/* UV endian */
format |= BIT_DPU_LAY_NO_SWITCH;
break;
case DRM_FORMAT_NV21:
/* 2-Lane: Yuv420 */
format |= BIT_DPU_LAY_FORMAT_YUV420_2PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
/* UV endian */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
break;
case DRM_FORMAT_NV16:
/* 2-Lane: Yuv422 */
format |= BIT_DPU_LAY_FORMAT_YUV422_2PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B3B2B1B0;
/* UV endian */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
break;
case DRM_FORMAT_NV61:
/* 2-Lane: Yuv422 */
format |= BIT_DPU_LAY_FORMAT_YUV422_2PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
/* UV endian */
format |= BIT_DPU_LAY_NO_SWITCH;
break;
case DRM_FORMAT_YUV420:
format |= BIT_DPU_LAY_FORMAT_YUV420_3PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
/* UV endian */
format |= BIT_DPU_LAY_NO_SWITCH;
break;
case DRM_FORMAT_YVU420:
format |= BIT_DPU_LAY_FORMAT_YUV420_3PLANE;
/* Y endian */
format |= BIT_DPU_LAY_DATA_ENDIAN_B0B1B2B3;
/* UV endian */
format |= BIT_DPU_LAY_RB_OR_UV_SWITCH;
break;
default:
break;
}
return format;
}
static u32 drm_rotation_to_dpu(struct drm_plane_state *state)
{
u32 rotation = 0;
switch (state->rotation) {
default:
case DRM_MODE_ROTATE_0:
rotation = BIT_DPU_LAY_ROTATION_0;
break;
case DRM_MODE_ROTATE_90:
rotation = BIT_DPU_LAY_ROTATION_90;
break;
case DRM_MODE_ROTATE_180:
rotation = BIT_DPU_LAY_ROTATION_180;
break;
case DRM_MODE_ROTATE_270:
rotation = BIT_DPU_LAY_ROTATION_270;
break;
case DRM_MODE_REFLECT_Y:
rotation = BIT_DPU_LAY_ROTATION_180_M;
break;
case (DRM_MODE_REFLECT_Y | DRM_MODE_ROTATE_90):
rotation = BIT_DPU_LAY_ROTATION_90_M;
break;
case DRM_MODE_REFLECT_X:
rotation = BIT_DPU_LAY_ROTATION_0_M;
break;
case (DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_90):
rotation = BIT_DPU_LAY_ROTATION_270_M;
break;
}
return rotation;
}
static u32 drm_blend_to_dpu(struct drm_plane_state *state)
{
u32 blend = 0;
switch (state->pixel_blend_mode) {
case DRM_MODE_BLEND_COVERAGE:
/* alpha mode select - combo alpha */
blend |= BIT_DPU_LAY_COMBO_ALPHA;
/* Normal mode */
blend |= BIT_DPU_LAY_MODE_BLEND_NORMAL;
break;
case DRM_MODE_BLEND_PREMULTI:
/* alpha mode select - combo alpha */
blend |= BIT_DPU_LAY_COMBO_ALPHA;
/* Pre-mult mode */
blend |= BIT_DPU_LAY_MODE_BLEND_PREMULT;
break;
case DRM_MODE_BLEND_PIXEL_NONE:
default:
/* don't do blending, maybe RGBX */
/* alpha mode select - layer alpha */
blend |= BIT_DPU_LAY_LAYER_ALPHA;
break;
}
return blend;
}
static void sprd_dpu_layer(struct sprd_dpu *dpu, struct drm_plane_state *state)
{
struct dpu_context *ctx = &dpu->ctx;
struct drm_gem_dma_object *dma_obj;
struct drm_framebuffer *fb = state->fb;
u32 addr, size, offset, pitch, blend, format, rotation;
u32 src_x = state->src_x >> 16;
u32 src_y = state->src_y >> 16;
u32 src_w = state->src_w >> 16;
u32 src_h = state->src_h >> 16;
u32 dst_x = state->crtc_x;
u32 dst_y = state->crtc_y;
u32 alpha = state->alpha;
u32 index = state->zpos;
int i;
offset = (dst_x & 0xffff) | (dst_y << 16);
size = (src_w & 0xffff) | (src_h << 16);
for (i = 0; i < fb->format->num_planes; i++) {
dma_obj = drm_fb_dma_get_gem_obj(fb, i);
addr = dma_obj->dma_addr + fb->offsets[i];
if (i == 0)
layer_reg_wr(ctx, REG_LAY_BASE_ADDR0, addr, index);
else if (i == 1)
layer_reg_wr(ctx, REG_LAY_BASE_ADDR1, addr, index);
else
layer_reg_wr(ctx, REG_LAY_BASE_ADDR2, addr, index);
}
if (fb->format->num_planes == 3) {
/* UV pitch is 1/2 of Y pitch */
pitch = (fb->pitches[0] / fb->format->cpp[0]) |
(fb->pitches[0] / fb->format->cpp[0] << 15);
} else {
pitch = fb->pitches[0] / fb->format->cpp[0];
}
layer_reg_wr(ctx, REG_LAY_POS, offset, index);
layer_reg_wr(ctx, REG_LAY_SIZE, size, index);
layer_reg_wr(ctx, REG_LAY_CROP_START,
src_y << 16 | src_x, index);
layer_reg_wr(ctx, REG_LAY_ALPHA, alpha, index);
layer_reg_wr(ctx, REG_LAY_PITCH, pitch, index);
format = drm_format_to_dpu(fb);
blend = drm_blend_to_dpu(state);
rotation = drm_rotation_to_dpu(state);
layer_reg_wr(ctx, REG_LAY_CTRL, BIT_DPU_LAY_EN |
format |
blend |
rotation,
index);
}
static void sprd_dpu_flip(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
/*
* Make sure the dpu is in stop status. DPU has no shadow
* registers in EDPI mode. So the config registers can only be
* updated in the rising edge of DPU_RUN bit.
*/
if (ctx->if_type == SPRD_DPU_IF_EDPI)
dpu_wait_stop_done(dpu);
/* update trigger and wait */
if (ctx->if_type == SPRD_DPU_IF_DPI) {
if (!ctx->stopped) {
dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_REG_UPDATE);
dpu_wait_update_done(dpu);
}
dpu_reg_set(ctx, REG_DPU_INT_EN, BIT_DPU_INT_ERR);
} else if (ctx->if_type == SPRD_DPU_IF_EDPI) {
dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_RUN);
ctx->stopped = false;
}
}
static void sprd_dpu_init(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
u32 int_mask = 0;
writel(0x00, ctx->base + REG_BG_COLOR);
writel(0x00, ctx->base + REG_MMU_EN);
writel(0x00, ctx->base + REG_MMU_PPN1);
writel(0xffff, ctx->base + REG_MMU_RANGE1);
writel(0x00, ctx->base + REG_MMU_PPN2);
writel(0xffff, ctx->base + REG_MMU_RANGE2);
writel(0x1ffff, ctx->base + REG_MMU_VPN_RANGE);
if (ctx->if_type == SPRD_DPU_IF_DPI) {
/* use dpi as interface */
dpu_reg_clr(ctx, REG_DPU_CFG0, BIT_DPU_IF_EDPI);
/* disable Halt function for SPRD DSI */
dpu_reg_clr(ctx, REG_DPI_CTRL, BIT_DPU_DPI_HALT_EN);
/* select te from external pad */
dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_FROM_EXTERNAL_PAD);
/* enable dpu update done INT */
int_mask |= BIT_DPU_INT_UPDATE_DONE;
/* enable dpu done INT */
int_mask |= BIT_DPU_INT_DONE;
/* enable dpu dpi vsync */
int_mask |= BIT_DPU_INT_VSYNC;
/* enable dpu TE INT */
int_mask |= BIT_DPU_INT_TE;
/* enable underflow err INT */
int_mask |= BIT_DPU_INT_ERR;
} else if (ctx->if_type == SPRD_DPU_IF_EDPI) {
/* use edpi as interface */
dpu_reg_set(ctx, REG_DPU_CFG0, BIT_DPU_IF_EDPI);
/* use external te */
dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_FROM_EXTERNAL_PAD);
/* enable te */
dpu_reg_set(ctx, REG_DPI_CTRL, BIT_DPU_EDPI_TE_EN);
/* enable stop done INT */
int_mask |= BIT_DPU_INT_DONE;
/* enable TE INT */
int_mask |= BIT_DPU_INT_TE;
}
writel(int_mask, ctx->base + REG_DPU_INT_EN);
}
static void sprd_dpu_fini(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
writel(0x00, ctx->base + REG_DPU_INT_EN);
writel(0xff, ctx->base + REG_DPU_INT_CLR);
}
static void sprd_dpi_init(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
u32 reg_val;
u32 size;
size = (ctx->vm.vactive << 16) | ctx->vm.hactive;
writel(size, ctx->base + REG_PANEL_SIZE);
writel(size, ctx->base + REG_BLEND_SIZE);
if (ctx->if_type == SPRD_DPU_IF_DPI) {
/* set dpi timing */
reg_val = ctx->vm.hsync_len << 0 |
ctx->vm.hback_porch << 8 |
ctx->vm.hfront_porch << 20;
writel(reg_val, ctx->base + REG_DPI_H_TIMING);
reg_val = ctx->vm.vsync_len << 0 |
ctx->vm.vback_porch << 8 |
ctx->vm.vfront_porch << 20;
writel(reg_val, ctx->base + REG_DPI_V_TIMING);
}
}
void sprd_dpu_run(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_RUN);
ctx->stopped = false;
}
void sprd_dpu_stop(struct sprd_dpu *dpu)
{
struct dpu_context *ctx = &dpu->ctx;
if (ctx->if_type == SPRD_DPU_IF_DPI)
dpu_reg_set(ctx, REG_DPU_CTRL, BIT_DPU_STOP);
dpu_wait_stop_done(dpu);
}
static int sprd_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc_state *crtc_state;
u32 fmt;
if (!plane_state->fb || !plane_state->crtc)
return 0;
fmt = drm_format_to_dpu(plane_state->fb);
if (!fmt)
return -EINVAL;
crtc_state = drm_atomic_get_crtc_state(plane_state->state, plane_state->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
return drm_atomic_helper_check_plane_state(plane_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
true, true);
}
static void sprd_plane_atomic_update(struct drm_plane *drm_plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
drm_plane);
struct sprd_dpu *dpu = to_sprd_crtc(new_state->crtc);
/* start configure dpu layers */
sprd_dpu_layer(dpu, new_state);
}
static void sprd_plane_atomic_disable(struct drm_plane *drm_plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
drm_plane);
struct sprd_dpu *dpu = to_sprd_crtc(old_state->crtc);
layer_reg_wr(&dpu->ctx, REG_LAY_CTRL, 0x00, old_state->zpos);
}
static void sprd_plane_create_properties(struct sprd_plane *plane, int index)
{
unsigned int supported_modes = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
BIT(DRM_MODE_BLEND_PREMULTI) |
BIT(DRM_MODE_BLEND_COVERAGE);
/* create rotation property */
drm_plane_create_rotation_property(&plane->base,
DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_MASK |
DRM_MODE_REFLECT_MASK);
/* create alpha property */
drm_plane_create_alpha_property(&plane->base);
/* create blend mode property */
drm_plane_create_blend_mode_property(&plane->base, supported_modes);
/* create zpos property */
drm_plane_create_zpos_immutable_property(&plane->base, index);
}
static const struct drm_plane_helper_funcs sprd_plane_helper_funcs = {
.atomic_check = sprd_plane_atomic_check,
.atomic_update = sprd_plane_atomic_update,
.atomic_disable = sprd_plane_atomic_disable,
};
static const struct drm_plane_funcs sprd_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_plane_cleanup,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
};
static struct sprd_plane *sprd_planes_init(struct drm_device *drm)
{
struct sprd_plane *plane, *primary;
enum drm_plane_type plane_type;
int i;
for (i = 0; i < 6; i++) {
plane_type = (i == 0) ? DRM_PLANE_TYPE_PRIMARY :
DRM_PLANE_TYPE_OVERLAY;
plane = drmm_universal_plane_alloc(drm, struct sprd_plane, base,
1, &sprd_plane_funcs,
layer_fmts, ARRAY_SIZE(layer_fmts),
NULL, plane_type, NULL);
if (IS_ERR(plane)) {
drm_err(drm, "failed to init drm plane: %d\n", i);
return plane;
}
drm_plane_helper_add(&plane->base, &sprd_plane_helper_funcs);
sprd_plane_create_properties(plane, i);
if (i == 0)
primary = plane;
}
return primary;
}
static void sprd_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct drm_encoder *encoder;
struct sprd_dsi *dsi;
drm_display_mode_to_videomode(mode, &dpu->ctx.vm);
drm_for_each_encoder_mask(encoder, crtc->dev,
crtc->state->encoder_mask) {
dsi = encoder_to_dsi(encoder);
if (dsi->slave->mode_flags & MIPI_DSI_MODE_VIDEO)
dpu->ctx.if_type = SPRD_DPU_IF_DPI;
else
dpu->ctx.if_type = SPRD_DPU_IF_EDPI;
}
sprd_dpi_init(dpu);
}
static void sprd_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
sprd_dpu_init(dpu);
drm_crtc_vblank_on(&dpu->base);
}
static void sprd_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
struct drm_device *drm = dpu->base.dev;
drm_crtc_vblank_off(&dpu->base);
sprd_dpu_fini(dpu);
spin_lock_irq(&drm->event_lock);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irq(&drm->event_lock);
}
static void sprd_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
struct drm_device *drm = dpu->base.dev;
sprd_dpu_flip(dpu);
spin_lock_irq(&drm->event_lock);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irq(&drm->event_lock);
}
static int sprd_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
dpu_reg_set(&dpu->ctx, REG_DPU_INT_EN, BIT_DPU_INT_VSYNC);
return 0;
}
static void sprd_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct sprd_dpu *dpu = to_sprd_crtc(crtc);
dpu_reg_clr(&dpu->ctx, REG_DPU_INT_EN, BIT_DPU_INT_VSYNC);
}
static const struct drm_crtc_helper_funcs sprd_crtc_helper_funcs = {
.mode_set_nofb = sprd_crtc_mode_set_nofb,
.atomic_flush = sprd_crtc_atomic_flush,
.atomic_enable = sprd_crtc_atomic_enable,
.atomic_disable = sprd_crtc_atomic_disable,
};
static const struct drm_crtc_funcs sprd_crtc_funcs = {
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.enable_vblank = sprd_crtc_enable_vblank,
.disable_vblank = sprd_crtc_disable_vblank,
};
static struct sprd_dpu *sprd_crtc_init(struct drm_device *drm,
struct drm_plane *primary, struct device *dev)
{
struct device_node *port;
struct sprd_dpu *dpu;
dpu = drmm_crtc_alloc_with_planes(drm, struct sprd_dpu, base,
primary, NULL,
&sprd_crtc_funcs, NULL);
if (IS_ERR(dpu)) {
drm_err(drm, "failed to init crtc\n");
return dpu;
}
drm_crtc_helper_add(&dpu->base, &sprd_crtc_helper_funcs);
/*
* set crtc port so that drm_of_find_possible_crtcs call works
*/
port = of_graph_get_port_by_id(dev->of_node, 0);
if (!port) {
drm_err(drm, "failed to found crtc output port for %s\n",
dev->of_node->full_name);
return ERR_PTR(-EINVAL);
}
dpu->base.port = port;
of_node_put(port);
return dpu;
}
static irqreturn_t sprd_dpu_isr(int irq, void *data)
{
struct sprd_dpu *dpu = data;
struct dpu_context *ctx = &dpu->ctx;
u32 reg_val, int_mask = 0;
reg_val = readl(ctx->base + REG_DPU_INT_STS);
/* disable err interrupt */
if (reg_val & BIT_DPU_INT_ERR) {
int_mask |= BIT_DPU_INT_ERR;
drm_warn(dpu->drm, "Warning: dpu underflow!\n");
}
/* dpu update done isr */
if (reg_val & BIT_DPU_INT_UPDATE_DONE) {
ctx->evt_update = true;
wake_up_interruptible_all(&ctx->wait_queue);
}
/* dpu stop done isr */
if (reg_val & BIT_DPU_INT_DONE) {
ctx->evt_stop = true;
wake_up_interruptible_all(&ctx->wait_queue);
}
if (reg_val & BIT_DPU_INT_VSYNC)
drm_crtc_handle_vblank(&dpu->base);
writel(reg_val, ctx->base + REG_DPU_INT_CLR);
dpu_reg_clr(ctx, REG_DPU_INT_EN, int_mask);
return IRQ_HANDLED;
}
static int sprd_dpu_context_init(struct sprd_dpu *dpu,
struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct dpu_context *ctx = &dpu->ctx;
struct resource *res;
int ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to get I/O resource\n");
return -EINVAL;
}
ctx->base = devm_ioremap(dev, res->start, resource_size(res));
if (!ctx->base) {
dev_err(dev, "failed to map dpu registers\n");
return -EFAULT;
}
ctx->irq = platform_get_irq(pdev, 0);
if (ctx->irq < 0) {
dev_err(dev, "failed to get dpu irq\n");
return ctx->irq;
}
/* disable and clear interrupts before register dpu IRQ. */
writel(0x00, ctx->base + REG_DPU_INT_EN);
writel(0xff, ctx->base + REG_DPU_INT_CLR);
ret = devm_request_irq(dev, ctx->irq, sprd_dpu_isr,
IRQF_TRIGGER_NONE, "DPU", dpu);
if (ret) {
dev_err(dev, "failed to register dpu irq handler\n");
return ret;
}
init_waitqueue_head(&ctx->wait_queue);
return 0;
}
static int sprd_dpu_bind(struct device *dev, struct device *master, void *data)
{
struct drm_device *drm = data;
struct sprd_dpu *dpu;
struct sprd_plane *plane;
int ret;
plane = sprd_planes_init(drm);
if (IS_ERR(plane))
return PTR_ERR(plane);
dpu = sprd_crtc_init(drm, &plane->base, dev);
if (IS_ERR(dpu))
return PTR_ERR(dpu);
dpu->drm = drm;
dev_set_drvdata(dev, dpu);
ret = sprd_dpu_context_init(dpu, dev);
if (ret)
return ret;
return 0;
}
static const struct component_ops dpu_component_ops = {
.bind = sprd_dpu_bind,
};
static const struct of_device_id dpu_match_table[] = {
{ .compatible = "sprd,sharkl3-dpu" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, dpu_match_table);
static int sprd_dpu_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &dpu_component_ops);
}
static int sprd_dpu_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &dpu_component_ops);
return 0;
}
struct platform_driver sprd_dpu_driver = {
.probe = sprd_dpu_probe,
.remove = sprd_dpu_remove,
.driver = {
.name = "sprd-dpu-drv",
.of_match_table = dpu_match_table,
},
};
MODULE_AUTHOR("Leon He <leon.he@unisoc.com>");
MODULE_AUTHOR("Kevin Tang <kevin.tang@unisoc.com>");
MODULE_DESCRIPTION("Unisoc Display Controller Driver");
MODULE_LICENSE("GPL v2");