linuxdebug/drivers/media/v4l2-core/v4l2-ctrls-core.c

2329 lines
62 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* V4L2 controls framework core implementation.
*
* Copyright (C) 2010-2021 Hans Verkuil <hverkuil-cisco@xs4all.nl>
*/
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include "v4l2-ctrls-priv.h"
static const union v4l2_ctrl_ptr ptr_null;
static void fill_event(struct v4l2_event *ev, struct v4l2_ctrl *ctrl,
u32 changes)
{
memset(ev, 0, sizeof(*ev));
ev->type = V4L2_EVENT_CTRL;
ev->id = ctrl->id;
ev->u.ctrl.changes = changes;
ev->u.ctrl.type = ctrl->type;
ev->u.ctrl.flags = user_flags(ctrl);
if (ctrl->is_ptr)
ev->u.ctrl.value64 = 0;
else
ev->u.ctrl.value64 = *ctrl->p_cur.p_s64;
ev->u.ctrl.minimum = ctrl->minimum;
ev->u.ctrl.maximum = ctrl->maximum;
if (ctrl->type == V4L2_CTRL_TYPE_MENU
|| ctrl->type == V4L2_CTRL_TYPE_INTEGER_MENU)
ev->u.ctrl.step = 1;
else
ev->u.ctrl.step = ctrl->step;
ev->u.ctrl.default_value = ctrl->default_value;
}
void send_initial_event(struct v4l2_fh *fh, struct v4l2_ctrl *ctrl)
{
struct v4l2_event ev;
u32 changes = V4L2_EVENT_CTRL_CH_FLAGS;
if (!(ctrl->flags & V4L2_CTRL_FLAG_WRITE_ONLY))
changes |= V4L2_EVENT_CTRL_CH_VALUE;
fill_event(&ev, ctrl, changes);
v4l2_event_queue_fh(fh, &ev);
}
void send_event(struct v4l2_fh *fh, struct v4l2_ctrl *ctrl, u32 changes)
{
struct v4l2_event ev;
struct v4l2_subscribed_event *sev;
if (list_empty(&ctrl->ev_subs))
return;
fill_event(&ev, ctrl, changes);
list_for_each_entry(sev, &ctrl->ev_subs, node)
if (sev->fh != fh ||
(sev->flags & V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK))
v4l2_event_queue_fh(sev->fh, &ev);
}
bool v4l2_ctrl_type_op_equal(const struct v4l2_ctrl *ctrl,
union v4l2_ctrl_ptr ptr1, union v4l2_ctrl_ptr ptr2)
{
unsigned int i;
switch (ctrl->type) {
case V4L2_CTRL_TYPE_BUTTON:
return false;
case V4L2_CTRL_TYPE_STRING:
for (i = 0; i < ctrl->elems; i++) {
unsigned int idx = i * ctrl->elem_size;
/* strings are always 0-terminated */
if (strcmp(ptr1.p_char + idx, ptr2.p_char + idx))
return false;
}
return true;
default:
return !memcmp(ptr1.p_const, ptr2.p_const,
ctrl->elems * ctrl->elem_size);
}
}
EXPORT_SYMBOL(v4l2_ctrl_type_op_equal);
/* Default intra MPEG-2 quantisation coefficients, from the specification. */
static const u8 mpeg2_intra_quant_matrix[64] = {
8, 16, 16, 19, 16, 19, 22, 22,
22, 22, 22, 22, 26, 24, 26, 27,
27, 27, 26, 26, 26, 26, 27, 27,
27, 29, 29, 29, 34, 34, 34, 29,
29, 29, 27, 27, 29, 29, 32, 32,
34, 34, 37, 38, 37, 35, 35, 34,
35, 38, 38, 40, 40, 40, 48, 48,
46, 46, 56, 56, 58, 69, 69, 83
};
static void std_init_compound(const struct v4l2_ctrl *ctrl, u32 idx,
union v4l2_ctrl_ptr ptr)
{
struct v4l2_ctrl_mpeg2_sequence *p_mpeg2_sequence;
struct v4l2_ctrl_mpeg2_picture *p_mpeg2_picture;
struct v4l2_ctrl_mpeg2_quantisation *p_mpeg2_quant;
struct v4l2_ctrl_vp8_frame *p_vp8_frame;
struct v4l2_ctrl_vp9_frame *p_vp9_frame;
struct v4l2_ctrl_fwht_params *p_fwht_params;
struct v4l2_ctrl_h264_scaling_matrix *p_h264_scaling_matrix;
void *p = ptr.p + idx * ctrl->elem_size;
if (ctrl->p_def.p_const)
memcpy(p, ctrl->p_def.p_const, ctrl->elem_size);
else
memset(p, 0, ctrl->elem_size);
switch ((u32)ctrl->type) {
case V4L2_CTRL_TYPE_MPEG2_SEQUENCE:
p_mpeg2_sequence = p;
/* 4:2:0 */
p_mpeg2_sequence->chroma_format = 1;
break;
case V4L2_CTRL_TYPE_MPEG2_PICTURE:
p_mpeg2_picture = p;
/* interlaced top field */
p_mpeg2_picture->picture_structure = V4L2_MPEG2_PIC_TOP_FIELD;
p_mpeg2_picture->picture_coding_type =
V4L2_MPEG2_PIC_CODING_TYPE_I;
break;
case V4L2_CTRL_TYPE_MPEG2_QUANTISATION:
p_mpeg2_quant = p;
memcpy(p_mpeg2_quant->intra_quantiser_matrix,
mpeg2_intra_quant_matrix,
ARRAY_SIZE(mpeg2_intra_quant_matrix));
/*
* The default non-intra MPEG-2 quantisation
* coefficients are all 16, as per the specification.
*/
memset(p_mpeg2_quant->non_intra_quantiser_matrix, 16,
sizeof(p_mpeg2_quant->non_intra_quantiser_matrix));
break;
case V4L2_CTRL_TYPE_VP8_FRAME:
p_vp8_frame = p;
p_vp8_frame->num_dct_parts = 1;
break;
case V4L2_CTRL_TYPE_VP9_FRAME:
p_vp9_frame = p;
p_vp9_frame->profile = 0;
p_vp9_frame->bit_depth = 8;
p_vp9_frame->flags |= V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING |
V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING;
break;
case V4L2_CTRL_TYPE_FWHT_PARAMS:
p_fwht_params = p;
p_fwht_params->version = V4L2_FWHT_VERSION;
p_fwht_params->width = 1280;
p_fwht_params->height = 720;
p_fwht_params->flags = V4L2_FWHT_FL_PIXENC_YUV |
(2 << V4L2_FWHT_FL_COMPONENTS_NUM_OFFSET);
break;
case V4L2_CTRL_TYPE_H264_SCALING_MATRIX:
p_h264_scaling_matrix = p;
/*
* The default (flat) H.264 scaling matrix when none are
* specified in the bitstream, this is according to formulas
* (7-8) and (7-9) of the specification.
*/
memset(p_h264_scaling_matrix, 16, sizeof(*p_h264_scaling_matrix));
break;
}
}
void v4l2_ctrl_type_op_init(const struct v4l2_ctrl *ctrl, u32 from_idx,
union v4l2_ctrl_ptr ptr)
{
unsigned int i;
u32 tot_elems = ctrl->elems;
u32 elems = tot_elems - from_idx;
if (from_idx >= tot_elems)
return;
switch (ctrl->type) {
case V4L2_CTRL_TYPE_STRING:
for (i = from_idx; i < tot_elems; i++) {
unsigned int offset = i * ctrl->elem_size;
memset(ptr.p_char + offset, ' ', ctrl->minimum);
ptr.p_char[offset + ctrl->minimum] = '\0';
}
break;
case V4L2_CTRL_TYPE_INTEGER64:
if (ctrl->default_value) {
for (i = from_idx; i < tot_elems; i++)
ptr.p_s64[i] = ctrl->default_value;
} else {
memset(ptr.p_s64 + from_idx, 0, elems * sizeof(s64));
}
break;
case V4L2_CTRL_TYPE_INTEGER:
case V4L2_CTRL_TYPE_INTEGER_MENU:
case V4L2_CTRL_TYPE_MENU:
case V4L2_CTRL_TYPE_BITMASK:
case V4L2_CTRL_TYPE_BOOLEAN:
if (ctrl->default_value) {
for (i = from_idx; i < tot_elems; i++)
ptr.p_s32[i] = ctrl->default_value;
} else {
memset(ptr.p_s32 + from_idx, 0, elems * sizeof(s32));
}
break;
case V4L2_CTRL_TYPE_BUTTON:
case V4L2_CTRL_TYPE_CTRL_CLASS:
memset(ptr.p_s32 + from_idx, 0, elems * sizeof(s32));
break;
case V4L2_CTRL_TYPE_U8:
memset(ptr.p_u8 + from_idx, ctrl->default_value, elems);
break;
case V4L2_CTRL_TYPE_U16:
if (ctrl->default_value) {
for (i = from_idx; i < tot_elems; i++)
ptr.p_u16[i] = ctrl->default_value;
} else {
memset(ptr.p_u16 + from_idx, 0, elems * sizeof(u16));
}
break;
case V4L2_CTRL_TYPE_U32:
if (ctrl->default_value) {
for (i = from_idx; i < tot_elems; i++)
ptr.p_u32[i] = ctrl->default_value;
} else {
memset(ptr.p_u32 + from_idx, 0, elems * sizeof(u32));
}
break;
default:
for (i = from_idx; i < tot_elems; i++)
std_init_compound(ctrl, i, ptr);
break;
}
}
EXPORT_SYMBOL(v4l2_ctrl_type_op_init);
void v4l2_ctrl_type_op_log(const struct v4l2_ctrl *ctrl)
{
union v4l2_ctrl_ptr ptr = ctrl->p_cur;
if (ctrl->is_array) {
unsigned i;
for (i = 0; i < ctrl->nr_of_dims; i++)
pr_cont("[%u]", ctrl->dims[i]);
pr_cont(" ");
}
switch (ctrl->type) {
case V4L2_CTRL_TYPE_INTEGER:
pr_cont("%d", *ptr.p_s32);
break;
case V4L2_CTRL_TYPE_BOOLEAN:
pr_cont("%s", *ptr.p_s32 ? "true" : "false");
break;
case V4L2_CTRL_TYPE_MENU:
pr_cont("%s", ctrl->qmenu[*ptr.p_s32]);
break;
case V4L2_CTRL_TYPE_INTEGER_MENU:
pr_cont("%lld", ctrl->qmenu_int[*ptr.p_s32]);
break;
case V4L2_CTRL_TYPE_BITMASK:
pr_cont("0x%08x", *ptr.p_s32);
break;
case V4L2_CTRL_TYPE_INTEGER64:
pr_cont("%lld", *ptr.p_s64);
break;
case V4L2_CTRL_TYPE_STRING:
pr_cont("%s", ptr.p_char);
break;
case V4L2_CTRL_TYPE_U8:
pr_cont("%u", (unsigned)*ptr.p_u8);
break;
case V4L2_CTRL_TYPE_U16:
pr_cont("%u", (unsigned)*ptr.p_u16);
break;
case V4L2_CTRL_TYPE_U32:
pr_cont("%u", (unsigned)*ptr.p_u32);
break;
case V4L2_CTRL_TYPE_H264_SPS:
pr_cont("H264_SPS");
break;
case V4L2_CTRL_TYPE_H264_PPS:
pr_cont("H264_PPS");
break;
case V4L2_CTRL_TYPE_H264_SCALING_MATRIX:
pr_cont("H264_SCALING_MATRIX");
break;
case V4L2_CTRL_TYPE_H264_SLICE_PARAMS:
pr_cont("H264_SLICE_PARAMS");
break;
case V4L2_CTRL_TYPE_H264_DECODE_PARAMS:
pr_cont("H264_DECODE_PARAMS");
break;
case V4L2_CTRL_TYPE_H264_PRED_WEIGHTS:
pr_cont("H264_PRED_WEIGHTS");
break;
case V4L2_CTRL_TYPE_FWHT_PARAMS:
pr_cont("FWHT_PARAMS");
break;
case V4L2_CTRL_TYPE_VP8_FRAME:
pr_cont("VP8_FRAME");
break;
case V4L2_CTRL_TYPE_HDR10_CLL_INFO:
pr_cont("HDR10_CLL_INFO");
break;
case V4L2_CTRL_TYPE_HDR10_MASTERING_DISPLAY:
pr_cont("HDR10_MASTERING_DISPLAY");
break;
case V4L2_CTRL_TYPE_MPEG2_QUANTISATION:
pr_cont("MPEG2_QUANTISATION");
break;
case V4L2_CTRL_TYPE_MPEG2_SEQUENCE:
pr_cont("MPEG2_SEQUENCE");
break;
case V4L2_CTRL_TYPE_MPEG2_PICTURE:
pr_cont("MPEG2_PICTURE");
break;
case V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR:
pr_cont("VP9_COMPRESSED_HDR");
break;
case V4L2_CTRL_TYPE_VP9_FRAME:
pr_cont("VP9_FRAME");
break;
case V4L2_CTRL_TYPE_HEVC_SPS:
pr_cont("HEVC_SPS");
break;
case V4L2_CTRL_TYPE_HEVC_PPS:
pr_cont("HEVC_PPS");
break;
case V4L2_CTRL_TYPE_HEVC_SLICE_PARAMS:
pr_cont("HEVC_SLICE_PARAMS");
break;
case V4L2_CTRL_TYPE_HEVC_SCALING_MATRIX:
pr_cont("HEVC_SCALING_MATRIX");
break;
case V4L2_CTRL_TYPE_HEVC_DECODE_PARAMS:
pr_cont("HEVC_DECODE_PARAMS");
break;
default:
pr_cont("unknown type %d", ctrl->type);
break;
}
}
EXPORT_SYMBOL(v4l2_ctrl_type_op_log);
/*
* Round towards the closest legal value. Be careful when we are
* close to the maximum range of the control type to prevent
* wrap-arounds.
*/
#define ROUND_TO_RANGE(val, offset_type, ctrl) \
({ \
offset_type offset; \
if ((ctrl)->maximum >= 0 && \
val >= (ctrl)->maximum - (s32)((ctrl)->step / 2)) \
val = (ctrl)->maximum; \
else \
val += (s32)((ctrl)->step / 2); \
val = clamp_t(typeof(val), val, \
(ctrl)->minimum, (ctrl)->maximum); \
offset = (val) - (ctrl)->minimum; \
offset = (ctrl)->step * (offset / (u32)(ctrl)->step); \
val = (ctrl)->minimum + offset; \
0; \
})
/* Validate a new control */
#define zero_padding(s) \
memset(&(s).padding, 0, sizeof((s).padding))
#define zero_reserved(s) \
memset(&(s).reserved, 0, sizeof((s).reserved))
static int
validate_vp9_lf_params(struct v4l2_vp9_loop_filter *lf)
{
unsigned int i;
if (lf->flags & ~(V4L2_VP9_LOOP_FILTER_FLAG_DELTA_ENABLED |
V4L2_VP9_LOOP_FILTER_FLAG_DELTA_UPDATE))
return -EINVAL;
/* That all values are in the accepted range. */
if (lf->level > GENMASK(5, 0))
return -EINVAL;
if (lf->sharpness > GENMASK(2, 0))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(lf->ref_deltas); i++)
if (lf->ref_deltas[i] < -63 || lf->ref_deltas[i] > 63)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(lf->mode_deltas); i++)
if (lf->mode_deltas[i] < -63 || lf->mode_deltas[i] > 63)
return -EINVAL;
zero_reserved(*lf);
return 0;
}
static int
validate_vp9_quant_params(struct v4l2_vp9_quantization *quant)
{
if (quant->delta_q_y_dc < -15 || quant->delta_q_y_dc > 15 ||
quant->delta_q_uv_dc < -15 || quant->delta_q_uv_dc > 15 ||
quant->delta_q_uv_ac < -15 || quant->delta_q_uv_ac > 15)
return -EINVAL;
zero_reserved(*quant);
return 0;
}
static int
validate_vp9_seg_params(struct v4l2_vp9_segmentation *seg)
{
unsigned int i, j;
if (seg->flags & ~(V4L2_VP9_SEGMENTATION_FLAG_ENABLED |
V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP |
V4L2_VP9_SEGMENTATION_FLAG_TEMPORAL_UPDATE |
V4L2_VP9_SEGMENTATION_FLAG_UPDATE_DATA |
V4L2_VP9_SEGMENTATION_FLAG_ABS_OR_DELTA_UPDATE))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(seg->feature_enabled); i++) {
if (seg->feature_enabled[i] &
~V4L2_VP9_SEGMENT_FEATURE_ENABLED_MASK)
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(seg->feature_data); i++) {
static const int range[] = { 255, 63, 3, 0 };
for (j = 0; j < ARRAY_SIZE(seg->feature_data[j]); j++) {
if (seg->feature_data[i][j] < -range[j] ||
seg->feature_data[i][j] > range[j])
return -EINVAL;
}
}
zero_reserved(*seg);
return 0;
}
static int
validate_vp9_compressed_hdr(struct v4l2_ctrl_vp9_compressed_hdr *hdr)
{
if (hdr->tx_mode > V4L2_VP9_TX_MODE_SELECT)
return -EINVAL;
return 0;
}
static int
validate_vp9_frame(struct v4l2_ctrl_vp9_frame *frame)
{
int ret;
/* Make sure we're not passed invalid flags. */
if (frame->flags & ~(V4L2_VP9_FRAME_FLAG_KEY_FRAME |
V4L2_VP9_FRAME_FLAG_SHOW_FRAME |
V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT |
V4L2_VP9_FRAME_FLAG_INTRA_ONLY |
V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV |
V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX |
V4L2_VP9_FRAME_FLAG_PARALLEL_DEC_MODE |
V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING |
V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING |
V4L2_VP9_FRAME_FLAG_COLOR_RANGE_FULL_SWING))
return -EINVAL;
if (frame->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT &&
frame->flags & V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX)
return -EINVAL;
if (frame->profile > V4L2_VP9_PROFILE_MAX)
return -EINVAL;
if (frame->reset_frame_context > V4L2_VP9_RESET_FRAME_CTX_ALL)
return -EINVAL;
if (frame->frame_context_idx >= V4L2_VP9_NUM_FRAME_CTX)
return -EINVAL;
/*
* Profiles 0 and 1 only support 8-bit depth, profiles 2 and 3 only 10
* and 12 bit depths.
*/
if ((frame->profile < 2 && frame->bit_depth != 8) ||
(frame->profile >= 2 &&
(frame->bit_depth != 10 && frame->bit_depth != 12)))
return -EINVAL;
/* Profile 0 and 2 only accept YUV 4:2:0. */
if ((frame->profile == 0 || frame->profile == 2) &&
(!(frame->flags & V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING) ||
!(frame->flags & V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING)))
return -EINVAL;
/* Profile 1 and 3 only accept YUV 4:2:2, 4:4:0 and 4:4:4. */
if ((frame->profile == 1 || frame->profile == 3) &&
((frame->flags & V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING) &&
(frame->flags & V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING)))
return -EINVAL;
if (frame->interpolation_filter > V4L2_VP9_INTERP_FILTER_SWITCHABLE)
return -EINVAL;
/*
* According to the spec, tile_cols_log2 shall be less than or equal
* to 6.
*/
if (frame->tile_cols_log2 > 6)
return -EINVAL;
if (frame->reference_mode > V4L2_VP9_REFERENCE_MODE_SELECT)
return -EINVAL;
ret = validate_vp9_lf_params(&frame->lf);
if (ret)
return ret;
ret = validate_vp9_quant_params(&frame->quant);
if (ret)
return ret;
ret = validate_vp9_seg_params(&frame->seg);
if (ret)
return ret;
zero_reserved(*frame);
return 0;
}
/*
* Compound controls validation requires setting unused fields/flags to zero
* in order to properly detect unchanged controls with v4l2_ctrl_type_op_equal's
* memcmp.
*/
static int std_validate_compound(const struct v4l2_ctrl *ctrl, u32 idx,
union v4l2_ctrl_ptr ptr)
{
struct v4l2_ctrl_mpeg2_sequence *p_mpeg2_sequence;
struct v4l2_ctrl_mpeg2_picture *p_mpeg2_picture;
struct v4l2_ctrl_vp8_frame *p_vp8_frame;
struct v4l2_ctrl_fwht_params *p_fwht_params;
struct v4l2_ctrl_h264_sps *p_h264_sps;
struct v4l2_ctrl_h264_pps *p_h264_pps;
struct v4l2_ctrl_h264_pred_weights *p_h264_pred_weights;
struct v4l2_ctrl_h264_slice_params *p_h264_slice_params;
struct v4l2_ctrl_h264_decode_params *p_h264_dec_params;
struct v4l2_ctrl_hevc_sps *p_hevc_sps;
struct v4l2_ctrl_hevc_pps *p_hevc_pps;
struct v4l2_ctrl_hdr10_mastering_display *p_hdr10_mastering;
struct v4l2_ctrl_hevc_decode_params *p_hevc_decode_params;
struct v4l2_area *area;
void *p = ptr.p + idx * ctrl->elem_size;
unsigned int i;
switch ((u32)ctrl->type) {
case V4L2_CTRL_TYPE_MPEG2_SEQUENCE:
p_mpeg2_sequence = p;
switch (p_mpeg2_sequence->chroma_format) {
case 1: /* 4:2:0 */
case 2: /* 4:2:2 */
case 3: /* 4:4:4 */
break;
default:
return -EINVAL;
}
break;
case V4L2_CTRL_TYPE_MPEG2_PICTURE:
p_mpeg2_picture = p;
switch (p_mpeg2_picture->intra_dc_precision) {
case 0: /* 8 bits */
case 1: /* 9 bits */
case 2: /* 10 bits */
case 3: /* 11 bits */
break;
default:
return -EINVAL;
}
switch (p_mpeg2_picture->picture_structure) {
case V4L2_MPEG2_PIC_TOP_FIELD:
case V4L2_MPEG2_PIC_BOTTOM_FIELD:
case V4L2_MPEG2_PIC_FRAME:
break;
default:
return -EINVAL;
}
switch (p_mpeg2_picture->picture_coding_type) {
case V4L2_MPEG2_PIC_CODING_TYPE_I:
case V4L2_MPEG2_PIC_CODING_TYPE_P:
case V4L2_MPEG2_PIC_CODING_TYPE_B:
break;
default:
return -EINVAL;
}
zero_reserved(*p_mpeg2_picture);
break;
case V4L2_CTRL_TYPE_MPEG2_QUANTISATION:
break;
case V4L2_CTRL_TYPE_FWHT_PARAMS:
p_fwht_params = p;
if (p_fwht_params->version < V4L2_FWHT_VERSION)
return -EINVAL;
if (!p_fwht_params->width || !p_fwht_params->height)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_H264_SPS:
p_h264_sps = p;
/* Some syntax elements are only conditionally valid */
if (p_h264_sps->pic_order_cnt_type != 0) {
p_h264_sps->log2_max_pic_order_cnt_lsb_minus4 = 0;
} else if (p_h264_sps->pic_order_cnt_type != 1) {
p_h264_sps->num_ref_frames_in_pic_order_cnt_cycle = 0;
p_h264_sps->offset_for_non_ref_pic = 0;
p_h264_sps->offset_for_top_to_bottom_field = 0;
memset(&p_h264_sps->offset_for_ref_frame, 0,
sizeof(p_h264_sps->offset_for_ref_frame));
}
if (!V4L2_H264_SPS_HAS_CHROMA_FORMAT(p_h264_sps)) {
p_h264_sps->chroma_format_idc = 1;
p_h264_sps->bit_depth_luma_minus8 = 0;
p_h264_sps->bit_depth_chroma_minus8 = 0;
p_h264_sps->flags &=
~V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS;
if (p_h264_sps->chroma_format_idc < 3)
p_h264_sps->flags &=
~V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE;
}
if (p_h264_sps->flags & V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY)
p_h264_sps->flags &=
~V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD;
/*
* Chroma 4:2:2 format require at least High 4:2:2 profile.
*
* The H264 specification and well-known parser implementations
* use profile-idc values directly, as that is clearer and
* less ambiguous. We do the same here.
*/
if (p_h264_sps->profile_idc < 122 &&
p_h264_sps->chroma_format_idc > 1)
return -EINVAL;
/* Chroma 4:4:4 format require at least High 4:2:2 profile */
if (p_h264_sps->profile_idc < 244 &&
p_h264_sps->chroma_format_idc > 2)
return -EINVAL;
if (p_h264_sps->chroma_format_idc > 3)
return -EINVAL;
if (p_h264_sps->bit_depth_luma_minus8 > 6)
return -EINVAL;
if (p_h264_sps->bit_depth_chroma_minus8 > 6)
return -EINVAL;
if (p_h264_sps->log2_max_frame_num_minus4 > 12)
return -EINVAL;
if (p_h264_sps->pic_order_cnt_type > 2)
return -EINVAL;
if (p_h264_sps->log2_max_pic_order_cnt_lsb_minus4 > 12)
return -EINVAL;
if (p_h264_sps->max_num_ref_frames > V4L2_H264_REF_LIST_LEN)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_H264_PPS:
p_h264_pps = p;
if (p_h264_pps->num_slice_groups_minus1 > 7)
return -EINVAL;
if (p_h264_pps->num_ref_idx_l0_default_active_minus1 >
(V4L2_H264_REF_LIST_LEN - 1))
return -EINVAL;
if (p_h264_pps->num_ref_idx_l1_default_active_minus1 >
(V4L2_H264_REF_LIST_LEN - 1))
return -EINVAL;
if (p_h264_pps->weighted_bipred_idc > 2)
return -EINVAL;
/*
* pic_init_qp_minus26 shall be in the range of
* -(26 + QpBdOffset_y) to +25, inclusive,
* where QpBdOffset_y is 6 * bit_depth_luma_minus8
*/
if (p_h264_pps->pic_init_qp_minus26 < -62 ||
p_h264_pps->pic_init_qp_minus26 > 25)
return -EINVAL;
if (p_h264_pps->pic_init_qs_minus26 < -26 ||
p_h264_pps->pic_init_qs_minus26 > 25)
return -EINVAL;
if (p_h264_pps->chroma_qp_index_offset < -12 ||
p_h264_pps->chroma_qp_index_offset > 12)
return -EINVAL;
if (p_h264_pps->second_chroma_qp_index_offset < -12 ||
p_h264_pps->second_chroma_qp_index_offset > 12)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_H264_SCALING_MATRIX:
break;
case V4L2_CTRL_TYPE_H264_PRED_WEIGHTS:
p_h264_pred_weights = p;
if (p_h264_pred_weights->luma_log2_weight_denom > 7)
return -EINVAL;
if (p_h264_pred_weights->chroma_log2_weight_denom > 7)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_H264_SLICE_PARAMS:
p_h264_slice_params = p;
if (p_h264_slice_params->slice_type != V4L2_H264_SLICE_TYPE_B)
p_h264_slice_params->flags &=
~V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED;
if (p_h264_slice_params->colour_plane_id > 2)
return -EINVAL;
if (p_h264_slice_params->cabac_init_idc > 2)
return -EINVAL;
if (p_h264_slice_params->disable_deblocking_filter_idc > 2)
return -EINVAL;
if (p_h264_slice_params->slice_alpha_c0_offset_div2 < -6 ||
p_h264_slice_params->slice_alpha_c0_offset_div2 > 6)
return -EINVAL;
if (p_h264_slice_params->slice_beta_offset_div2 < -6 ||
p_h264_slice_params->slice_beta_offset_div2 > 6)
return -EINVAL;
if (p_h264_slice_params->slice_type == V4L2_H264_SLICE_TYPE_I ||
p_h264_slice_params->slice_type == V4L2_H264_SLICE_TYPE_SI)
p_h264_slice_params->num_ref_idx_l0_active_minus1 = 0;
if (p_h264_slice_params->slice_type != V4L2_H264_SLICE_TYPE_B)
p_h264_slice_params->num_ref_idx_l1_active_minus1 = 0;
if (p_h264_slice_params->num_ref_idx_l0_active_minus1 >
(V4L2_H264_REF_LIST_LEN - 1))
return -EINVAL;
if (p_h264_slice_params->num_ref_idx_l1_active_minus1 >
(V4L2_H264_REF_LIST_LEN - 1))
return -EINVAL;
zero_reserved(*p_h264_slice_params);
break;
case V4L2_CTRL_TYPE_H264_DECODE_PARAMS:
p_h264_dec_params = p;
if (p_h264_dec_params->nal_ref_idc > 3)
return -EINVAL;
for (i = 0; i < V4L2_H264_NUM_DPB_ENTRIES; i++) {
struct v4l2_h264_dpb_entry *dpb_entry =
&p_h264_dec_params->dpb[i];
zero_reserved(*dpb_entry);
}
zero_reserved(*p_h264_dec_params);
break;
case V4L2_CTRL_TYPE_VP8_FRAME:
p_vp8_frame = p;
switch (p_vp8_frame->num_dct_parts) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return -EINVAL;
}
zero_padding(p_vp8_frame->segment);
zero_padding(p_vp8_frame->lf);
zero_padding(p_vp8_frame->quant);
zero_padding(p_vp8_frame->entropy);
zero_padding(p_vp8_frame->coder_state);
break;
case V4L2_CTRL_TYPE_HEVC_SPS:
p_hevc_sps = p;
if (!(p_hevc_sps->flags & V4L2_HEVC_SPS_FLAG_PCM_ENABLED)) {
p_hevc_sps->pcm_sample_bit_depth_luma_minus1 = 0;
p_hevc_sps->pcm_sample_bit_depth_chroma_minus1 = 0;
p_hevc_sps->log2_min_pcm_luma_coding_block_size_minus3 = 0;
p_hevc_sps->log2_diff_max_min_pcm_luma_coding_block_size = 0;
}
if (!(p_hevc_sps->flags &
V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT))
p_hevc_sps->num_long_term_ref_pics_sps = 0;
break;
case V4L2_CTRL_TYPE_HEVC_PPS:
p_hevc_pps = p;
if (!(p_hevc_pps->flags &
V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED))
p_hevc_pps->diff_cu_qp_delta_depth = 0;
if (!(p_hevc_pps->flags & V4L2_HEVC_PPS_FLAG_TILES_ENABLED)) {
p_hevc_pps->num_tile_columns_minus1 = 0;
p_hevc_pps->num_tile_rows_minus1 = 0;
memset(&p_hevc_pps->column_width_minus1, 0,
sizeof(p_hevc_pps->column_width_minus1));
memset(&p_hevc_pps->row_height_minus1, 0,
sizeof(p_hevc_pps->row_height_minus1));
p_hevc_pps->flags &=
~V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED;
}
if (p_hevc_pps->flags &
V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER) {
p_hevc_pps->pps_beta_offset_div2 = 0;
p_hevc_pps->pps_tc_offset_div2 = 0;
}
break;
case V4L2_CTRL_TYPE_HEVC_DECODE_PARAMS:
p_hevc_decode_params = p;
if (p_hevc_decode_params->num_active_dpb_entries >
V4L2_HEVC_DPB_ENTRIES_NUM_MAX)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_HEVC_SLICE_PARAMS:
break;
case V4L2_CTRL_TYPE_HDR10_CLL_INFO:
break;
case V4L2_CTRL_TYPE_HDR10_MASTERING_DISPLAY:
p_hdr10_mastering = p;
for (i = 0; i < 3; ++i) {
if (p_hdr10_mastering->display_primaries_x[i] <
V4L2_HDR10_MASTERING_PRIMARIES_X_LOW ||
p_hdr10_mastering->display_primaries_x[i] >
V4L2_HDR10_MASTERING_PRIMARIES_X_HIGH ||
p_hdr10_mastering->display_primaries_y[i] <
V4L2_HDR10_MASTERING_PRIMARIES_Y_LOW ||
p_hdr10_mastering->display_primaries_y[i] >
V4L2_HDR10_MASTERING_PRIMARIES_Y_HIGH)
return -EINVAL;
}
if (p_hdr10_mastering->white_point_x <
V4L2_HDR10_MASTERING_WHITE_POINT_X_LOW ||
p_hdr10_mastering->white_point_x >
V4L2_HDR10_MASTERING_WHITE_POINT_X_HIGH ||
p_hdr10_mastering->white_point_y <
V4L2_HDR10_MASTERING_WHITE_POINT_Y_LOW ||
p_hdr10_mastering->white_point_y >
V4L2_HDR10_MASTERING_WHITE_POINT_Y_HIGH)
return -EINVAL;
if (p_hdr10_mastering->max_display_mastering_luminance <
V4L2_HDR10_MASTERING_MAX_LUMA_LOW ||
p_hdr10_mastering->max_display_mastering_luminance >
V4L2_HDR10_MASTERING_MAX_LUMA_HIGH ||
p_hdr10_mastering->min_display_mastering_luminance <
V4L2_HDR10_MASTERING_MIN_LUMA_LOW ||
p_hdr10_mastering->min_display_mastering_luminance >
V4L2_HDR10_MASTERING_MIN_LUMA_HIGH)
return -EINVAL;
/* The following restriction comes from ITU-T Rec. H.265 spec */
if (p_hdr10_mastering->max_display_mastering_luminance ==
V4L2_HDR10_MASTERING_MAX_LUMA_LOW &&
p_hdr10_mastering->min_display_mastering_luminance ==
V4L2_HDR10_MASTERING_MIN_LUMA_HIGH)
return -EINVAL;
break;
case V4L2_CTRL_TYPE_HEVC_SCALING_MATRIX:
break;
case V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR:
return validate_vp9_compressed_hdr(p);
case V4L2_CTRL_TYPE_VP9_FRAME:
return validate_vp9_frame(p);
case V4L2_CTRL_TYPE_AREA:
area = p;
if (!area->width || !area->height)
return -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int std_validate_elem(const struct v4l2_ctrl *ctrl, u32 idx,
union v4l2_ctrl_ptr ptr)
{
size_t len;
u64 offset;
s64 val;
switch ((u32)ctrl->type) {
case V4L2_CTRL_TYPE_INTEGER:
return ROUND_TO_RANGE(ptr.p_s32[idx], u32, ctrl);
case V4L2_CTRL_TYPE_INTEGER64:
/*
* We can't use the ROUND_TO_RANGE define here due to
* the u64 divide that needs special care.
*/
val = ptr.p_s64[idx];
if (ctrl->maximum >= 0 && val >= ctrl->maximum - (s64)(ctrl->step / 2))
val = ctrl->maximum;
else
val += (s64)(ctrl->step / 2);
val = clamp_t(s64, val, ctrl->minimum, ctrl->maximum);
offset = val - ctrl->minimum;
do_div(offset, ctrl->step);
ptr.p_s64[idx] = ctrl->minimum + offset * ctrl->step;
return 0;
case V4L2_CTRL_TYPE_U8:
return ROUND_TO_RANGE(ptr.p_u8[idx], u8, ctrl);
case V4L2_CTRL_TYPE_U16:
return ROUND_TO_RANGE(ptr.p_u16[idx], u16, ctrl);
case V4L2_CTRL_TYPE_U32:
return ROUND_TO_RANGE(ptr.p_u32[idx], u32, ctrl);
case V4L2_CTRL_TYPE_BOOLEAN:
ptr.p_s32[idx] = !!ptr.p_s32[idx];
return 0;
case V4L2_CTRL_TYPE_MENU:
case V4L2_CTRL_TYPE_INTEGER_MENU:
if (ptr.p_s32[idx] < ctrl->minimum || ptr.p_s32[idx] > ctrl->maximum)
return -ERANGE;
if (ptr.p_s32[idx] < BITS_PER_LONG_LONG &&
(ctrl->menu_skip_mask & BIT_ULL(ptr.p_s32[idx])))
return -EINVAL;
if (ctrl->type == V4L2_CTRL_TYPE_MENU &&
ctrl->qmenu[ptr.p_s32[idx]][0] == '\0')
return -EINVAL;
return 0;
case V4L2_CTRL_TYPE_BITMASK:
ptr.p_s32[idx] &= ctrl->maximum;
return 0;
case V4L2_CTRL_TYPE_BUTTON:
case V4L2_CTRL_TYPE_CTRL_CLASS:
ptr.p_s32[idx] = 0;
return 0;
case V4L2_CTRL_TYPE_STRING:
idx *= ctrl->elem_size;
len = strlen(ptr.p_char + idx);
if (len < ctrl->minimum)
return -ERANGE;
if ((len - (u32)ctrl->minimum) % (u32)ctrl->step)
return -ERANGE;
return 0;
default:
return std_validate_compound(ctrl, idx, ptr);
}
}
int v4l2_ctrl_type_op_validate(const struct v4l2_ctrl *ctrl,
union v4l2_ctrl_ptr ptr)
{
unsigned int i;
int ret = 0;
switch ((u32)ctrl->type) {
case V4L2_CTRL_TYPE_U8:
if (ctrl->maximum == 0xff && ctrl->minimum == 0 && ctrl->step == 1)
return 0;
break;
case V4L2_CTRL_TYPE_U16:
if (ctrl->maximum == 0xffff && ctrl->minimum == 0 && ctrl->step == 1)
return 0;
break;
case V4L2_CTRL_TYPE_U32:
if (ctrl->maximum == 0xffffffff && ctrl->minimum == 0 && ctrl->step == 1)
return 0;
break;
case V4L2_CTRL_TYPE_BUTTON:
case V4L2_CTRL_TYPE_CTRL_CLASS:
memset(ptr.p_s32, 0, ctrl->new_elems * sizeof(s32));
return 0;
}
for (i = 0; !ret && i < ctrl->new_elems; i++)
ret = std_validate_elem(ctrl, i, ptr);
return ret;
}
EXPORT_SYMBOL(v4l2_ctrl_type_op_validate);
static const struct v4l2_ctrl_type_ops std_type_ops = {
.equal = v4l2_ctrl_type_op_equal,
.init = v4l2_ctrl_type_op_init,
.log = v4l2_ctrl_type_op_log,
.validate = v4l2_ctrl_type_op_validate,
};
void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl, v4l2_ctrl_notify_fnc notify, void *priv)
{
if (!ctrl)
return;
if (!notify) {
ctrl->call_notify = 0;
return;
}
if (WARN_ON(ctrl->handler->notify && ctrl->handler->notify != notify))
return;
ctrl->handler->notify = notify;
ctrl->handler->notify_priv = priv;
ctrl->call_notify = 1;
}
EXPORT_SYMBOL(v4l2_ctrl_notify);
/* Copy the one value to another. */
static void ptr_to_ptr(struct v4l2_ctrl *ctrl,
union v4l2_ctrl_ptr from, union v4l2_ctrl_ptr to,
unsigned int elems)
{
if (ctrl == NULL)
return;
memcpy(to.p, from.p_const, elems * ctrl->elem_size);
}
/* Copy the new value to the current value. */
void new_to_cur(struct v4l2_fh *fh, struct v4l2_ctrl *ctrl, u32 ch_flags)
{
bool changed;
if (ctrl == NULL)
return;
/* has_changed is set by cluster_changed */
changed = ctrl->has_changed;
if (changed) {
if (ctrl->is_dyn_array)
ctrl->elems = ctrl->new_elems;
ptr_to_ptr(ctrl, ctrl->p_new, ctrl->p_cur, ctrl->elems);
}
if (ch_flags & V4L2_EVENT_CTRL_CH_FLAGS) {
/* Note: CH_FLAGS is only set for auto clusters. */
ctrl->flags &=
~(V4L2_CTRL_FLAG_INACTIVE | V4L2_CTRL_FLAG_VOLATILE);
if (!is_cur_manual(ctrl->cluster[0])) {
ctrl->flags |= V4L2_CTRL_FLAG_INACTIVE;
if (ctrl->cluster[0]->has_volatiles)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
}
fh = NULL;
}
if (changed || ch_flags) {
/* If a control was changed that was not one of the controls
modified by the application, then send the event to all. */
if (!ctrl->is_new)
fh = NULL;
send_event(fh, ctrl,
(changed ? V4L2_EVENT_CTRL_CH_VALUE : 0) | ch_flags);
if (ctrl->call_notify && changed && ctrl->handler->notify)
ctrl->handler->notify(ctrl, ctrl->handler->notify_priv);
}
}
/* Copy the current value to the new value */
void cur_to_new(struct v4l2_ctrl *ctrl)
{
if (ctrl == NULL)
return;
if (ctrl->is_dyn_array)
ctrl->new_elems = ctrl->elems;
ptr_to_ptr(ctrl, ctrl->p_cur, ctrl->p_new, ctrl->new_elems);
}
static bool req_alloc_array(struct v4l2_ctrl_ref *ref, u32 elems)
{
void *tmp;
if (elems == ref->p_req_array_alloc_elems)
return true;
if (ref->ctrl->is_dyn_array &&
elems < ref->p_req_array_alloc_elems)
return true;
tmp = kvmalloc(elems * ref->ctrl->elem_size, GFP_KERNEL);
if (!tmp) {
ref->p_req_array_enomem = true;
return false;
}
ref->p_req_array_enomem = false;
kvfree(ref->p_req.p);
ref->p_req.p = tmp;
ref->p_req_array_alloc_elems = elems;
return true;
}
/* Copy the new value to the request value */
void new_to_req(struct v4l2_ctrl_ref *ref)
{
struct v4l2_ctrl *ctrl;
if (!ref)
return;
ctrl = ref->ctrl;
if (ctrl->is_array && !req_alloc_array(ref, ctrl->new_elems))
return;
ref->p_req_elems = ctrl->new_elems;
ptr_to_ptr(ctrl, ctrl->p_new, ref->p_req, ref->p_req_elems);
ref->p_req_valid = true;
}
/* Copy the current value to the request value */
void cur_to_req(struct v4l2_ctrl_ref *ref)
{
struct v4l2_ctrl *ctrl;
if (!ref)
return;
ctrl = ref->ctrl;
if (ctrl->is_array && !req_alloc_array(ref, ctrl->elems))
return;
ref->p_req_elems = ctrl->elems;
ptr_to_ptr(ctrl, ctrl->p_cur, ref->p_req, ctrl->elems);
ref->p_req_valid = true;
}
/* Copy the request value to the new value */
int req_to_new(struct v4l2_ctrl_ref *ref)
{
struct v4l2_ctrl *ctrl;
if (!ref)
return 0;
ctrl = ref->ctrl;
/*
* This control was never set in the request, so just use the current
* value.
*/
if (!ref->p_req_valid) {
if (ctrl->is_dyn_array)
ctrl->new_elems = ctrl->elems;
ptr_to_ptr(ctrl, ctrl->p_cur, ctrl->p_new, ctrl->new_elems);
return 0;
}
/* Not an array, so just copy the request value */
if (!ctrl->is_array) {
ptr_to_ptr(ctrl, ref->p_req, ctrl->p_new, ctrl->new_elems);
return 0;
}
/* Sanity check, should never happen */
if (WARN_ON(!ref->p_req_array_alloc_elems))
return -ENOMEM;
if (!ctrl->is_dyn_array &&
ref->p_req_elems != ctrl->p_array_alloc_elems)
return -ENOMEM;
/*
* Check if the number of elements in the request is more than the
* elements in ctrl->p_array. If so, attempt to realloc ctrl->p_array.
* Note that p_array is allocated with twice the number of elements
* in the dynamic array since it has to store both the current and
* new value of such a control.
*/
if (ref->p_req_elems > ctrl->p_array_alloc_elems) {
unsigned int sz = ref->p_req_elems * ctrl->elem_size;
void *old = ctrl->p_array;
void *tmp = kvzalloc(2 * sz, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
memcpy(tmp, ctrl->p_new.p, ctrl->elems * ctrl->elem_size);
memcpy(tmp + sz, ctrl->p_cur.p, ctrl->elems * ctrl->elem_size);
ctrl->p_new.p = tmp;
ctrl->p_cur.p = tmp + sz;
ctrl->p_array = tmp;
ctrl->p_array_alloc_elems = ref->p_req_elems;
kvfree(old);
}
ctrl->new_elems = ref->p_req_elems;
ptr_to_ptr(ctrl, ref->p_req, ctrl->p_new, ctrl->new_elems);
return 0;
}
/* Control range checking */
int check_range(enum v4l2_ctrl_type type,
s64 min, s64 max, u64 step, s64 def)
{
switch (type) {
case V4L2_CTRL_TYPE_BOOLEAN:
if (step != 1 || max > 1 || min < 0)
return -ERANGE;
fallthrough;
case V4L2_CTRL_TYPE_U8:
case V4L2_CTRL_TYPE_U16:
case V4L2_CTRL_TYPE_U32:
case V4L2_CTRL_TYPE_INTEGER:
case V4L2_CTRL_TYPE_INTEGER64:
if (step == 0 || min > max || def < min || def > max)
return -ERANGE;
return 0;
case V4L2_CTRL_TYPE_BITMASK:
if (step || min || !max || (def & ~max))
return -ERANGE;
return 0;
case V4L2_CTRL_TYPE_MENU:
case V4L2_CTRL_TYPE_INTEGER_MENU:
if (min > max || def < min || def > max)
return -ERANGE;
/* Note: step == menu_skip_mask for menu controls.
So here we check if the default value is masked out. */
if (step && ((1 << def) & step))
return -EINVAL;
return 0;
case V4L2_CTRL_TYPE_STRING:
if (min > max || min < 0 || step < 1 || def)
return -ERANGE;
return 0;
default:
return 0;
}
}
/* Set the handler's error code if it wasn't set earlier already */
static inline int handler_set_err(struct v4l2_ctrl_handler *hdl, int err)
{
if (hdl->error == 0)
hdl->error = err;
return err;
}
/* Initialize the handler */
int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler *hdl,
unsigned nr_of_controls_hint,
struct lock_class_key *key, const char *name)
{
mutex_init(&hdl->_lock);
hdl->lock = &hdl->_lock;
lockdep_set_class_and_name(hdl->lock, key, name);
INIT_LIST_HEAD(&hdl->ctrls);
INIT_LIST_HEAD(&hdl->ctrl_refs);
hdl->nr_of_buckets = 1 + nr_of_controls_hint / 8;
hdl->buckets = kvcalloc(hdl->nr_of_buckets, sizeof(hdl->buckets[0]),
GFP_KERNEL);
hdl->error = hdl->buckets ? 0 : -ENOMEM;
v4l2_ctrl_handler_init_request(hdl);
return hdl->error;
}
EXPORT_SYMBOL(v4l2_ctrl_handler_init_class);
/* Free all controls and control refs */
void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler *hdl)
{
struct v4l2_ctrl_ref *ref, *next_ref;
struct v4l2_ctrl *ctrl, *next_ctrl;
struct v4l2_subscribed_event *sev, *next_sev;
if (hdl == NULL || hdl->buckets == NULL)
return;
v4l2_ctrl_handler_free_request(hdl);
mutex_lock(hdl->lock);
/* Free all nodes */
list_for_each_entry_safe(ref, next_ref, &hdl->ctrl_refs, node) {
list_del(&ref->node);
if (ref->p_req_array_alloc_elems)
kvfree(ref->p_req.p);
kfree(ref);
}
/* Free all controls owned by the handler */
list_for_each_entry_safe(ctrl, next_ctrl, &hdl->ctrls, node) {
list_del(&ctrl->node);
list_for_each_entry_safe(sev, next_sev, &ctrl->ev_subs, node)
list_del(&sev->node);
kvfree(ctrl->p_array);
kvfree(ctrl);
}
kvfree(hdl->buckets);
hdl->buckets = NULL;
hdl->cached = NULL;
hdl->error = 0;
mutex_unlock(hdl->lock);
mutex_destroy(&hdl->_lock);
}
EXPORT_SYMBOL(v4l2_ctrl_handler_free);
/* For backwards compatibility: V4L2_CID_PRIVATE_BASE should no longer
be used except in G_CTRL, S_CTRL, QUERYCTRL and QUERYMENU when dealing
with applications that do not use the NEXT_CTRL flag.
We just find the n-th private user control. It's O(N), but that should not
be an issue in this particular case. */
static struct v4l2_ctrl_ref *find_private_ref(
struct v4l2_ctrl_handler *hdl, u32 id)
{
struct v4l2_ctrl_ref *ref;
id -= V4L2_CID_PRIVATE_BASE;
list_for_each_entry(ref, &hdl->ctrl_refs, node) {
/* Search for private user controls that are compatible with
VIDIOC_G/S_CTRL. */
if (V4L2_CTRL_ID2WHICH(ref->ctrl->id) == V4L2_CTRL_CLASS_USER &&
V4L2_CTRL_DRIVER_PRIV(ref->ctrl->id)) {
if (!ref->ctrl->is_int)
continue;
if (id == 0)
return ref;
id--;
}
}
return NULL;
}
/* Find a control with the given ID. */
struct v4l2_ctrl_ref *find_ref(struct v4l2_ctrl_handler *hdl, u32 id)
{
struct v4l2_ctrl_ref *ref;
int bucket;
id &= V4L2_CTRL_ID_MASK;
/* Old-style private controls need special handling */
if (id >= V4L2_CID_PRIVATE_BASE)
return find_private_ref(hdl, id);
bucket = id % hdl->nr_of_buckets;
/* Simple optimization: cache the last control found */
if (hdl->cached && hdl->cached->ctrl->id == id)
return hdl->cached;
/* Not in cache, search the hash */
ref = hdl->buckets ? hdl->buckets[bucket] : NULL;
while (ref && ref->ctrl->id != id)
ref = ref->next;
if (ref)
hdl->cached = ref; /* cache it! */
return ref;
}
/* Find a control with the given ID. Take the handler's lock first. */
struct v4l2_ctrl_ref *find_ref_lock(struct v4l2_ctrl_handler *hdl, u32 id)
{
struct v4l2_ctrl_ref *ref = NULL;
if (hdl) {
mutex_lock(hdl->lock);
ref = find_ref(hdl, id);
mutex_unlock(hdl->lock);
}
return ref;
}
/* Find a control with the given ID. */
struct v4l2_ctrl *v4l2_ctrl_find(struct v4l2_ctrl_handler *hdl, u32 id)
{
struct v4l2_ctrl_ref *ref = find_ref_lock(hdl, id);
return ref ? ref->ctrl : NULL;
}
EXPORT_SYMBOL(v4l2_ctrl_find);
/* Allocate a new v4l2_ctrl_ref and hook it into the handler. */
int handler_new_ref(struct v4l2_ctrl_handler *hdl,
struct v4l2_ctrl *ctrl,
struct v4l2_ctrl_ref **ctrl_ref,
bool from_other_dev, bool allocate_req)
{
struct v4l2_ctrl_ref *ref;
struct v4l2_ctrl_ref *new_ref;
u32 id = ctrl->id;
u32 class_ctrl = V4L2_CTRL_ID2WHICH(id) | 1;
int bucket = id % hdl->nr_of_buckets; /* which bucket to use */
unsigned int size_extra_req = 0;
if (ctrl_ref)
*ctrl_ref = NULL;
/*
* Automatically add the control class if it is not yet present and
* the new control is not a compound control.
*/
if (ctrl->type < V4L2_CTRL_COMPOUND_TYPES &&
id != class_ctrl && find_ref_lock(hdl, class_ctrl) == NULL)
if (!v4l2_ctrl_new_std(hdl, NULL, class_ctrl, 0, 0, 0, 0))
return hdl->error;
if (hdl->error)
return hdl->error;
if (allocate_req && !ctrl->is_array)
size_extra_req = ctrl->elems * ctrl->elem_size;
new_ref = kzalloc(sizeof(*new_ref) + size_extra_req, GFP_KERNEL);
if (!new_ref)
return handler_set_err(hdl, -ENOMEM);
new_ref->ctrl = ctrl;
new_ref->from_other_dev = from_other_dev;
if (size_extra_req)
new_ref->p_req.p = &new_ref[1];
INIT_LIST_HEAD(&new_ref->node);
mutex_lock(hdl->lock);
/* Add immediately at the end of the list if the list is empty, or if
the last element in the list has a lower ID.
This ensures that when elements are added in ascending order the
insertion is an O(1) operation. */
if (list_empty(&hdl->ctrl_refs) || id > node2id(hdl->ctrl_refs.prev)) {
list_add_tail(&new_ref->node, &hdl->ctrl_refs);
goto insert_in_hash;
}
/* Find insert position in sorted list */
list_for_each_entry(ref, &hdl->ctrl_refs, node) {
if (ref->ctrl->id < id)
continue;
/* Don't add duplicates */
if (ref->ctrl->id == id) {
kfree(new_ref);
goto unlock;
}
list_add(&new_ref->node, ref->node.prev);
break;
}
insert_in_hash:
/* Insert the control node in the hash */
new_ref->next = hdl->buckets[bucket];
hdl->buckets[bucket] = new_ref;
if (ctrl_ref)
*ctrl_ref = new_ref;
if (ctrl->handler == hdl) {
/* By default each control starts in a cluster of its own.
* new_ref->ctrl is basically a cluster array with one
* element, so that's perfect to use as the cluster pointer.
* But only do this for the handler that owns the control.
*/
ctrl->cluster = &new_ref->ctrl;
ctrl->ncontrols = 1;
}
unlock:
mutex_unlock(hdl->lock);
return 0;
}
/* Add a new control */
static struct v4l2_ctrl *v4l2_ctrl_new(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
const struct v4l2_ctrl_type_ops *type_ops,
u32 id, const char *name, enum v4l2_ctrl_type type,
s64 min, s64 max, u64 step, s64 def,
const u32 dims[V4L2_CTRL_MAX_DIMS], u32 elem_size,
u32 flags, const char * const *qmenu,
const s64 *qmenu_int, const union v4l2_ctrl_ptr p_def,
void *priv)
{
struct v4l2_ctrl *ctrl;
unsigned sz_extra;
unsigned nr_of_dims = 0;
unsigned elems = 1;
bool is_array;
unsigned tot_ctrl_size;
void *data;
int err;
if (hdl->error)
return NULL;
while (dims && dims[nr_of_dims]) {
elems *= dims[nr_of_dims];
nr_of_dims++;
if (nr_of_dims == V4L2_CTRL_MAX_DIMS)
break;
}
is_array = nr_of_dims > 0;
/* Prefill elem_size for all types handled by std_type_ops */
switch ((u32)type) {
case V4L2_CTRL_TYPE_INTEGER64:
elem_size = sizeof(s64);
break;
case V4L2_CTRL_TYPE_STRING:
elem_size = max + 1;
break;
case V4L2_CTRL_TYPE_U8:
elem_size = sizeof(u8);
break;
case V4L2_CTRL_TYPE_U16:
elem_size = sizeof(u16);
break;
case V4L2_CTRL_TYPE_U32:
elem_size = sizeof(u32);
break;
case V4L2_CTRL_TYPE_MPEG2_SEQUENCE:
elem_size = sizeof(struct v4l2_ctrl_mpeg2_sequence);
break;
case V4L2_CTRL_TYPE_MPEG2_PICTURE:
elem_size = sizeof(struct v4l2_ctrl_mpeg2_picture);
break;
case V4L2_CTRL_TYPE_MPEG2_QUANTISATION:
elem_size = sizeof(struct v4l2_ctrl_mpeg2_quantisation);
break;
case V4L2_CTRL_TYPE_FWHT_PARAMS:
elem_size = sizeof(struct v4l2_ctrl_fwht_params);
break;
case V4L2_CTRL_TYPE_H264_SPS:
elem_size = sizeof(struct v4l2_ctrl_h264_sps);
break;
case V4L2_CTRL_TYPE_H264_PPS:
elem_size = sizeof(struct v4l2_ctrl_h264_pps);
break;
case V4L2_CTRL_TYPE_H264_SCALING_MATRIX:
elem_size = sizeof(struct v4l2_ctrl_h264_scaling_matrix);
break;
case V4L2_CTRL_TYPE_H264_SLICE_PARAMS:
elem_size = sizeof(struct v4l2_ctrl_h264_slice_params);
break;
case V4L2_CTRL_TYPE_H264_DECODE_PARAMS:
elem_size = sizeof(struct v4l2_ctrl_h264_decode_params);
break;
case V4L2_CTRL_TYPE_H264_PRED_WEIGHTS:
elem_size = sizeof(struct v4l2_ctrl_h264_pred_weights);
break;
case V4L2_CTRL_TYPE_VP8_FRAME:
elem_size = sizeof(struct v4l2_ctrl_vp8_frame);
break;
case V4L2_CTRL_TYPE_HEVC_SPS:
elem_size = sizeof(struct v4l2_ctrl_hevc_sps);
break;
case V4L2_CTRL_TYPE_HEVC_PPS:
elem_size = sizeof(struct v4l2_ctrl_hevc_pps);
break;
case V4L2_CTRL_TYPE_HEVC_SLICE_PARAMS:
elem_size = sizeof(struct v4l2_ctrl_hevc_slice_params);
break;
case V4L2_CTRL_TYPE_HEVC_SCALING_MATRIX:
elem_size = sizeof(struct v4l2_ctrl_hevc_scaling_matrix);
break;
case V4L2_CTRL_TYPE_HEVC_DECODE_PARAMS:
elem_size = sizeof(struct v4l2_ctrl_hevc_decode_params);
break;
case V4L2_CTRL_TYPE_HDR10_CLL_INFO:
elem_size = sizeof(struct v4l2_ctrl_hdr10_cll_info);
break;
case V4L2_CTRL_TYPE_HDR10_MASTERING_DISPLAY:
elem_size = sizeof(struct v4l2_ctrl_hdr10_mastering_display);
break;
case V4L2_CTRL_TYPE_VP9_COMPRESSED_HDR:
elem_size = sizeof(struct v4l2_ctrl_vp9_compressed_hdr);
break;
case V4L2_CTRL_TYPE_VP9_FRAME:
elem_size = sizeof(struct v4l2_ctrl_vp9_frame);
break;
case V4L2_CTRL_TYPE_AREA:
elem_size = sizeof(struct v4l2_area);
break;
default:
if (type < V4L2_CTRL_COMPOUND_TYPES)
elem_size = sizeof(s32);
break;
}
/* Sanity checks */
if (id == 0 || name == NULL || !elem_size ||
id >= V4L2_CID_PRIVATE_BASE ||
(type == V4L2_CTRL_TYPE_MENU && qmenu == NULL) ||
(type == V4L2_CTRL_TYPE_INTEGER_MENU && qmenu_int == NULL)) {
handler_set_err(hdl, -ERANGE);
return NULL;
}
err = check_range(type, min, max, step, def);
if (err) {
handler_set_err(hdl, err);
return NULL;
}
if (is_array &&
(type == V4L2_CTRL_TYPE_BUTTON ||
type == V4L2_CTRL_TYPE_CTRL_CLASS)) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
if (flags & V4L2_CTRL_FLAG_DYNAMIC_ARRAY) {
/*
* For now only support this for one-dimensional arrays only.
*
* This can be relaxed in the future, but this will
* require more effort.
*/
if (nr_of_dims != 1) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
/* Start with just 1 element */
elems = 1;
}
tot_ctrl_size = elem_size * elems;
sz_extra = 0;
if (type == V4L2_CTRL_TYPE_BUTTON)
flags |= V4L2_CTRL_FLAG_WRITE_ONLY |
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE;
else if (type == V4L2_CTRL_TYPE_CTRL_CLASS)
flags |= V4L2_CTRL_FLAG_READ_ONLY;
else if (!is_array &&
(type == V4L2_CTRL_TYPE_INTEGER64 ||
type == V4L2_CTRL_TYPE_STRING ||
type >= V4L2_CTRL_COMPOUND_TYPES))
sz_extra += 2 * tot_ctrl_size;
if (type >= V4L2_CTRL_COMPOUND_TYPES && p_def.p_const)
sz_extra += elem_size;
ctrl = kvzalloc(sizeof(*ctrl) + sz_extra, GFP_KERNEL);
if (ctrl == NULL) {
handler_set_err(hdl, -ENOMEM);
return NULL;
}
INIT_LIST_HEAD(&ctrl->node);
INIT_LIST_HEAD(&ctrl->ev_subs);
ctrl->handler = hdl;
ctrl->ops = ops;
ctrl->type_ops = type_ops ? type_ops : &std_type_ops;
ctrl->id = id;
ctrl->name = name;
ctrl->type = type;
ctrl->flags = flags;
ctrl->minimum = min;
ctrl->maximum = max;
ctrl->step = step;
ctrl->default_value = def;
ctrl->is_string = !is_array && type == V4L2_CTRL_TYPE_STRING;
ctrl->is_ptr = is_array || type >= V4L2_CTRL_COMPOUND_TYPES || ctrl->is_string;
ctrl->is_int = !ctrl->is_ptr && type != V4L2_CTRL_TYPE_INTEGER64;
ctrl->is_array = is_array;
ctrl->is_dyn_array = !!(flags & V4L2_CTRL_FLAG_DYNAMIC_ARRAY);
ctrl->elems = elems;
ctrl->new_elems = elems;
ctrl->nr_of_dims = nr_of_dims;
if (nr_of_dims)
memcpy(ctrl->dims, dims, nr_of_dims * sizeof(dims[0]));
ctrl->elem_size = elem_size;
if (type == V4L2_CTRL_TYPE_MENU)
ctrl->qmenu = qmenu;
else if (type == V4L2_CTRL_TYPE_INTEGER_MENU)
ctrl->qmenu_int = qmenu_int;
ctrl->priv = priv;
ctrl->cur.val = ctrl->val = def;
data = &ctrl[1];
if (ctrl->is_array) {
ctrl->p_array_alloc_elems = elems;
ctrl->p_array = kvzalloc(2 * elems * elem_size, GFP_KERNEL);
if (!ctrl->p_array) {
kvfree(ctrl);
return NULL;
}
data = ctrl->p_array;
}
if (!ctrl->is_int) {
ctrl->p_new.p = data;
ctrl->p_cur.p = data + tot_ctrl_size;
} else {
ctrl->p_new.p = &ctrl->val;
ctrl->p_cur.p = &ctrl->cur.val;
}
if (type >= V4L2_CTRL_COMPOUND_TYPES && p_def.p_const) {
if (ctrl->is_array)
ctrl->p_def.p = &ctrl[1];
else
ctrl->p_def.p = ctrl->p_cur.p + tot_ctrl_size;
memcpy(ctrl->p_def.p, p_def.p_const, elem_size);
}
ctrl->type_ops->init(ctrl, 0, ctrl->p_cur);
cur_to_new(ctrl);
if (handler_new_ref(hdl, ctrl, NULL, false, false)) {
kvfree(ctrl->p_array);
kvfree(ctrl);
return NULL;
}
mutex_lock(hdl->lock);
list_add_tail(&ctrl->node, &hdl->ctrls);
mutex_unlock(hdl->lock);
return ctrl;
}
struct v4l2_ctrl *v4l2_ctrl_new_custom(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_config *cfg, void *priv)
{
bool is_menu;
struct v4l2_ctrl *ctrl;
const char *name = cfg->name;
const char * const *qmenu = cfg->qmenu;
const s64 *qmenu_int = cfg->qmenu_int;
enum v4l2_ctrl_type type = cfg->type;
u32 flags = cfg->flags;
s64 min = cfg->min;
s64 max = cfg->max;
u64 step = cfg->step;
s64 def = cfg->def;
if (name == NULL)
v4l2_ctrl_fill(cfg->id, &name, &type, &min, &max, &step,
&def, &flags);
is_menu = (type == V4L2_CTRL_TYPE_MENU ||
type == V4L2_CTRL_TYPE_INTEGER_MENU);
if (is_menu)
WARN_ON(step);
else
WARN_ON(cfg->menu_skip_mask);
if (type == V4L2_CTRL_TYPE_MENU && !qmenu) {
qmenu = v4l2_ctrl_get_menu(cfg->id);
} else if (type == V4L2_CTRL_TYPE_INTEGER_MENU && !qmenu_int) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
ctrl = v4l2_ctrl_new(hdl, cfg->ops, cfg->type_ops, cfg->id, name,
type, min, max,
is_menu ? cfg->menu_skip_mask : step, def,
cfg->dims, cfg->elem_size,
flags, qmenu, qmenu_int, cfg->p_def, priv);
if (ctrl)
ctrl->is_private = cfg->is_private;
return ctrl;
}
EXPORT_SYMBOL(v4l2_ctrl_new_custom);
/* Helper function for standard non-menu controls */
struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s64 min, s64 max, u64 step, s64 def)
{
const char *name;
enum v4l2_ctrl_type type;
u32 flags;
v4l2_ctrl_fill(id, &name, &type, &min, &max, &step, &def, &flags);
if (type == V4L2_CTRL_TYPE_MENU ||
type == V4L2_CTRL_TYPE_INTEGER_MENU ||
type >= V4L2_CTRL_COMPOUND_TYPES) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
return v4l2_ctrl_new(hdl, ops, NULL, id, name, type,
min, max, step, def, NULL, 0,
flags, NULL, NULL, ptr_null, NULL);
}
EXPORT_SYMBOL(v4l2_ctrl_new_std);
/* Helper function for standard menu controls */
struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, u8 _max, u64 mask, u8 _def)
{
const char * const *qmenu = NULL;
const s64 *qmenu_int = NULL;
unsigned int qmenu_int_len = 0;
const char *name;
enum v4l2_ctrl_type type;
s64 min;
s64 max = _max;
s64 def = _def;
u64 step;
u32 flags;
v4l2_ctrl_fill(id, &name, &type, &min, &max, &step, &def, &flags);
if (type == V4L2_CTRL_TYPE_MENU)
qmenu = v4l2_ctrl_get_menu(id);
else if (type == V4L2_CTRL_TYPE_INTEGER_MENU)
qmenu_int = v4l2_ctrl_get_int_menu(id, &qmenu_int_len);
if ((!qmenu && !qmenu_int) || (qmenu_int && max >= qmenu_int_len)) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
return v4l2_ctrl_new(hdl, ops, NULL, id, name, type,
0, max, mask, def, NULL, 0,
flags, qmenu, qmenu_int, ptr_null, NULL);
}
EXPORT_SYMBOL(v4l2_ctrl_new_std_menu);
/* Helper function for standard menu controls with driver defined menu */
struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id, u8 _max,
u64 mask, u8 _def, const char * const *qmenu)
{
enum v4l2_ctrl_type type;
const char *name;
u32 flags;
u64 step;
s64 min;
s64 max = _max;
s64 def = _def;
/* v4l2_ctrl_new_std_menu_items() should only be called for
* standard controls without a standard menu.
*/
if (v4l2_ctrl_get_menu(id)) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
v4l2_ctrl_fill(id, &name, &type, &min, &max, &step, &def, &flags);
if (type != V4L2_CTRL_TYPE_MENU || qmenu == NULL) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
return v4l2_ctrl_new(hdl, ops, NULL, id, name, type,
0, max, mask, def, NULL, 0,
flags, qmenu, NULL, ptr_null, NULL);
}
EXPORT_SYMBOL(v4l2_ctrl_new_std_menu_items);
/* Helper function for standard compound controls */
struct v4l2_ctrl *v4l2_ctrl_new_std_compound(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id,
const union v4l2_ctrl_ptr p_def)
{
const char *name;
enum v4l2_ctrl_type type;
u32 flags;
s64 min, max, step, def;
v4l2_ctrl_fill(id, &name, &type, &min, &max, &step, &def, &flags);
if (type < V4L2_CTRL_COMPOUND_TYPES) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
return v4l2_ctrl_new(hdl, ops, NULL, id, name, type,
min, max, step, def, NULL, 0,
flags, NULL, NULL, p_def, NULL);
}
EXPORT_SYMBOL(v4l2_ctrl_new_std_compound);
/* Helper function for standard integer menu controls */
struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, u8 _max, u8 _def, const s64 *qmenu_int)
{
const char *name;
enum v4l2_ctrl_type type;
s64 min;
u64 step;
s64 max = _max;
s64 def = _def;
u32 flags;
v4l2_ctrl_fill(id, &name, &type, &min, &max, &step, &def, &flags);
if (type != V4L2_CTRL_TYPE_INTEGER_MENU) {
handler_set_err(hdl, -EINVAL);
return NULL;
}
return v4l2_ctrl_new(hdl, ops, NULL, id, name, type,
0, max, 0, def, NULL, 0,
flags, NULL, qmenu_int, ptr_null, NULL);
}
EXPORT_SYMBOL(v4l2_ctrl_new_int_menu);
/* Add the controls from another handler to our own. */
int v4l2_ctrl_add_handler(struct v4l2_ctrl_handler *hdl,
struct v4l2_ctrl_handler *add,
bool (*filter)(const struct v4l2_ctrl *ctrl),
bool from_other_dev)
{
struct v4l2_ctrl_ref *ref;
int ret = 0;
/* Do nothing if either handler is NULL or if they are the same */
if (!hdl || !add || hdl == add)
return 0;
if (hdl->error)
return hdl->error;
mutex_lock(add->lock);
list_for_each_entry(ref, &add->ctrl_refs, node) {
struct v4l2_ctrl *ctrl = ref->ctrl;
/* Skip handler-private controls. */
if (ctrl->is_private)
continue;
/* And control classes */
if (ctrl->type == V4L2_CTRL_TYPE_CTRL_CLASS)
continue;
/* Filter any unwanted controls */
if (filter && !filter(ctrl))
continue;
ret = handler_new_ref(hdl, ctrl, NULL, from_other_dev, false);
if (ret)
break;
}
mutex_unlock(add->lock);
return ret;
}
EXPORT_SYMBOL(v4l2_ctrl_add_handler);
bool v4l2_ctrl_radio_filter(const struct v4l2_ctrl *ctrl)
{
if (V4L2_CTRL_ID2WHICH(ctrl->id) == V4L2_CTRL_CLASS_FM_TX)
return true;
if (V4L2_CTRL_ID2WHICH(ctrl->id) == V4L2_CTRL_CLASS_FM_RX)
return true;
switch (ctrl->id) {
case V4L2_CID_AUDIO_MUTE:
case V4L2_CID_AUDIO_VOLUME:
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
case V4L2_CID_AUDIO_LOUDNESS:
return true;
default:
break;
}
return false;
}
EXPORT_SYMBOL(v4l2_ctrl_radio_filter);
/* Cluster controls */
void v4l2_ctrl_cluster(unsigned ncontrols, struct v4l2_ctrl **controls)
{
bool has_volatiles = false;
int i;
/* The first control is the master control and it must not be NULL */
if (WARN_ON(ncontrols == 0 || controls[0] == NULL))
return;
for (i = 0; i < ncontrols; i++) {
if (controls[i]) {
controls[i]->cluster = controls;
controls[i]->ncontrols = ncontrols;
if (controls[i]->flags & V4L2_CTRL_FLAG_VOLATILE)
has_volatiles = true;
}
}
controls[0]->has_volatiles = has_volatiles;
}
EXPORT_SYMBOL(v4l2_ctrl_cluster);
void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
u8 manual_val, bool set_volatile)
{
struct v4l2_ctrl *master = controls[0];
u32 flag = 0;
int i;
v4l2_ctrl_cluster(ncontrols, controls);
WARN_ON(ncontrols <= 1);
WARN_ON(manual_val < master->minimum || manual_val > master->maximum);
WARN_ON(set_volatile && !has_op(master, g_volatile_ctrl));
master->is_auto = true;
master->has_volatiles = set_volatile;
master->manual_mode_value = manual_val;
master->flags |= V4L2_CTRL_FLAG_UPDATE;
if (!is_cur_manual(master))
flag = V4L2_CTRL_FLAG_INACTIVE |
(set_volatile ? V4L2_CTRL_FLAG_VOLATILE : 0);
for (i = 1; i < ncontrols; i++)
if (controls[i])
controls[i]->flags |= flag;
}
EXPORT_SYMBOL(v4l2_ctrl_auto_cluster);
/*
* Obtain the current volatile values of an autocluster and mark them
* as new.
*/
void update_from_auto_cluster(struct v4l2_ctrl *master)
{
int i;
for (i = 1; i < master->ncontrols; i++)
cur_to_new(master->cluster[i]);
if (!call_op(master, g_volatile_ctrl))
for (i = 1; i < master->ncontrols; i++)
if (master->cluster[i])
master->cluster[i]->is_new = 1;
}
/*
* Return non-zero if one or more of the controls in the cluster has a new
* value that differs from the current value.
*/
static int cluster_changed(struct v4l2_ctrl *master)
{
bool changed = false;
int i;
for (i = 0; i < master->ncontrols; i++) {
struct v4l2_ctrl *ctrl = master->cluster[i];
bool ctrl_changed = false;
if (!ctrl)
continue;
if (ctrl->flags & V4L2_CTRL_FLAG_EXECUTE_ON_WRITE) {
changed = true;
ctrl_changed = true;
}
/*
* Set has_changed to false to avoid generating
* the event V4L2_EVENT_CTRL_CH_VALUE
*/
if (ctrl->flags & V4L2_CTRL_FLAG_VOLATILE) {
ctrl->has_changed = false;
continue;
}
if (ctrl->elems != ctrl->new_elems)
ctrl_changed = true;
if (!ctrl_changed)
ctrl_changed = !ctrl->type_ops->equal(ctrl,
ctrl->p_cur, ctrl->p_new);
ctrl->has_changed = ctrl_changed;
changed |= ctrl->has_changed;
}
return changed;
}
/*
* Core function that calls try/s_ctrl and ensures that the new value is
* copied to the current value on a set.
* Must be called with ctrl->handler->lock held.
*/
int try_or_set_cluster(struct v4l2_fh *fh, struct v4l2_ctrl *master,
bool set, u32 ch_flags)
{
bool update_flag;
int ret;
int i;
/*
* Go through the cluster and either validate the new value or
* (if no new value was set), copy the current value to the new
* value, ensuring a consistent view for the control ops when
* called.
*/
for (i = 0; i < master->ncontrols; i++) {
struct v4l2_ctrl *ctrl = master->cluster[i];
if (!ctrl)
continue;
if (!ctrl->is_new) {
cur_to_new(ctrl);
continue;
}
/*
* Check again: it may have changed since the
* previous check in try_or_set_ext_ctrls().
*/
if (set && (ctrl->flags & V4L2_CTRL_FLAG_GRABBED))
return -EBUSY;
}
ret = call_op(master, try_ctrl);
/* Don't set if there is no change */
if (ret || !set || !cluster_changed(master))
return ret;
ret = call_op(master, s_ctrl);
if (ret)
return ret;
/* If OK, then make the new values permanent. */
update_flag = is_cur_manual(master) != is_new_manual(master);
for (i = 0; i < master->ncontrols; i++) {
/*
* If we switch from auto to manual mode, and this cluster
* contains volatile controls, then all non-master controls
* have to be marked as changed. The 'new' value contains
* the volatile value (obtained by update_from_auto_cluster),
* which now has to become the current value.
*/
if (i && update_flag && is_new_manual(master) &&
master->has_volatiles && master->cluster[i])
master->cluster[i]->has_changed = true;
new_to_cur(fh, master->cluster[i], ch_flags |
((update_flag && i > 0) ? V4L2_EVENT_CTRL_CH_FLAGS : 0));
}
return 0;
}
/* Activate/deactivate a control. */
void v4l2_ctrl_activate(struct v4l2_ctrl *ctrl, bool active)
{
/* invert since the actual flag is called 'inactive' */
bool inactive = !active;
bool old;
if (ctrl == NULL)
return;
if (inactive)
/* set V4L2_CTRL_FLAG_INACTIVE */
old = test_and_set_bit(4, &ctrl->flags);
else
/* clear V4L2_CTRL_FLAG_INACTIVE */
old = test_and_clear_bit(4, &ctrl->flags);
if (old != inactive)
send_event(NULL, ctrl, V4L2_EVENT_CTRL_CH_FLAGS);
}
EXPORT_SYMBOL(v4l2_ctrl_activate);
void __v4l2_ctrl_grab(struct v4l2_ctrl *ctrl, bool grabbed)
{
bool old;
if (ctrl == NULL)
return;
lockdep_assert_held(ctrl->handler->lock);
if (grabbed)
/* set V4L2_CTRL_FLAG_GRABBED */
old = test_and_set_bit(1, &ctrl->flags);
else
/* clear V4L2_CTRL_FLAG_GRABBED */
old = test_and_clear_bit(1, &ctrl->flags);
if (old != grabbed)
send_event(NULL, ctrl, V4L2_EVENT_CTRL_CH_FLAGS);
}
EXPORT_SYMBOL(__v4l2_ctrl_grab);
/* Call s_ctrl for all controls owned by the handler */
int __v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler *hdl)
{
struct v4l2_ctrl *ctrl;
int ret = 0;
if (hdl == NULL)
return 0;
lockdep_assert_held(hdl->lock);
list_for_each_entry(ctrl, &hdl->ctrls, node)
ctrl->done = false;
list_for_each_entry(ctrl, &hdl->ctrls, node) {
struct v4l2_ctrl *master = ctrl->cluster[0];
int i;
/* Skip if this control was already handled by a cluster. */
/* Skip button controls and read-only controls. */
if (ctrl->done || ctrl->type == V4L2_CTRL_TYPE_BUTTON ||
(ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY))
continue;
for (i = 0; i < master->ncontrols; i++) {
if (master->cluster[i]) {
cur_to_new(master->cluster[i]);
master->cluster[i]->is_new = 1;
master->cluster[i]->done = true;
}
}
ret = call_op(master, s_ctrl);
if (ret)
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(__v4l2_ctrl_handler_setup);
int v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler *hdl)
{
int ret;
if (hdl == NULL)
return 0;
mutex_lock(hdl->lock);
ret = __v4l2_ctrl_handler_setup(hdl);
mutex_unlock(hdl->lock);
return ret;
}
EXPORT_SYMBOL(v4l2_ctrl_handler_setup);
/* Log the control name and value */
static void log_ctrl(const struct v4l2_ctrl *ctrl,
const char *prefix, const char *colon)
{
if (ctrl->flags & (V4L2_CTRL_FLAG_DISABLED | V4L2_CTRL_FLAG_WRITE_ONLY))
return;
if (ctrl->type == V4L2_CTRL_TYPE_CTRL_CLASS)
return;
pr_info("%s%s%s: ", prefix, colon, ctrl->name);
ctrl->type_ops->log(ctrl);
if (ctrl->flags & (V4L2_CTRL_FLAG_INACTIVE |
V4L2_CTRL_FLAG_GRABBED |
V4L2_CTRL_FLAG_VOLATILE)) {
if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
pr_cont(" inactive");
if (ctrl->flags & V4L2_CTRL_FLAG_GRABBED)
pr_cont(" grabbed");
if (ctrl->flags & V4L2_CTRL_FLAG_VOLATILE)
pr_cont(" volatile");
}
pr_cont("\n");
}
/* Log all controls owned by the handler */
void v4l2_ctrl_handler_log_status(struct v4l2_ctrl_handler *hdl,
const char *prefix)
{
struct v4l2_ctrl *ctrl;
const char *colon = "";
int len;
if (!hdl)
return;
if (!prefix)
prefix = "";
len = strlen(prefix);
if (len && prefix[len - 1] != ' ')
colon = ": ";
mutex_lock(hdl->lock);
list_for_each_entry(ctrl, &hdl->ctrls, node)
if (!(ctrl->flags & V4L2_CTRL_FLAG_DISABLED))
log_ctrl(ctrl, prefix, colon);
mutex_unlock(hdl->lock);
}
EXPORT_SYMBOL(v4l2_ctrl_handler_log_status);
int v4l2_ctrl_new_fwnode_properties(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ctrl_ops,
const struct v4l2_fwnode_device_properties *p)
{
if (p->orientation != V4L2_FWNODE_PROPERTY_UNSET) {
u32 orientation_ctrl;
switch (p->orientation) {
case V4L2_FWNODE_ORIENTATION_FRONT:
orientation_ctrl = V4L2_CAMERA_ORIENTATION_FRONT;
break;
case V4L2_FWNODE_ORIENTATION_BACK:
orientation_ctrl = V4L2_CAMERA_ORIENTATION_BACK;
break;
case V4L2_FWNODE_ORIENTATION_EXTERNAL:
orientation_ctrl = V4L2_CAMERA_ORIENTATION_EXTERNAL;
break;
default:
return -EINVAL;
}
if (!v4l2_ctrl_new_std_menu(hdl, ctrl_ops,
V4L2_CID_CAMERA_ORIENTATION,
V4L2_CAMERA_ORIENTATION_EXTERNAL, 0,
orientation_ctrl))
return hdl->error;
}
if (p->rotation != V4L2_FWNODE_PROPERTY_UNSET) {
if (!v4l2_ctrl_new_std(hdl, ctrl_ops,
V4L2_CID_CAMERA_SENSOR_ROTATION,
p->rotation, p->rotation, 1,
p->rotation))
return hdl->error;
}
return hdl->error;
}
EXPORT_SYMBOL(v4l2_ctrl_new_fwnode_properties);