linuxdebug/drivers/iio/accel/msa311.c

1322 lines
36 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* MEMSensing digital 3-Axis accelerometer
*
* MSA311 is a tri-axial, low-g accelerometer with I2C digital output for
* sensitivity consumer applications. It has dynamic user-selectable full
* scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements
* with output data rates from 1Hz to 1000Hz.
*
* MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package
* and is guaranteed to operate over -40C to +85C.
*
* This driver supports following MSA311 features:
* - IIO interface
* - Different power modes: NORMAL, SUSPEND
* - ODR (Output Data Rate) selection
* - Scale selection
* - IIO triggered buffer
* - NEW_DATA interrupt + trigger
*
* Below features to be done:
* - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL
* - Low Power mode
*
* Copyright (c) 2022, SberDevices. All Rights Reserved.
*
* Author: Dmitry Rokosov <ddrokosov@sberdevices.ru>
*/
#include <linux/i2c.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/string_helpers.h>
#include <linux/units.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define MSA311_SOFT_RESET_REG 0x00
#define MSA311_PARTID_REG 0x01
#define MSA311_ACC_X_REG 0x02
#define MSA311_ACC_Y_REG 0x04
#define MSA311_ACC_Z_REG 0x06
#define MSA311_MOTION_INT_REG 0x09
#define MSA311_DATA_INT_REG 0x0A
#define MSA311_TAP_ACTIVE_STS_REG 0x0B
#define MSA311_ORIENT_STS_REG 0x0C
#define MSA311_RANGE_REG 0x0F
#define MSA311_ODR_REG 0x10
#define MSA311_PWR_MODE_REG 0x11
#define MSA311_SWAP_POLARITY_REG 0x12
#define MSA311_INT_SET_0_REG 0x16
#define MSA311_INT_SET_1_REG 0x17
#define MSA311_INT_MAP_0_REG 0x19
#define MSA311_INT_MAP_1_REG 0x1A
#define MSA311_INT_CONFIG_REG 0x20
#define MSA311_INT_LATCH_REG 0x21
#define MSA311_FREEFALL_DUR_REG 0x22
#define MSA311_FREEFALL_TH_REG 0x23
#define MSA311_FREEFALL_HY_REG 0x24
#define MSA311_ACTIVE_DUR_REG 0x27
#define MSA311_ACTIVE_TH_REG 0x28
#define MSA311_TAP_DUR_REG 0x2A
#define MSA311_TAP_TH_REG 0x2B
#define MSA311_ORIENT_HY_REG 0x2C
#define MSA311_Z_BLOCK_REG 0x2D
#define MSA311_OFFSET_X_REG 0x38
#define MSA311_OFFSET_Y_REG 0x39
#define MSA311_OFFSET_Z_REG 0x3A
enum msa311_fields {
/* Soft_Reset */
F_SOFT_RESET_I2C, F_SOFT_RESET_SPI,
/* Motion_Interrupt */
F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT,
/* Data_Interrupt */
F_NEW_DATA_INT,
/* Tap_Active_Status */
F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN,
F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z,
/* Orientation_Status */
F_ORIENT_Z, F_ORIENT_X_Y,
/* Range */
F_FS,
/* ODR */
F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR,
/* Power Mode/Bandwidth */
F_PWR_MODE, F_LOW_POWER_BW,
/* Swap_Polarity */
F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP,
/* Int_Set_0 */
F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z,
F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X,
/* Int_Set_1 */
F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN,
/* Int_Map_0 */
F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE,
F_INT1_FREEFALL,
/* Int_Map_1 */
F_INT1_NEW_DATA,
/* Int_Config */
F_INT1_OD, F_INT1_LVL,
/* Int_Latch */
F_RESET_INT, F_LATCH_INT,
/* Freefall_Hy */
F_FREEFALL_MODE, F_FREEFALL_HY,
/* Active_Dur */
F_ACTIVE_DUR,
/* Tap_Dur */
F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR,
/* Tap_Th */
F_TAP_TH,
/* Orient_Hy */
F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE,
/* Z_Block */
F_Z_BLOCKING,
/* End of register map */
F_MAX_FIELDS,
};
static const struct reg_field msa311_reg_fields[] = {
/* Soft_Reset */
[F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2),
[F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5),
/* Motion_Interrupt */
[F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6),
[F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5),
[F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4),
[F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2),
[F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0),
/* Data_Interrupt */
[F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0),
/* Tap_Active_Status */
[F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7),
[F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6),
[F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5),
[F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4),
[F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3),
[F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2),
[F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1),
[F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0),
/* Orientation_Status */
[F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6),
[F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5),
/* Range */
[F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1),
/* ODR */
[F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7),
[F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6),
[F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5),
[F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3),
/* Power Mode/Bandwidth */
[F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7),
[F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4),
/* Swap_Polarity */
[F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3),
[F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2),
[F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1),
[F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0),
/* Int_Set_0 */
[F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6),
[F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5),
[F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4),
[F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2),
[F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1),
[F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0),
/* Int_Set_1 */
[F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4),
[F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3),
/* Int_Map_0 */
[F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6),
[F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5),
[F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4),
[F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2),
[F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0),
/* Int_Map_1 */
[F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0),
/* Int_Config */
[F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1),
[F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0),
/* Int_Latch */
[F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7),
[F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3),
/* Freefall_Hy */
[F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2),
[F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1),
/* Active_Dur */
[F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1),
/* Tap_Dur */
[F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7),
[F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6),
[F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2),
/* Tap_Th */
[F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4),
/* Orient_Hy */
[F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6),
[F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3),
[F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1),
/* Z_Block */
[F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3),
};
#define MSA311_WHO_AM_I 0x13
/*
* Possible Full Scale ranges
*
* Axis data is 12-bit signed value, so
*
* fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580
* fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160
* fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320
* fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641
*/
enum {
MSA311_FS_2G,
MSA311_FS_4G,
MSA311_FS_8G,
MSA311_FS_16G,
};
struct iio_decimal_fract {
int integral;
int microfract;
};
static const struct iio_decimal_fract msa311_fs_table[] = {
{0, 9580}, {0, 19160}, {0, 38320}, {0, 76641},
};
/* Possible Output Data Rate values */
enum {
MSA311_ODR_1_HZ,
MSA311_ODR_1_95_HZ,
MSA311_ODR_3_9_HZ,
MSA311_ODR_7_81_HZ,
MSA311_ODR_15_63_HZ,
MSA311_ODR_31_25_HZ,
MSA311_ODR_62_5_HZ,
MSA311_ODR_125_HZ,
MSA311_ODR_250_HZ,
MSA311_ODR_500_HZ,
MSA311_ODR_1000_HZ,
};
static const struct iio_decimal_fract msa311_odr_table[] = {
{1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000},
{31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0},
};
/* All supported power modes */
#define MSA311_PWR_MODE_NORMAL 0b00
#define MSA311_PWR_MODE_LOW 0b01
#define MSA311_PWR_MODE_UNKNOWN 0b10
#define MSA311_PWR_MODE_SUSPEND 0b11
static const char * const msa311_pwr_modes[] = {
[MSA311_PWR_MODE_NORMAL] = "normal",
[MSA311_PWR_MODE_LOW] = "low",
[MSA311_PWR_MODE_UNKNOWN] = "unknown",
[MSA311_PWR_MODE_SUSPEND] = "suspend",
};
/* Autosuspend delay */
#define MSA311_PWR_SLEEP_DELAY_MS 2000
/* Possible INT1 types and levels */
enum {
MSA311_INT1_OD_PUSH_PULL,
MSA311_INT1_OD_OPEN_DRAIN,
};
enum {
MSA311_INT1_LVL_LOW,
MSA311_INT1_LVL_HIGH,
};
/* Latch INT modes */
#define MSA311_LATCH_INT_NOT_LATCHED 0b0000
#define MSA311_LATCH_INT_250MS 0b0001
#define MSA311_LATCH_INT_500MS 0b0010
#define MSA311_LATCH_INT_1S 0b0011
#define MSA311_LATCH_INT_2S 0b0100
#define MSA311_LATCH_INT_4S 0b0101
#define MSA311_LATCH_INT_8S 0b0110
#define MSA311_LATCH_INT_1MS 0b1010
#define MSA311_LATCH_INT_2MS 0b1011
#define MSA311_LATCH_INT_25MS 0b1100
#define MSA311_LATCH_INT_50MS 0b1101
#define MSA311_LATCH_INT_100MS 0b1110
#define MSA311_LATCH_INT_LATCHED 0b0111
static const struct regmap_range msa311_readonly_registers[] = {
regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG),
};
static const struct regmap_access_table msa311_writeable_table = {
.no_ranges = msa311_readonly_registers,
.n_no_ranges = ARRAY_SIZE(msa311_readonly_registers),
};
static const struct regmap_range msa311_writeonly_registers[] = {
regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG),
};
static const struct regmap_access_table msa311_readable_table = {
.no_ranges = msa311_writeonly_registers,
.n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers),
};
static const struct regmap_range msa311_volatile_registers[] = {
regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG),
};
static const struct regmap_access_table msa311_volatile_table = {
.yes_ranges = msa311_volatile_registers,
.n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers),
};
static const struct regmap_config msa311_regmap_config = {
.name = "msa311",
.reg_bits = 8,
.val_bits = 8,
.max_register = MSA311_OFFSET_Z_REG,
.wr_table = &msa311_writeable_table,
.rd_table = &msa311_readable_table,
.volatile_table = &msa311_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
#define MSA311_GENMASK(field) ({ \
typeof(&(msa311_reg_fields)[0]) _field; \
_field = &msa311_reg_fields[(field)]; \
GENMASK(_field->msb, _field->lsb); \
})
/**
* struct msa311_priv - MSA311 internal private state
* @regs: Underlying I2C bus adapter used to abstract slave
* register accesses
* @fields: Abstract objects for each registers fields access
* @dev: Device handler associated with appropriate bus client
* @lock: Protects msa311 device state between setup and data access routines
* (power transitions, samp_freq/scale tune, retrieving axes data, etc)
* @chip_name: Chip name in the format "msa311-%02x" % partid
* @new_data_trig: Optional NEW_DATA interrupt driven trigger used
* to notify external consumers a new sample is ready
* @vdd: Optional external voltage regulator for the device power supply
*/
struct msa311_priv {
struct regmap *regs;
struct regmap_field *fields[F_MAX_FIELDS];
struct device *dev;
struct mutex lock;
char *chip_name;
struct iio_trigger *new_data_trig;
struct regulator *vdd;
};
enum msa311_si {
MSA311_SI_X,
MSA311_SI_Y,
MSA311_SI_Z,
MSA311_SI_TIMESTAMP,
};
#define MSA311_ACCEL_CHANNEL(axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = MSA311_SI_##axis, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_LE, \
}, \
.datasheet_name = "ACC_"#axis, \
}
static const struct iio_chan_spec msa311_channels[] = {
MSA311_ACCEL_CHANNEL(X),
MSA311_ACCEL_CHANNEL(Y),
MSA311_ACCEL_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP),
};
/**
* msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel
* @msa311: MSA311 internal private state
* @odr: output ODR value
*
* This function should be called under msa311->lock.
*
* Return: 0 on success, -ERRNO in other failures
*/
static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr)
{
int err;
err = regmap_field_read(msa311->fields[F_ODR], odr);
if (err)
return err;
/*
* Filter the same 1000Hz ODR register values based on datasheet info.
* ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010
* all the time.
*/
if (*odr > MSA311_ODR_1000_HZ)
*odr = MSA311_ODR_1000_HZ;
return 0;
}
/**
* msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel
* @msa311: MSA311 internal private state
* @odr: requested ODR value
*
* This function should be called under msa311->lock. Possible ODR values:
* - 1Hz (not available in normal mode)
* - 1.95Hz (not available in normal mode)
* - 3.9Hz
* - 7.81Hz
* - 15.63Hz
* - 31.25Hz
* - 62.5Hz
* - 125Hz
* - 250Hz
* - 500Hz
* - 1000Hz
*
* Return: 0 on success, -EINVAL for bad ODR value in the certain power mode,
* -ERRNO in other failures
*/
static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr)
{
struct device *dev = msa311->dev;
unsigned int pwr_mode;
bool good_odr;
int err;
err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode);
if (err)
return err;
/* Filter bad ODR values */
if (pwr_mode == MSA311_PWR_MODE_NORMAL)
good_odr = (odr > MSA311_ODR_1_95_HZ);
else
good_odr = false;
if (!good_odr) {
dev_err(dev,
"can't set odr %u.%06uHz, not available in %s mode\n",
msa311_odr_table[odr].integral,
msa311_odr_table[odr].microfract,
msa311_pwr_modes[pwr_mode]);
return -EINVAL;
}
return regmap_field_write(msa311->fields[F_ODR], odr);
}
/**
* msa311_wait_for_next_data() - Wait next accel data available after resume
* @msa311: MSA311 internal private state
*
* Return: 0 on success, -EINTR if msleep() was interrupted,
* -ERRNO in other failures
*/
static int msa311_wait_for_next_data(struct msa311_priv *msa311)
{
static const unsigned int unintr_thresh_ms = 20;
struct device *dev = msa311->dev;
unsigned long freq_uhz;
unsigned long wait_ms;
unsigned int odr;
int err;
err = msa311_get_odr(msa311, &odr);
if (err) {
dev_err(dev, "can't get actual frequency (%pe)\n",
ERR_PTR(err));
return err;
}
/*
* After msa311 resuming is done, we need to wait for data
* to be refreshed by accel logic.
* A certain timeout is calculated based on the current ODR value.
* If requested timeout isn't so long (let's assume 20ms),
* we can wait for next data in uninterruptible sleep.
*/
freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ +
msa311_odr_table[odr].microfract;
wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC;
if (wait_ms < unintr_thresh_ms)
usleep_range(wait_ms * USEC_PER_MSEC,
unintr_thresh_ms * USEC_PER_MSEC);
else if (msleep_interruptible(wait_ms))
return -EINTR;
return 0;
}
/**
* msa311_set_pwr_mode() - Install certain MSA311 power mode
* @msa311: MSA311 internal private state
* @mode: Power mode can be equal to NORMAL or SUSPEND
*
* This function should be called under msa311->lock.
*
* Return: 0 on success, -ERRNO on failure
*/
static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode)
{
struct device *dev = msa311->dev;
unsigned int prev_mode;
int err;
if (mode >= ARRAY_SIZE(msa311_pwr_modes))
return -EINVAL;
dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]);
err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode);
if (err)
return err;
err = regmap_field_write(msa311->fields[F_PWR_MODE], mode);
if (err)
return err;
/* Wait actual data if we wake up */
if (prev_mode == MSA311_PWR_MODE_SUSPEND &&
mode == MSA311_PWR_MODE_NORMAL)
return msa311_wait_for_next_data(msa311);
return 0;
}
/**
* msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec
* @msa311: MSA311 internal private state
* @chan: IIO channel specification
* @axis: Output accel axis data for requested IIO channel spec
*
* This function should be called under msa311->lock.
*
* Return: 0 on success, -EINVAL for unknown IIO channel specification,
* -ERRNO in other failures
*/
static int msa311_get_axis(struct msa311_priv *msa311,
const struct iio_chan_spec * const chan,
__le16 *axis)
{
struct device *dev = msa311->dev;
unsigned int axis_reg;
if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) {
dev_err(dev, "invalid scan_index value [%d]\n",
chan->scan_index);
return -EINVAL;
}
/* Axes data layout has 2 byte gap for each axis starting from X axis */
axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1);
return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis));
}
static int msa311_read_raw_data(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
__le16 axis;
int err;
err = pm_runtime_resume_and_get(dev);
if (err)
return err;
err = iio_device_claim_direct_mode(indio_dev);
if (err)
return err;
mutex_lock(&msa311->lock);
err = msa311_get_axis(msa311, chan, &axis);
mutex_unlock(&msa311->lock);
iio_device_release_direct_mode(indio_dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (err) {
dev_err(dev, "can't get axis %s (%pe)\n",
chan->datasheet_name, ERR_PTR(err));
return err;
}
/*
* Axis data format is:
* ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4]
*/
*val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
return IIO_VAL_INT;
}
static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
unsigned int fs;
int err;
mutex_lock(&msa311->lock);
err = regmap_field_read(msa311->fields[F_FS], &fs);
mutex_unlock(&msa311->lock);
if (err) {
dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err));
return err;
}
*val = msa311_fs_table[fs].integral;
*val2 = msa311_fs_table[fs].microfract;
return IIO_VAL_INT_PLUS_MICRO;
}
static int msa311_read_samp_freq(struct iio_dev *indio_dev,
int *val, int *val2)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
unsigned int odr;
int err;
mutex_lock(&msa311->lock);
err = msa311_get_odr(msa311, &odr);
mutex_unlock(&msa311->lock);
if (err) {
dev_err(dev, "can't get actual frequency (%pe)\n",
ERR_PTR(err));
return err;
}
*val = msa311_odr_table[odr].integral;
*val2 = msa311_odr_table[odr].microfract;
return IIO_VAL_INT_PLUS_MICRO;
}
static int msa311_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_RAW:
return msa311_read_raw_data(indio_dev, chan, val, val2);
case IIO_CHAN_INFO_SCALE:
return msa311_read_scale(indio_dev, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return msa311_read_samp_freq(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int msa311_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type,
int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)msa311_odr_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* ODR value has 2 ints (integer and fractional parts) */
*length = ARRAY_SIZE(msa311_odr_table) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
*vals = (int *)msa311_fs_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* FS value has 2 ints (integer and fractional parts) */
*length = ARRAY_SIZE(msa311_fs_table) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
unsigned int fs;
int err;
/* We do not have fs >= 1, so skip such values */
if (val)
return 0;
err = pm_runtime_resume_and_get(dev);
if (err)
return err;
err = -EINVAL;
for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++)
/* Do not check msa311_fs_table[fs].integral, it's always 0 */
if (val2 == msa311_fs_table[fs].microfract) {
mutex_lock(&msa311->lock);
err = regmap_field_write(msa311->fields[F_FS], fs);
mutex_unlock(&msa311->lock);
break;
}
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (err)
dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err));
return err;
}
static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
unsigned int odr;
int err;
err = pm_runtime_resume_and_get(dev);
if (err)
return err;
/*
* Sampling frequency changing is prohibited when buffer mode is
* enabled, because sometimes MSA311 chip returns outliers during
* frequency values growing up in the read operation moment.
*/
err = iio_device_claim_direct_mode(indio_dev);
if (err)
return err;
err = -EINVAL;
for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++)
if (val == msa311_odr_table[odr].integral &&
val2 == msa311_odr_table[odr].microfract) {
mutex_lock(&msa311->lock);
err = msa311_set_odr(msa311, odr);
mutex_unlock(&msa311->lock);
break;
}
iio_device_release_direct_mode(indio_dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (err)
dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err));
return err;
}
static int msa311_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return msa311_write_scale(indio_dev, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return msa311_write_samp_freq(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int msa311_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
int err;
if (reg > regmap_get_max_register(msa311->regs))
return -EINVAL;
err = pm_runtime_resume_and_get(dev);
if (err)
return err;
mutex_lock(&msa311->lock);
if (readval)
err = regmap_read(msa311->regs, reg, readval);
else
err = regmap_write(msa311->regs, reg, writeval);
mutex_unlock(&msa311->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (err)
dev_err(dev, "can't %s register %u from debugfs (%pe)\n",
str_read_write(readval), reg, ERR_PTR(err));
return err;
}
static int msa311_buffer_preenable(struct iio_dev *indio_dev)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
return pm_runtime_resume_and_get(dev);
}
static int msa311_buffer_postdisable(struct iio_dev *indio_dev)
{
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct msa311_priv *msa311 = iio_priv(indio_dev);
struct device *dev = msa311->dev;
int err;
mutex_lock(&msa311->lock);
err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state);
mutex_unlock(&msa311->lock);
if (err)
dev_err(dev,
"can't %s buffer due to new_data_int failure (%pe)\n",
str_enable_disable(state), ERR_PTR(err));
return err;
}
static int msa311_validate_device(struct iio_trigger *trig,
struct iio_dev *indio_dev)
{
return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL;
}
static irqreturn_t msa311_buffer_thread(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct msa311_priv *msa311 = iio_priv(pf->indio_dev);
struct iio_dev *indio_dev = pf->indio_dev;
const struct iio_chan_spec *chan;
struct device *dev = msa311->dev;
int bit, err, i = 0;
__le16 axis;
struct {
__le16 channels[MSA311_SI_Z + 1];
s64 ts __aligned(8);
} buf;
memset(&buf, 0, sizeof(buf));
mutex_lock(&msa311->lock);
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
chan = &msa311_channels[bit];
err = msa311_get_axis(msa311, chan, &axis);
if (err) {
mutex_unlock(&msa311->lock);
dev_err(dev, "can't get axis %s (%pe)\n",
chan->datasheet_name, ERR_PTR(err));
goto notify_done;
}
buf.channels[i++] = axis;
}
mutex_unlock(&msa311->lock);
iio_push_to_buffers_with_timestamp(indio_dev, &buf,
iio_get_time_ns(indio_dev));
notify_done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static irqreturn_t msa311_irq_thread(int irq, void *p)
{
struct msa311_priv *msa311 = iio_priv(p);
unsigned int new_data_int_enabled;
struct device *dev = msa311->dev;
int err;
mutex_lock(&msa311->lock);
/*
* We do not check NEW_DATA int status, because based on the
* specification it's cleared automatically after a fixed time.
* So just check that is enabled by driver logic.
*/
err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN],
&new_data_int_enabled);
mutex_unlock(&msa311->lock);
if (err) {
dev_err(dev, "can't read new_data interrupt state (%pe)\n",
ERR_PTR(err));
return IRQ_NONE;
}
if (new_data_int_enabled)
iio_trigger_poll_chained(msa311->new_data_trig);
return IRQ_HANDLED;
}
static const struct iio_info msa311_info = {
.read_raw = msa311_read_raw,
.read_avail = msa311_read_avail,
.write_raw = msa311_write_raw,
.debugfs_reg_access = msa311_debugfs_reg_access,
};
static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = {
.preenable = msa311_buffer_preenable,
.postdisable = msa311_buffer_postdisable,
};
static const struct iio_trigger_ops msa311_new_data_trig_ops = {
.set_trigger_state = msa311_set_new_data_trig_state,
.validate_device = msa311_validate_device,
};
static int msa311_check_partid(struct msa311_priv *msa311)
{
struct device *dev = msa311->dev;
unsigned int partid;
int err;
err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid);
if (err)
return dev_err_probe(dev, err, "failed to read partid\n");
if (partid != MSA311_WHO_AM_I)
dev_warn(dev, "invalid partid (%#x), expected (%#x)\n",
partid, MSA311_WHO_AM_I);
msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL,
"msa311-%02x", partid);
if (!msa311->chip_name)
return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n");
return 0;
}
static int msa311_soft_reset(struct msa311_priv *msa311)
{
struct device *dev = msa311->dev;
int err;
err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG,
MSA311_GENMASK(F_SOFT_RESET_I2C) |
MSA311_GENMASK(F_SOFT_RESET_SPI));
if (err)
return dev_err_probe(dev, err, "can't soft reset all logic\n");
return 0;
}
static int msa311_chip_init(struct msa311_priv *msa311)
{
struct device *dev = msa311->dev;
const char zero_bulk[2] = { };
int err;
err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G);
if (err)
return dev_err_probe(dev, err, "failed to setup accel range\n");
/* Disable all interrupts by default */
err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG,
zero_bulk, sizeof(zero_bulk));
if (err)
return dev_err_probe(dev, err,
"can't disable set0/set1 interrupts\n");
/* Unmap all INT1 interrupts by default */
err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG,
zero_bulk, sizeof(zero_bulk));
if (err)
return dev_err_probe(dev, err,
"failed to unmap map0/map1 interrupts\n");
/* Disable all axes by default */
err = regmap_update_bits(msa311->regs, MSA311_ODR_REG,
MSA311_GENMASK(F_X_AXIS_DIS) |
MSA311_GENMASK(F_Y_AXIS_DIS) |
MSA311_GENMASK(F_Z_AXIS_DIS), 0);
if (err)
return dev_err_probe(dev, err, "can't enable all axes\n");
err = msa311_set_odr(msa311, MSA311_ODR_125_HZ);
if (err)
return dev_err_probe(dev, err,
"failed to set accel frequency\n");
return 0;
}
static int msa311_setup_interrupts(struct msa311_priv *msa311)
{
struct device *dev = msa311->dev;
struct i2c_client *i2c = to_i2c_client(dev);
struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
struct iio_trigger *trig;
int err;
/* Keep going without interrupts if no initialized I2C IRQ */
if (i2c->irq <= 0)
return 0;
err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL,
msa311_irq_thread, IRQF_ONESHOT,
msa311->chip_name, indio_dev);
if (err)
return dev_err_probe(dev, err, "failed to request IRQ\n");
trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name);
if (!trig)
return dev_err_probe(dev, -ENOMEM,
"can't allocate newdata trigger\n");
msa311->new_data_trig = trig;
msa311->new_data_trig->ops = &msa311_new_data_trig_ops;
iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev);
err = devm_iio_trigger_register(dev, msa311->new_data_trig);
if (err)
return dev_err_probe(dev, err,
"can't register newdata trigger\n");
err = regmap_field_write(msa311->fields[F_INT1_OD],
MSA311_INT1_OD_PUSH_PULL);
if (err)
return dev_err_probe(dev, err,
"can't enable push-pull interrupt\n");
err = regmap_field_write(msa311->fields[F_INT1_LVL],
MSA311_INT1_LVL_HIGH);
if (err)
return dev_err_probe(dev, err,
"can't set active interrupt level\n");
err = regmap_field_write(msa311->fields[F_LATCH_INT],
MSA311_LATCH_INT_LATCHED);
if (err)
return dev_err_probe(dev, err,
"can't latch interrupt\n");
err = regmap_field_write(msa311->fields[F_RESET_INT], 1);
if (err)
return dev_err_probe(dev, err,
"can't reset interrupt\n");
err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1);
if (err)
return dev_err_probe(dev, err,
"can't map new data interrupt\n");
return 0;
}
static int msa311_regmap_init(struct msa311_priv *msa311)
{
struct regmap_field **fields = msa311->fields;
struct device *dev = msa311->dev;
struct i2c_client *i2c = to_i2c_client(dev);
struct regmap *regmap;
int i;
regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"failed to register i2c regmap\n");
msa311->regs = regmap;
for (i = 0; i < F_MAX_FIELDS; i++) {
fields[i] = devm_regmap_field_alloc(dev,
msa311->regs,
msa311_reg_fields[i]);
if (IS_ERR(msa311->fields[i]))
return dev_err_probe(dev, PTR_ERR(msa311->fields[i]),
"can't alloc field[%d]\n", i);
}
return 0;
}
static void msa311_powerdown(void *msa311)
{
msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
}
static void msa311_vdd_disable(void *vdd)
{
regulator_disable(vdd);
}
static int msa311_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct msa311_priv *msa311;
struct iio_dev *indio_dev;
int err;
indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311));
if (!indio_dev)
return dev_err_probe(dev, -ENOMEM,
"IIO device allocation failed\n");
msa311 = iio_priv(indio_dev);
msa311->dev = dev;
i2c_set_clientdata(i2c, indio_dev);
err = msa311_regmap_init(msa311);
if (err)
return err;
mutex_init(&msa311->lock);
msa311->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(msa311->vdd))
return dev_err_probe(dev, PTR_ERR(msa311->vdd),
"can't get vdd supply\n");
err = regulator_enable(msa311->vdd);
if (err)
return dev_err_probe(dev, err, "can't enable vdd supply\n");
err = devm_add_action_or_reset(dev, msa311_vdd_disable, msa311->vdd);
if (err)
return dev_err_probe(dev, err,
"can't add vdd disable action\n");
err = msa311_check_partid(msa311);
if (err)
return err;
err = msa311_soft_reset(msa311);
if (err)
return err;
err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
if (err)
return dev_err_probe(dev, err, "failed to power on device\n");
/*
* Register powerdown deferred callback which suspends the chip
* after module unloaded.
*
* MSA311 should be in SUSPEND mode in the two cases:
* 1) When driver is loaded, but we do not have any data or
* configuration requests to it (we are solving it using
* autosuspend feature).
* 2) When driver is unloaded and device is not used (devm action is
* used in this case).
*/
err = devm_add_action_or_reset(dev, msa311_powerdown, msa311);
if (err)
return dev_err_probe(dev, err, "can't add powerdown action\n");
err = pm_runtime_set_active(dev);
if (err)
return err;
err = devm_pm_runtime_enable(dev);
if (err)
return err;
pm_runtime_get_noresume(dev);
pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(dev);
err = msa311_chip_init(msa311);
if (err)
return err;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = msa311_channels;
indio_dev->num_channels = ARRAY_SIZE(msa311_channels);
indio_dev->name = msa311->chip_name;
indio_dev->info = &msa311_info;
err = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
msa311_buffer_thread,
&msa311_buffer_setup_ops);
if (err)
return dev_err_probe(dev, err,
"can't setup IIO trigger buffer\n");
err = msa311_setup_interrupts(msa311);
if (err)
return err;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
err = devm_iio_device_register(dev, indio_dev);
if (err)
return dev_err_probe(dev, err, "IIO device register failed\n");
return 0;
}
static int msa311_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct msa311_priv *msa311 = iio_priv(indio_dev);
int err;
mutex_lock(&msa311->lock);
err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
mutex_unlock(&msa311->lock);
if (err)
dev_err(dev, "failed to power off device (%pe)\n",
ERR_PTR(err));
return err;
}
static int msa311_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct msa311_priv *msa311 = iio_priv(indio_dev);
int err;
mutex_lock(&msa311->lock);
err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
mutex_unlock(&msa311->lock);
if (err)
dev_err(dev, "failed to power on device (%pe)\n",
ERR_PTR(err));
return err;
}
static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend,
msa311_runtime_resume, NULL);
static const struct i2c_device_id msa311_i2c_id[] = {
{ .name = "msa311" },
{ }
};
MODULE_DEVICE_TABLE(i2c, msa311_i2c_id);
static const struct of_device_id msa311_of_match[] = {
{ .compatible = "memsensing,msa311" },
{ }
};
MODULE_DEVICE_TABLE(of, msa311_of_match);
static struct i2c_driver msa311_driver = {
.driver = {
.name = "msa311",
.of_match_table = msa311_of_match,
.pm = pm_ptr(&msa311_pm_ops),
},
.probe_new = msa311_probe,
.id_table = msa311_i2c_id,
};
module_i2c_driver(msa311_driver);
MODULE_AUTHOR("Dmitry Rokosov <ddrokosov@sberdevices.ru>");
MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver");
MODULE_LICENSE("GPL");