linuxdebug/drivers/mtd/nand/onenand/onenand_omap2.c

618 lines
15 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* OneNAND driver for OMAP2 / OMAP3
*
* Copyright © 2005-2006 Nokia Corporation
*
* Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
* IRQ and DMA support written by Timo Teras
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/omap-gpmc.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/gpio/consumer.h>
#include <asm/mach/flash.h>
#define DRIVER_NAME "omap2-onenand"
#define ONENAND_BUFRAM_SIZE (1024 * 5)
struct omap2_onenand {
struct platform_device *pdev;
int gpmc_cs;
unsigned long phys_base;
struct gpio_desc *int_gpiod;
struct mtd_info mtd;
struct onenand_chip onenand;
struct completion irq_done;
struct completion dma_done;
struct dma_chan *dma_chan;
};
static void omap2_onenand_dma_complete_func(void *completion)
{
complete(completion);
}
static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
{
struct omap2_onenand *c = dev_id;
complete(&c->irq_done);
return IRQ_HANDLED;
}
static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
{
return readw(c->onenand.base + reg);
}
static inline void write_reg(struct omap2_onenand *c, unsigned short value,
int reg)
{
writew(value, c->onenand.base + reg);
}
static int omap2_onenand_set_cfg(struct omap2_onenand *c,
bool sr, bool sw,
int latency, int burst_len)
{
unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT;
reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT;
switch (burst_len) {
case 0: /* continuous */
break;
case 4:
reg |= ONENAND_SYS_CFG1_BL_4;
break;
case 8:
reg |= ONENAND_SYS_CFG1_BL_8;
break;
case 16:
reg |= ONENAND_SYS_CFG1_BL_16;
break;
case 32:
reg |= ONENAND_SYS_CFG1_BL_32;
break;
default:
return -EINVAL;
}
if (latency > 5)
reg |= ONENAND_SYS_CFG1_HF;
if (latency > 7)
reg |= ONENAND_SYS_CFG1_VHF;
if (sr)
reg |= ONENAND_SYS_CFG1_SYNC_READ;
if (sw)
reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
write_reg(c, reg, ONENAND_REG_SYS_CFG1);
return 0;
}
static int omap2_onenand_get_freq(int ver)
{
switch ((ver >> 4) & 0xf) {
case 0:
return 40;
case 1:
return 54;
case 2:
return 66;
case 3:
return 83;
case 4:
return 104;
}
return -EINVAL;
}
static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
{
printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
msg, state, ctrl, intr);
}
static void wait_warn(char *msg, int state, unsigned int ctrl,
unsigned int intr)
{
printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
"intr 0x%04x\n", msg, state, ctrl, intr);
}
static int omap2_onenand_wait(struct mtd_info *mtd, int state)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
unsigned int intr = 0;
unsigned int ctrl, ctrl_mask;
unsigned long timeout;
u32 syscfg;
if (state == FL_RESETTING || state == FL_PREPARING_ERASE ||
state == FL_VERIFYING_ERASE) {
int i = 21;
unsigned int intr_flags = ONENAND_INT_MASTER;
switch (state) {
case FL_RESETTING:
intr_flags |= ONENAND_INT_RESET;
break;
case FL_PREPARING_ERASE:
intr_flags |= ONENAND_INT_ERASE;
break;
case FL_VERIFYING_ERASE:
i = 101;
break;
}
while (--i) {
udelay(1);
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if (intr & ONENAND_INT_MASTER)
break;
}
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ERROR) {
wait_err("controller error", state, ctrl, intr);
return -EIO;
}
if ((intr & intr_flags) == intr_flags)
return 0;
/* Continue in wait for interrupt branch */
}
if (state != FL_READING) {
int result;
/* Turn interrupts on */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
syscfg |= ONENAND_SYS_CFG1_IOBE;
write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
/* Add a delay to let GPIO settle */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
}
reinit_completion(&c->irq_done);
result = gpiod_get_value(c->int_gpiod);
if (result < 0) {
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
intr = read_reg(c, ONENAND_REG_INTERRUPT);
wait_err("gpio error", state, ctrl, intr);
return result;
} else if (result == 0) {
int retry_cnt = 0;
retry:
if (!wait_for_completion_io_timeout(&c->irq_done,
msecs_to_jiffies(20))) {
/* Timeout after 20ms */
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ONGO &&
!this->ongoing) {
/*
* The operation seems to be still going
* so give it some more time.
*/
retry_cnt += 1;
if (retry_cnt < 3)
goto retry;
intr = read_reg(c,
ONENAND_REG_INTERRUPT);
wait_err("timeout", state, ctrl, intr);
return -EIO;
}
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if ((intr & ONENAND_INT_MASTER) == 0)
wait_warn("timeout", state, ctrl, intr);
}
}
} else {
int retry_cnt = 0;
/* Turn interrupts off */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
syscfg &= ~ONENAND_SYS_CFG1_IOBE;
write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
timeout = jiffies + msecs_to_jiffies(20);
while (1) {
if (time_before(jiffies, timeout)) {
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if (intr & ONENAND_INT_MASTER)
break;
} else {
/* Timeout after 20ms */
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ONGO) {
/*
* The operation seems to be still going
* so give it some more time.
*/
retry_cnt += 1;
if (retry_cnt < 3) {
timeout = jiffies +
msecs_to_jiffies(20);
continue;
}
}
break;
}
}
}
intr = read_reg(c, ONENAND_REG_INTERRUPT);
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (intr & ONENAND_INT_READ) {
int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
if (ecc) {
unsigned int addr1, addr8;
addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
if (ecc & ONENAND_ECC_2BIT_ALL) {
printk(KERN_ERR "onenand_wait: ECC error = "
"0x%04x, addr1 %#x, addr8 %#x\n",
ecc, addr1, addr8);
mtd->ecc_stats.failed++;
return -EBADMSG;
} else if (ecc & ONENAND_ECC_1BIT_ALL) {
printk(KERN_NOTICE "onenand_wait: correctable "
"ECC error = 0x%04x, addr1 %#x, "
"addr8 %#x\n", ecc, addr1, addr8);
mtd->ecc_stats.corrected++;
}
}
} else if (state == FL_READING) {
wait_err("timeout", state, ctrl, intr);
return -EIO;
}
if (ctrl & ONENAND_CTRL_ERROR) {
wait_err("controller error", state, ctrl, intr);
if (ctrl & ONENAND_CTRL_LOCK)
printk(KERN_ERR "onenand_wait: "
"Device is write protected!!!\n");
return -EIO;
}
ctrl_mask = 0xFE9F;
if (this->ongoing)
ctrl_mask &= ~0x8000;
if (ctrl & ctrl_mask)
wait_warn("unexpected controller status", state, ctrl, intr);
return 0;
}
static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
return this->writesize;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c,
dma_addr_t src, dma_addr_t dst,
size_t count)
{
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n");
return -EIO;
}
reinit_completion(&c->dma_done);
tx->callback = omap2_onenand_dma_complete_func;
tx->callback_param = &c->dma_done;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n");
return -EIO;
}
dma_async_issue_pending(c->dma_chan);
if (!wait_for_completion_io_timeout(&c->dma_done,
msecs_to_jiffies(20))) {
dmaengine_terminate_sync(c->dma_chan);
return -ETIMEDOUT;
}
return 0;
}
static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
struct device *dev = &c->pdev->dev;
void *buf = (void *)buffer;
dma_addr_t dma_src, dma_dst;
int bram_offset, err;
size_t xtra;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
/*
* If the buffer address is not DMA-able, len is not long enough to
* make DMA transfers profitable or if invoked from panic_write()
* fallback to PIO mode.
*/
if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
count < 384 || mtd->oops_panic_write)
goto out_copy;
xtra = count & 3;
if (xtra) {
count -= xtra;
memcpy(buf + count, this->base + bram_offset + count, xtra);
}
dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
dma_src = c->phys_base + bram_offset;
if (dma_mapping_error(dev, dma_dst)) {
dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
goto out_copy;
}
err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
if (!err)
return 0;
dev_err(dev, "timeout waiting for DMA\n");
out_copy:
memcpy(buf, this->base + bram_offset, count);
return 0;
}
static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer,
int offset, size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
struct device *dev = &c->pdev->dev;
void *buf = (void *)buffer;
dma_addr_t dma_src, dma_dst;
int bram_offset, err;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
/*
* If the buffer address is not DMA-able, len is not long enough to
* make DMA transfers profitable or if invoked from panic_write()
* fallback to PIO mode.
*/
if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
count < 384 || mtd->oops_panic_write)
goto out_copy;
dma_src = dma_map_single(dev, buf, count, DMA_TO_DEVICE);
dma_dst = c->phys_base + bram_offset;
if (dma_mapping_error(dev, dma_src)) {
dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
goto out_copy;
}
err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
dma_unmap_page(dev, dma_src, count, DMA_TO_DEVICE);
if (!err)
return 0;
dev_err(dev, "timeout waiting for DMA\n");
out_copy:
memcpy(this->base + bram_offset, buf, count);
return 0;
}
static void omap2_onenand_shutdown(struct platform_device *pdev)
{
struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
/* With certain content in the buffer RAM, the OMAP boot ROM code
* can recognize the flash chip incorrectly. Zero it out before
* soft reset.
*/
memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
}
static int omap2_onenand_probe(struct platform_device *pdev)
{
u32 val;
dma_cap_mask_t mask;
int freq, latency, r;
struct resource *res;
struct omap2_onenand *c;
struct gpmc_onenand_info info;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "error getting memory resource\n");
return -EINVAL;
}
r = of_property_read_u32(np, "reg", &val);
if (r) {
dev_err(dev, "reg not found in DT\n");
return r;
}
c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL);
if (!c)
return -ENOMEM;
init_completion(&c->irq_done);
init_completion(&c->dma_done);
c->gpmc_cs = val;
c->phys_base = res->start;
c->onenand.base = devm_ioremap_resource(dev, res);
if (IS_ERR(c->onenand.base))
return PTR_ERR(c->onenand.base);
c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN);
if (IS_ERR(c->int_gpiod)) {
/* Just try again if this happens */
return dev_err_probe(dev, PTR_ERR(c->int_gpiod), "error getting gpio\n");
}
if (c->int_gpiod) {
r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod),
omap2_onenand_interrupt,
IRQF_TRIGGER_RISING, "onenand", c);
if (r)
return r;
c->onenand.wait = omap2_onenand_wait;
}
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
c->dma_chan = dma_request_channel(mask, NULL, NULL);
if (c->dma_chan) {
c->onenand.read_bufferram = omap2_onenand_read_bufferram;
c->onenand.write_bufferram = omap2_onenand_write_bufferram;
}
c->pdev = pdev;
c->mtd.priv = &c->onenand;
c->mtd.dev.parent = dev;
mtd_set_of_node(&c->mtd, dev->of_node);
dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n",
c->gpmc_cs, c->phys_base, c->onenand.base,
c->dma_chan ? "DMA" : "PIO");
r = onenand_scan(&c->mtd, 1);
if (r < 0)
goto err_release_dma;
freq = omap2_onenand_get_freq(c->onenand.version_id);
if (freq > 0) {
switch (freq) {
case 104:
latency = 7;
break;
case 83:
latency = 6;
break;
case 66:
latency = 5;
break;
case 56:
latency = 4;
break;
default: /* 40 MHz or lower */
latency = 3;
break;
}
r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs,
freq, latency, &info);
if (r)
goto err_release_onenand;
r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write,
latency, info.burst_len);
if (r)
goto err_release_onenand;
if (info.sync_read || info.sync_write)
dev_info(dev, "optimized timings for %d MHz\n", freq);
}
r = mtd_device_register(&c->mtd, NULL, 0);
if (r)
goto err_release_onenand;
platform_set_drvdata(pdev, c);
return 0;
err_release_onenand:
onenand_release(&c->mtd);
err_release_dma:
if (c->dma_chan)
dma_release_channel(c->dma_chan);
return r;
}
static int omap2_onenand_remove(struct platform_device *pdev)
{
struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
onenand_release(&c->mtd);
if (c->dma_chan)
dma_release_channel(c->dma_chan);
omap2_onenand_shutdown(pdev);
return 0;
}
static const struct of_device_id omap2_onenand_id_table[] = {
{ .compatible = "ti,omap2-onenand", },
{},
};
MODULE_DEVICE_TABLE(of, omap2_onenand_id_table);
static struct platform_driver omap2_onenand_driver = {
.probe = omap2_onenand_probe,
.remove = omap2_onenand_remove,
.shutdown = omap2_onenand_shutdown,
.driver = {
.name = DRIVER_NAME,
.of_match_table = omap2_onenand_id_table,
},
};
module_platform_driver(omap2_onenand_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");